Please wait a minute...

Frontiers of Earth Science

Front. Earth Sci.    2019, Vol. 13 Issue (2) : 361-370     https://doi.org/10.1007/s11707-018-0724-x
RESEARCH ARTICLE |
Metal accumulation in Asiatic clam from the Lower Min River (China) and implications for human health
Yue ZENG1,2,3, Zhongtao LI1, Qianfeng WANG1,2,3(), Changcheng XU1,2,3, Yunqin LI1, Jia TANG1,2,3
1. College of Environment and Resources, Fuzhou University, Fuzhou 350116, China
2. Key Laboratory of Spatial Data Mining & Information Sharing, Ministry of Education of China, Fuzhou 350116, China
3. Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion, Fuzhou University, Fuzhou 350116, China
Download: PDF(1259 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Considering growing concerns regarding polluted estuaries and their adverse effects on public health, this study aimed to identify concentrations of metal (Zn, Fe, Cr, Ni, Cd, Mn, As, Cu, and Pb) in Asiatic clams sampled along the Lower Min River, China. Multivariate methods were used to identify and apportion pollution sources. Noncarcinogenic and carcinogenic health risk assessments were performed to gauge adverse consumer health effects. Results showed that Cr, Pb, and Zn concentrations were higher than the limits prescribed in Chinese government guidelines. In comparison with concentrations of selected metals in other rivers, Cr, Pb, Zn, and As concentrations in clams were generally higher. Pollution assessment using the metal pollution index showed that sampling sites surrounding developing industrial and residential areas were the most polluted. Principal component analysis indicated significant anthropogenic metal contributions in clams. Health risk assessment indicated significant risk for clam consumers along the Lower Min River in terms of hazard quotient and carcinogenic risk and, thus, clam consumption from the study area should be avoided. The present findings would help in establishing environmental monitoring plans and contribute to preserving public health as well as the development of water conservation strategies to alleviate the metal pollution.

Keywords metal accumulation      Asiatic clam      source identifications      health risk      Min River     
Corresponding Authors: Qianfeng WANG   
Just Accepted Date: 16 October 2018   Online First Date: 16 November 2018    Issue Date: 16 May 2019
 Cite this article:   
Yue ZENG,Zhongtao LI,Qianfeng WANG, et al. Metal accumulation in Asiatic clam from the Lower Min River (China) and implications for human health[J]. Front. Earth Sci., 2019, 13(2): 361-370.
 URL:  
http://journal.hep.com.cn/fesci/EN/10.1007/s11707-018-0724-x
http://journal.hep.com.cn/fesci/EN/Y2019/V13/I2/361
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yue ZENG
Zhongtao LI
Qianfeng WANG
Changcheng XU
Yunqin LI
Jia TANG
Fig.1  Sample site locations along the Lower Min River, Southeast China.
Item Fe Zn Cd Mn As Cu Ni Pb Cr
Min 66.9 51.5 0.25 3.93 0.71 3.51 0.37 2.03 31.2
Max 154 837 1.33 17.0 2.02 7.03 1.11 30.5 49.3
Mean 112 184 0.55 9.28 1.54 5.79 0.55 7.95 42.1
SE 31.1 249 0.33 38.8 0.45 1.11 0.25 9.31 5.73
Guidelinea) b) 50 2.0 5.0 25 2 2
Tab.1  Metal concentrations (mg/kg wet wt) in Asiatic clam tissues along the Lower Min River
Study area Concentrations of metals/(mg·kg?1, dry wt) Reference
Fe Zn Cd Mn As Cu Ni Pb Cr
This studya) 334–757 (563)b) 258–4.18×103 (918) 1.25–6.65 (2.75) 19.6–85.1 (46.4) 3.55–10.1 (7.4) 17.6–35.2
(28.95)
1.85–5.55 (2.75) 10.2–153
(39.75)
156–246 (210)
Georgia, USA – c) 131 2.55 51.8 4.75 70 3.9 0.55 Shoults-Wilson et al. (2010)
Taihu Lake, China 79.3–291 2.8–16.8 23.3–68.4 3.8–20.2 1.5–12.3 ndd) Fan et al. (2014)
Yangtze River, China 143–209 2.13–7.79 40.0–93.2 0.98–3.28 1.35–2.55 Sun and Wang (2004)
Plata Estuary, Argentina 118–316 0.5–1.9 28–89 1.3–6.4 0.5–1.9 Bilos et al. (1998)
Northwest Iberian Peninsula 136–161 1.1–2.3 34–71 5.8–11 0.45–1.3 1.0–1.8 Reis et al. (2014)
