Please wait a minute...

Frontiers of Earth Science

Front. Earth Sci.    2017, Vol. 11 Issue (3) : 447-456
The significance of small streams
Ellen WOHL()
Department of Geosciences, Colorado State University, Fort Collins, CO 80523-1482, USA
Download: PDF(647 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Headwaters, defined here as first- and second-order streams, make up 70%–80% of the total channel length of river networks. These small streams exert a critical influence on downstream portions of the river network by: retaining or transmitting sediment and nutrients; providing habitat and refuge for diverse aquatic and riparian organisms; creating migration corridors; and governing connectivity at the watershed-scale. The upstream-most extent of the channel network and the longitudinal continuity and lateral extent of headwaters can be difficult to delineate, however, and people are less likely to recognize the importance of headwaters relative to other portions of a river network. Consequently, headwaters commonly lack the legal protections accorded to other portions of a river network and are more likely to be significantly altered or completely obliterated by land use.

Keywords headwaters      hydrology      water quality      land use      connectivity      resilience     
Corresponding Author(s): Ellen WOHL   
Just Accepted Date: 28 February 2017   Online First Date: 07 April 2017    Issue Date: 12 July 2017
 Cite this article:   
Ellen WOHL. The significance of small streams[J]. Front. Earth Sci., 2017, 11(3): 447-456.
E-mail this article
E-mail Alert
Articles by authors
Ellen WOHL
Fig.1  Schematic illustration of (a) biotic contributions of headwaters and (b) physical characteristics of headwaters.
Fig.2  The six dimensions of connectivity. The segment of channel shown here is connected to: upstream and downstream portions of the river network; adjacent uplands; the floodplain; ground water; the hyporheic zone (gray); and the atmosphere. The photograph for upstream-downstream connection was taken during a flood on the Paria River, a tributary of the Colorado River that enters just downstream from Glen Canyon Dam in Arizona, USA. In this view, the Paria is turbid with suspended sediment whereas the Colorado, which is released from the base of the dam, is clear. The photograph for the hillslope-channel connection shows a large landslide entering the Dudh Khosi River in Nepal. The photograph for the floodplain-channel connection was taken along the Rio Jutai, a blackwater tributary of the Amazon River, during the annual flood in early June. In this view the ‘flooded forest’ is submerged by several meters of water. The photograph for hyporheic-channel connection shows a mixing zone between hyporheic return flow (clear water at left) and turbid surface flow along a braided section of the Duke River in Canada. The photograph for atmosphere-channel connection shows a mayfly emerging from the river prior to entering the atmosphere as a winged adult (image courtesy of Jeremy Monroe, Freshwaters Illustrated). (AfterWohl, 2014, Figure 1.1)
Research need Description
Mapping We are unable to predict the location of first-order channels in particular, which limits ability to define their spatial distribution and cumulative length or area. This in turn limits understanding of their physical or ecological function, as well as the extent of direct or indirect human alteration of these smallest channels in a river network
Resistance & resilience We cannot adequately characterize or predict either physical or ecological resistance or resilience of many headwater streams. We need additional case studies of headwaters response to natural and human-induced disturbances in order to develop a sufficient body of literature to support generalizations and predictions. We also need metrics to characterize resistance and resilience of headwater streams, which are likely to have greater magnitude and frequency of disturbances than higher-order channels
Human alterations We need more site-specific case studies and watershed- to regional-scale assessments of how land use and climate change affect the distribution, form, and function of headwaters
Biota Complete species inventories do not exist for the great majority of headwater streams, which limits our ability to understand and predict the contribution of headwaters to biodiversity and the ecological resilience of these streams to natural and human disturbances
Hydrology There is a need for both techniques to measure the spatial and temporal extent of surface flow in streams that are ephemeral or intermittent, and datasets of such measurements. We also need more quantitative measurements of hydrologic variability and metrics that characterize hydrologic variability.
Hydraulics and sediment regime Headwaters are predominantly sediment transfer zones, but we need more case studies of the magnitude and episodicity of sediment inputs and downstream transfer, including the hydraulic thresholds that facilitate such transfer.
Connectivity As with hydrologic variability, we need more measurement techniques, metrics, and datasets of diverse forms of connectivity in headwaters.