Shatt al-Arab River, Iraq 31–83 2.2–70 40–1065 4.7 Abaychi and Mustafa (1988)
Cazaux-Sanguinet Lake, France 20–29 0.15–4.2 Marie et al. (2006)
Georgia Piedmont Basin, USA 189–544 0.8–4.1 2.1–5.0 32.0–87.7 Peltier et al. (2008)
Florida and North Carolina, USA 225–1900 55–115 0.7–1.95 10–85 nd 28.5–100 nd–12.5 Lewbart et al. (2010)
Tab.2  Metal concentrations (mg/kg, dry wt) in Asiatic clams in different areas
Time Sampling site Fe Zn Cd Mn As Cu Ni Pb Cr
2015 1 151 98.9 0.5 8.31 1.12 6.39 0.78 5.69 40.5
1987 a) 0.69 0.47 5.21 0.54 1.61 0.28
2015 4 92.7 51.5 0.42 10.8 1.58 5.28 0.38 3.03 49.3
1987 0.93 0.74 7.35 0.72 3.41 1.48
2015 7 154 101 0.34 9.52 1.95 7.03 0.38 2.06 48.5
1987 0.95 0.63 7.09 0.73 3.71 1.45
2015 8 108 92.8 0.25 5.29 1.73 3.51 0.37 2.03 46.4
1987 0.88 0.6 7.16 0.59 3.77 1.26
2015 9 81.4 89.6 0.75 3.93 0.71 6.91 1.11 13.5 43.1
1987 0.68 0.622 5.24 0.53 2.47 0.8
2015 Mean 0.45 1.42 5.82 0.60 5.26 45.6
1987 0.83 0.61 6.41 0.62 2.99 1.05
Tab.3  Metal ion concentrations (mg/kg wet wt) in Asiatic clams in 1987 and 2015
Fig.2  Spatial distribution of metals in Asiatic clams along the Lower Min River. (a) As; (b) Cd; (c) Cr; (d) Cu; (e) Fe; (f) Mn; (g) Ni; (h) Pb; (i) Zn.
Metal Fe Zn Cd Mn As Cu Ni Pb Cr
Fe 1.000
Zn -0.477 1.000
Cd 0.139 -0.123 1.000
Mn 0.348 0.198 0.250 1.000
As 0.005 0.142 -0.204 0.042 1.000
Cu 0.329 -0.104 0.517 0.075 -0.258 1.000
Ni -0.180 -0.038 0.236 -0.423 -0.833** 0.471 1.000
Pb 0.146 -0.172 0.991**b) 0.197 -0.159 0.454 0.202 1.000
Cr 0.243 -0.773*a) -0.332 -0.336 0.106 -0.082 -0.184 -0.297 1.000
Tab.4  Pearson correlation coefficients (r) of metals in Asian clams
Item Component
1 2 3
Fe 0.402 0.313 0.615
Zn -0.117 0.13 -0.933
Cd 0.926 -0.078 -0.059
Mn 0.456 0.618 -0.189
Cu 0.669 -0.309 0.143
As -0.263 0.77 0.007
Ni 0.229 -0.954 -0.099
Pb 0.896 -0.059 -0.019
Cr -0.362 -0.025 0.875
Eigenvalue 2.745 2.106 2.085
% Total variance 30.504 23.396 23.162
Cumulative % variance 30.504 53.900 77.062
Tab.5  Component matrix of metals in Asian clams
Site HQ HI CR
Fe Zn Cd Mn As Cu Ni Pb Cr As
RfDi/SF (µg/kg/d)/(µg/kg/d)1 0.7 0.3 0.001 0.14 0.0003 0.04 0.02 0.00357 0.003 1.5
ECRA 8.62E-08 1.49E-07 1.36E-07 2.44E-08 2.82E-06 6.06E-08 8.63E-09 2.64E-07 7.28E-06 1.08E-05 5.45E-04
IAA 8.80E-08 3.31E-07 2.76E-07 5.60E-08 1.68E-06 6.32E-08 1.16E-08 1.16E-06 5.82E-06 9.49E-06 3.25E-04
DRA 6.42E-08 3.53E-07 2.21E-07 2.64E-08 2.22E-06 6.77E-08 1.49E-08 7.19E-07 6.36E-06 1.00E-05 4.28E-04
DIRA 8.52E-08 1.41E-07 6.12E-07 3.81E-08 2.80E-06 7.70E-08 1.02E-08 3.94E-06 5.93E-06 1.36E-05 5.40E-04
Mean 8.09E-08 2.44E-07 3.11E-07 3.62E-08 2.38E-06 6.72E-08 1.13E-08 1.52E-06 6.35E-06 1.10E-05 4.59E-04
Tab.6  Reference dose, CR, and HQ for each metal in Asiatic clams along the Lower Min River, China
1 J KAbaychi, Y Z Mustafa (1988). The Asiatic clam, Corbicula fluminea: an indicator of trace metal pollution in the Shatt al-Arab River, Iraq. Environ Pollut, 54(2): 109–122
https://doi.org/10.1016/0269-7491(88)90141-8
2 J AAcosta, A Faz, SMartinez-Martinez (2010). Identification of heavy metal sources by multivariable analysis in a typical Mediterranean city (SE Spain). Environ Monit Assess, 169(1–4): 519–530
https://doi.org/10.1007/s10661-009-1194-0
3 AArini, G Daffe, PGonzalez, AFeurtet-Mazel, MBaudrimont (2014). What are the outcomes of an industrial remediation on a metal-impacted hydrosystem? A 2-year field biomonitoring of the filter-feeding bivalve Corbicula fluminea. Chemosphere, 108: 214–224
https://doi.org/10.1016/j.chemosphere.2014.01.042
4 CBilos, J C Colombo, M J Presa (1998). Trace metals in suspended particles, sediments and Asiatic clams (Corbicula fluminea) of the Río de la Plata Estuary, Argentina. Environ Pollut, 99(1): 1–11
https://doi.org/10.1016/S0269-7491(97)00177-2
5 M RBruins, S Kapil, F WOehme (2000). Microbial resistance to metals in the environment. Ecotoxicol Environ Saf, 45(3): 198–207