Tab.1  Research needs for headwater streams
1 Adams R K, Spotila  J A (2005). The form and function of headwater streams based on field and modeling investigations in the Southern Appalachian Mountains. Earth Surf Process Landf, 30(12): 1521–1546
2 Adams S B, Frissell  C A, Rieman  B E (2001). Geography of invasion in mountain streams: consequences of headwater lake fish introductions. Ecosystems (N Y), 4(4): 296–307
3 Alexander R B ,  Boyer E W ,  Smith R A ,  Schwarz G E ,  Moore R B  (2007). The role of headwater streams in downstream water quality. J Am Water Resour Assoc, 43(1): 41–59
4 Allan J D (1995). Stream Ecology. Boston, MA: Kluwer Academic Publishers
5 Arthington A H ,  Bernardo J M ,  Ilheu M  (2014). Temporary rivers: linking ecohydrology, ecological quality and reconciliation ecology. River Res Appl, 30(10): 1209–1215
6 Battin T J, Kaplan  L A, Findlay  S, Hopkinson C S ,  Marti E ,  Packman A I ,  Newbold J D ,  Sabater F  (2008). Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci, 1(2): 95–100
7 Baxter C V, Fausch  K D, Saunders  W C (2005). Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. Freshw Biol, 50(2): 201–220
8 Beasley C A, Hightower  J E (2000). Effects of a low-head dam on the distribution and characteristics of spawning habitat used by striped bass and American shad. Trans Am Fish Soc, 129(6): 1316–1330<1316:EOALHD>2.0.CO;2
9 Benda L, Hassan  M A, Church  M, May C L  (2005). Geomorphology of steepland headwaters: the transition from hillslopes to channels. J Am Water Resour Assoc, 41(4): 835–851
10 Bernhardt E S ,  Palmer M A  (2011). The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the Central Appalachians. Year Ecol Conserv Biol, 1223: 39–57
11 Campbell I C, Doeg  T J (1989). Impact of timber harvesting and production on streams: a review. Mar Freshw Res, 40(5): 519–539 doi:10.1071/MF9890519
12 Dietrich W E, Dunne  T (1993). The channel head. In: Beven K, Kirkby M J, eds. Channel Network Hydrology. Chichester, UK: Wiley and Sons, 175–219
13 Dietrich W E, Wilson  C J, Montgomery  D R, McKean  J (1993). Analysis of erosion thresholds, channel networks, and landscape morphology using a digital terrain model. J Geol, 101(2): 259–278
14 Dietrich W E, Wilson  C J, Montgomery  D R, McKean  J, Bauer R  (1992). Erosion thresholds and land surface morphology. Geology, 20(8): 675–679<0675:ETALSM>2.3.CO;2
15 Dodds W K, Oakes  R M (2008). Headwater influences on downstream water quality. Environ Manage, 41(3): 367–377
16 Downing J A, Cole  J J, Duarte  C M, Middelburg  J J, Melack  J M, Prairie  Y T, Kortelainen  P, Striegl R G ,  McDowell W H ,  Tranvik L J  (2012). Global abundance and size distribution of streams and rivers. Inland Waters, 2(4): 229–236
17 Elmore A J, Kaushal  S S (2008). Disappearing headwaters: patterns of stream burial due to urbanization. Front Ecol Environ, 6(6): 308–312
18 Falke J A, Fausch  K D, Magelky  R, Aldred A ,  Durnford D S ,  Riley L K ,  Oad R (2011). The role of groundwater pumping and drought in shaping ecological futures for stream fishes in a dryland river basin of the western Great Plains, USA. Ecohydrology, 4(5): 682–697
19 Ferguson R (2007). Flow resistance equations for gravel- and boulder-bed streams. Water Resour Res, 43(5): n/a
20 Freeman M C, Pringle  C M, Jackson  C R (2007). Hydrologic connectivity and the contribution of stream headwaters to ecological integrity at regional scales. J Am Water Resour Assoc, 43(1): 5–14
21 FSSSWG (Forest Service Stream-Simulation Working Group) (2008). Stream Simulation: An Ecological Approach to Providing Passage for Aquatic Organisms at Road-Stream Crossings. USDA Forest Service National Technology and Development Program, 0877: 1801 (-SDTDC, San Dimas, CA.)
22 Gomez B, Church  M (1989). An assessment of bed load sediment transport formulae for gravel bed rivers. Water Resour Res, 25(6): 1161–1186
23 Gomi T, Sidle  R C, Richardson  J S (2002). Understanding processes and downstream linkages of headwater systems. Bioscience, 52(10): 905–916[0905:UPADLO]2.0.CO;2
24 Gooseff M N, Hall  R O Jr, Tank  J L (2007). Relating transient storage to channel complexity in streams of varying land use in Jackson Hole, Wyoming. Water Resour Res, 43(1):
25 Griffith (1998). Lateral dispersal of the adult aquatic insects (Plecoptera, Trichoptera) following emergence from headwater streams in forested Appalachian catchments. Annals of the Entomological Society of America, 91 doi:
26 Grimm N B, Sheibley  R W, Crenshaw  C L, Dahm  C N, Roach  W J, Zeglin  L H (2005). N retention and transformation in urban streams. J N Am Benthol Soc, 24(3): 626–642
27 Heine R A, Lant  C L, Sengupta  R R (2004). Development and comparison of approaches for automated mapping of stream channel networks. Ann Assoc Am Geogr, 94(3): 477–490
28 Henkle J E, Wohl  E, Beckman N  (2011). Locations of channel heads in the semiarid Colorado Front Range, USA. Geomorphology, 129(3‒4): 309–319
68 Schlosser I J  (1995). Critical landscape attributes that influence fish population dynamics in headwater streams. Hydrobiologia, 303(1‒3): 71–81
69 Schumm S A (1977). The Fluvial System.New York: Wiley and Sons
70 Smock L A, Gladden  J E, Riekenberg  J L, Smith  L C, Black  C R (1992). Lotic macroinvertebrate production in three dimensions: channel surface, hyporheic, and floodplain environments. Ecology, 73(3): 876–886
71 Speaker R, Moore  K, Gregory S  (1984). Analysis of the process of retention of organic matter in stream ecosystems. Verh Internat Verein Limnol, 22: 1835–1841
72 Stanford J A, Ward  J V (1988). The hyporheic habitat of river ecosystems. Nature, 335(6185): 64–66
29 Howarth R W (2008). Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae, 8(1): 14–20
73 Strahler A N (1952). Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America, 63(11): 1117–1142[1117:HAAOET]2.0.CO;2
30 Ijjasz-Vasquez E J ,  Bras R L  (1995). Scaling regimes of local slope versus contributing area in digital elevation models. Geomorphology, 12(4): 299–311
31 Istanbulluoglu E, Tarboton  D G, Pack  R T, Luce  C (2002). A probabilistic approach for channel initiation. Water Resour Res, 38(12): 61-1–61-14
32 Jaeger K L, Montgomery  D R, Bolton  S M (2007). Channel and perennial flow initiation in headwater streams: management implications of variability in source-area size. Environ Manage, 40(5): 775–786
33 Jaeger K L, Olden  J D (2012). Electrical resistance sensor arrays as a means to quantify longitudinal connectivity of rivers. River Res Appl, 28(10): 1843–1852
34 Jaeger K L, Olden  J D, Pelland  N A (2014). Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc Natl Acad Sci USA, 111(38): 13894–13899
35 Jefferson A J ,  McGee R W  (2013). Channel network extent in the context of historical land use, flow generation processes, and landscape evolution in the North Carolina Piedmont. Earth Surf Process Landf, 38(6): 601–613
36 Jones A (1971). Soil piping and stream channel initiation. Water Resour Res, 7(3): 602–610
37 Julian J P, Elmore  A J, Guinn  S M (2012). Channel head locations in forested watersheds across the mid-Atlantic United States: a physiographic analysis. Geomorphology, 177 ‒ 178: 194–203
38 Leibowitz S G ,  Wigington P J  Jr,  Rains M C ,  Downing D M  (2008). Non-navigable streams and adjacent wetlands: addressing science needs following the Supreme Court’s Rapanos decision. Front Ecol Environ, 6(7): 364–371
39 MacDonald L H ,  Coe D (2007). Influence of headwater streams on downstream reaches in forested areas. For Sci, 53: 148–168
40 McClain M E, Naiman  R J (2008). Andean influences on the biogeochemistry and ecology of the Amazon River. Bioscience, 58(4): 325–338
41 McGlynn B L, McDonnell  J J, Seibert  J, Kendall C  (2004). Scale effects on headwater catchment runoff timing, flow sources, and groundwater-streamflow relations. Water Resour Res, 40(7): n/a
42 Mersel M K, Lichvar  R W (2014). A guide to ordinary high water mark (OHWM) delineation for non-perennial streams in the western mountains, valleys, and coast regions of the United States. U.S. Army Corps of Engineers, ERDC/CRREL TR-14-13, Hannover, NH
43 Meyer J L, Kaplan  L A, Newbold  D, Woltemade C J ,  Zedler J B ,  Beilfuss R ,  Carpenter Q ,  Semlitsch R ,  Watzin M C ,  Zedler P H  (2007b). Where rivers are born: the scientific imperative for defending small streams and wetlands. Sierra Club, San Francisco, CA
44 Meyer J L, Strayer  D L, Wallace  J B, Eggert  S L, Helfman  G S, Leonard  N E (2007a). The contribution of headwater streams to biodiversity in river networks. J Am Water Resour Assoc, 43(1): 86–103
45 Meyer J L, Wallace  J B (2001). Lost linkages and lotic ecology: rediscovering small streams. In: Press M C, Huntly N J, Levin S, eds., Ecology: Achievement and Challenge. Orlando, FL: Blackwell Science, 295–317
46 Montgomery D R ,  Beamer E M ,  Pess G R ,  Quinn T P  (1999). Channel type and salmonid spawning distribution and abundance. Can J Fish Aquat Sci, 56(3): 377–387
47 Montgomery D R ,  Dietrich W E  (1988). Where do channels begin? Nature, 336(6196): 232–234
48 Montgomery D R ,  Dietrich W E  (1989). Source areas, drainage density, and channel initiation. Water Resour Res, 25(8): 1907–1918
49 Montgomery D R ,  Dietrich W E  (1992). Channel initiation and the problem of landscape scale. Science, 255(5046): 826–830
50 Montgomery D R ,  Foufoula-Georgiou E  (1993). Channel network source representation using digital elevation models. Water Resour Res, 29(12): 3925–3934
51 Nadeau T L, Rains  M C (2007). Hydrological connectivity between headwater streams and downstream waters: how science can inform policy. J Am Water Resour Assoc, 43(1): 118–133
52 Nakano S, Murakami  M (2001). Reciprocal subsidies: dynamic interdependence between terrestrial and aquatic food webs. Proc Natl Acad Sci USA, 98(1): 166–170
53 Nihlgard B J, Swank  W T, Mitchell  M J (1994). Biological processes and catchment studies. In: Moldan B, Cerny J, eds., Biogeochemistry of Small Catchments: A Tool for Environmental Research. Chichester, UK: John Wiley and Sons, 133–161
54 Osterkamp W R  (2008). Annotated definitions of selected geomorphic terms and related terms of hydrology, sedimentology, soil science and ecology. U.S. Geological Survey Open File Report 2008-1217, Reston, VA
55 Palmer M A, Bernhardt  E S, Schlesinger  W H, Eshleman  K N, Foufoula-Georgiou  E, Hendryx M S ,  Lemly A D ,  Likens G E ,  Loucks O L ,  Power M E ,  White P S ,  Wilcock P R  (2010). Mountaintop mining consequences. Science, 327(5962): 148–149
56 Paul M J, Meyer  J L (2001). Streams in the urban landscape. Annu Rev Ecol Syst, 32(1): 333–365
57 Petersen R C, Madsen  B L, Wilzbach  M W, Magadza  C H, Paarlberg  A, Kullberg A ,  Cummins K W  (1987). Stream management: emerging global similarities. Ambio, 16: 166–179
58 Peterson B J, Wollheim  W M, Mulholland  P J, Webster  J R, Meyer  J L, Tank  J L, Marti  E, Bowden W B ,  Valett H M ,  Hershey A E ,  McDowell W H ,  Dodds W K ,  Hamilton S K ,  Gregory S ,  Morrall D D  (2001). Control of nitrogen export from watersheds by headwater streams. Science, 292(5514): 86–90
59 Polvi L E, Wohl  E (2013). Biotic drivers of stream planform: implications for understanding the past and restoring the future. Bioscience, 63(6): 439–452
60 Pond G J, Fritz  K M, Johnson  B R (2016). Macroinvertebrate and organic matter export from headwater tributaries of a Central Appalachian stream. Hydrobiologia, 779(1): 75–91
61 Prosser I P, Abernethy  B (1996). Predicting the topographic limits to a gully network using a digital terrain model and process thresholds. Water Resour Res, 32(7): 2289–2298
62 Prosser I P, Dietrich  W E (1995). Field experiments on erosion by overland flow and their implication for a digital terrain model of channel initiation. Water Resour Res, 31(11): 2867–2876
63 Reynolds L V, Shafroth  P B, Poff  N L (2015). Modeled intermittency risk for small streams in the Upper Colorado River Basin under climate change. J Hydrol (Amst), 523: 768–780
64 Ricciardi A, Rasmussen  J B (1999). Extinction rates of North American freshwater fauna. Conserv Biol, 13(5): 1220–1222
65 Richardson J S ,  Bilby R E ,  Bondar C A  (2005). Organic matter dynamics in small streams of the Pacific Northwest. J Am Water Resour Assoc, 41(4): 921–934
66 Richardson J S ,  Danehy R J  (2007). A synthesis of the ecology of headwater streams and their riparian zones in temperate forests. For Sci, 53: 131–147
67 Sawyer A H, Bayani Cardenas  M, Buttles J  (2012). Hyporheic temperature dynamics and heat exchange near channel-spanning logs. Water Resour Res, 48(1): W01529
74 Sweeney B W, Bott  T L, Jackson  J K, Kaplan  L A, Newbold  J D, Standley  L J, Hession  C W, Horwitz  R J (2004). Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proc Natl Acad Sci USA, 101(39): 14132–14137
75 Tarboton D G, Bras  R L, Rodriguez-Iturbe  I (1991). On the extraction of channel networks from digital elevation data. Hydrol Processes, 5(1): 81–100
76 Tarolli P, Dalla Fontana  G (2009). Hillslope-to-valley transition morphology: new opportunities from high resolution DTMs. Geomorphology, 113(1‒2): 47–56
77 Tockner K, Malard  F, Ward J V  (2000). An extension of the flood pulse concept. Hydrol Processes, 14(16‒17): 2861–2883<2861::AID-HYP124>3.0.CO;2-F
78 U.S. Army Corps of Engineers (2012). 2012 Nationwide Permits, Conditions, District Engineer’s Decision, Further Information, and Definitions. 
79 Ward J V, Stanford  J A (1995). Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regul Rivers Res Manage, 11(1): 105–119
80 Webster J R, Benfield  E F, Ehrman  T P, Schaeffer  M A, Tank  J L, Hutchens  J J, D’Angelo  D J (1999). What happens to allochthonous materials that fall into streams: a synthesis of new and published information from Coweeta. Freshw Biol, 41(4): 687–705
81 Wipfli M S, Gregovich  D P (2002). Export of invertebrates and detritus from fishless headwater streams in southeastern Alaska: implications for downstream salmonid production. Freshw Biol, 47(5): 957–969
82 Wipfli M S, Richardson  J S, Naiman  R J (2007). Ecological linkages between headwaters and downstream ecosystems: transport of organic matter, invertebrates, and wood down headwater channels. J Am Water Resour Assoc, 43(1): 72–85
83 Wohl E (2010). Mountain Rivers Revisited. Washington, DC: American Geophysical Union Press
84 Wohl E (2013). Migration of channel heads following wildfire in the Colorado Front Range, USA. Earth Surf Process Landf, 38(9): 1049–1053
85 Wohl E (2014). Rivers in the Landscape: Science and Management. Chichester, UK: Wiley Blackwell
86 Wohl E E, Pearthree  P A (1991). Debris flows as geomorphic agents in the Huachuca Mountains of southeastern Arizona. Geomorphology, 4(3‒4): 273–292
87 Yetemen O, Istanbulluoglu  E, Vivoni E R  (2010). The implications of geology, soils, and vegetation on landscape morphology: inferences from semi-arid basins with complex vegetation patterns in central New Mexico, USA. Geomorphology, 116(3‒4): 246–263
Related articles from Frontiers Journals
[1] Zhuokun PAN, Yueming HU, Guangxing WANG. Detection of short-term urban land use changes by combining SAR time series images and spectral angle mapping[J]. Front. Earth Sci., 2019, 13(3): 495-509.
[2] Ying XIONG, Fen PENG, Bin ZOU. Spatiotemporal influences of land use/cover changes on the heat island effect in rapid urbanization area[J]. Front. Earth Sci., 2019, 13(3): 614-627.
[3] Kun JIA, Jingcan LIU, Yixuan TU, Qiangzi LI, Zhiwei SUN, Xiangqin WEI, Yunjun YAO, Xiaotong ZHANG. Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain[J]. Front. Earth Sci., 2019, 13(2): 327-335.
[4] Han JIA, Yongming SHEN, Meirong SU, Chunxue YU. Numerical simulation of hydrodynamic and water quality effects of shoreline changes in Bohai Bay[J]. Front. Earth Sci., 2018, 12(3): 625-639.
[5] Jicai NING, Zhiqiang GAO, Ran MENG, Fuxiang XU, Meng GAO. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta[J]. Front. Earth Sci., 2018, 12(2): 444-456.
[6] Jianguo LI, Wenhui YANG, Qiang LI, Lijie PU, Yan XU, Zhongqi ZHANG, Lili LIU. Effect of reclamation on soil organic carbon pools in coastal areas of eastern China[J]. Front. Earth Sci., 2018, 12(2): 339-348.
[7] Libin CHEN, Zhifeng YANG, Haifei LIU. Sensitivity analysis for the total nitrogen pollution of the Danjiangkou Reservoir based on a 3-D water quality model[J]. Front. Earth Sci., 2017, 11(4): 609-619.
[8] Na ZHAO, Mengzhen XU, Zhiwei LI, Zhaoyin WANG, Hanmi ZHOU. Macroinvertebrate distribution and aquatic ecology in the Ruoergai (Zoige) Wetland, the Yellow River source region[J]. Front. Earth Sci., 2017, 11(3): 554-564.
[9] E. RETS, J. CHIZHOVA, N. LOSHAKOVA, I. TOKAREV, M. KIREEVA, N. BUDANTSEVA, Yu.K. VASILCHUK, N. FROLOVA, V. POPOVNIN, P. TOROPOV, E. TERSKAYA, A. SMIRNOV, E. BELOZEROV, M. KARASHOVA. Using isotope methods to study alpine headwater regions in the Northern Caucasus and Tien Shan *[J]. Front. Earth Sci., 2017, 11(3): 531-543.
[10] Christine E. WEHNER, John D. STEDNICK. Effects of mountain pine beetle-killed forests on source water contributions to streamflow in headwater streams of the Colorado Rocky Mountains[J]. Front. Earth Sci., 2017, 11(3): 496-504.
[11] Ryan W. WEBB. Using ground penetrating radar to assess the variability of snow water equivalent and melt in a mixed canopy forest, Northern Colorado[J]. Front. Earth Sci., 2017, 11(3): 482-495.
[12] Molly E. TEDESCHE, Steven R. FASSNACHT, Paul J. MEIMAN. Scales of snow depth variability in high elevation rangeland sagebrush[J]. Front. Earth Sci., 2017, 11(3): 469-481.
[13] Chong PENG, Hao XIAO, Yu LIU, Jingjing ZHANG. Economic structure and environmental quality and their impact on changing land use efficiency in China[J]. Front. Earth Sci., 2017, 11(2): 372-384.
[14] Hui ZHANG, Qiao WANG, Guangyu LI, Hanpei ZHANG, Jue ZHANG. Losses of Ecosystem Service Values in the Taihu Lake Basin from 1979 to 2010[J]. Front. Earth Sci., 2017, 11(2): 310-320.
[15] Meilin WU,Youshao WANG,Junde DONG,Fulin SUN,Yutu WANG,Yiguo HONG. Spatial assessment of water quality using chemometrics in the Pearl River Estuary, China[J]. Front. Earth Sci., 2017, 11(1): 114-126.
Full text