https://doi.org/10.1006/eesa.1999.1860
6 JCairns, J R Pratt (1993). A history of biological monitoring using benthic macroinvertebrates. In: Rosenberg D M, Resh V H, eds. Freshwater Biomonitoring and Benthic Macroinvertebrates. New York: Chapman and Hall, 10–27
7 CSOA (Chinese State Oceanic Administration) (2001). Marine Biological Quality Standard (GB 18421–2001) (in Chinese)
8 DMSGASC (Department of Mass Sports, of General State General Administration of Sport of China) of sports groups (2011). Communique on monitoring national constitutional condition in 2010. Beijing: People’s Sport Publishing Press (in Chinese)
9 WFan, J Ren, CWu, CTan, X Wang, MCui, KWu, X Li (2014). Using enriched stable isotope technique to study Cu bioaccumulation and bioavailability in Corbicula fluminea from Taihu Lake, China. Environ Sci Pollut Res Int, 21(24): 14069–14077
https://doi.org/10.1007/s11356-014-3325-6
10 J WFarrington, E DGoldberg, R WRisebrough, J HMartin, V TBowen (1983). U.S. “Mussel Watch” 1976−1978: an overview of the trace-metal, DDE, PCB, hydrocarbon, and artificial radionuclide data. Environ Sci Technol, 17(8): 490–496
https://doi.org/10.1021/es00114a010
11 UFörstner, G T W Wittmann (1979). Metal Pollution in the Aquatic Environment. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag, 1–2
12 FPBS (Fujian Province Bureau of Statistics) (2014). Fujian Statistical Yearbook 2014. China Statistics Press (in Chinese)
13 AHussein, A Khaled (2014). Determination of metals in tuna species and bivalves from Alexandria, Egypt. The Egyptian Journal of Aquatic Research, 40(1): 9–17
https://doi.org/10.1016/j.ejar.2014.02.003
14 A AIdriss, A K Ahmad (2015). Heavy metal concentrations in fishes from Juru River, estimation of the health risk. Bull Environ Contam Toxicol, 94(2): 204–208
https://doi.org/10.1007/s00128-014-1452-x
15 N KKarouna-Renier, R ASnyder, J GAllison, M GWagner, KRanga Rao (2007). Accumulation of organic and inorganic contaminants in shellfish collected in estuarine waters near Pensacola, Florida: contamination profiles and risks to human consumers. Environ Pollut, 145(2): 474–488
https://doi.org/10.1016/j.envpol.2006.04.035
16 EKelepertzis (2014). Investigating the sources and potential health risks of environmental contaminants in the soils and drinking waters from the rural clusters in Thiva area (Greece). Ecotoxicol Environ Saf, 100: 258–265
https://doi.org/10.1016/j.ecoenv.2013.09.030
17 MKong, X Hang, L MWang, H BYin, Y MZhang (2016). Accumulation and risk assessment of heavy metals in sediments and zoobenthos (Bellamya aeruginosa and Corbicula fluminea) from Lake Taihu. Water Sci Technol, 73(1): 203–214
https://doi.org/10.2166/wst.2015.483
18 A KKrishna, M Satyanarayanan, P KGovil (2009). Assessment of heavy metal pollution in water using multivariate statistical techniques in an industrial area: a case study from Patancheru, Medak District, Andhra Pradesh, India. J Hazard Mater, 167(1−3): 366–373
https://doi.org/10.1016/j.jhazmat.2008.12.131
19 H VLeland, B C Scudder (1990). Trace elements in Corbicula fluminea from the San Joaquin River, California. Sci Total Environ, 97–98(7): 641–672
https://doi.org/10.1016/0048-9697(90)90267-X
20 G ALewbart, L S Christian, C A Harms, A J Van Wettere (2010). A comparison of heavy metal concentrations and health assessment in Asian clams Corbicula fluminea from Florida and North Carolina. J Aquat Anim Health, 22(2): 73–77
https://doi.org/10.1577/H09-041.1
21 J LLi, M He, WHan, Y FGu (2009). Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods. J Hazard Mater, 164(2−3): 976–981
https://doi.org/10.1016/j.jhazmat.2008.08.112
22 SLi, C Poon, P SLiu (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem, 16(11−12): 1361–1368
https://doi.org/10.1016/S0883-2927(01)00045-2
23 S YLi, Q F Zhang (2010). Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. J Hazard Mater, 181(1–3): 1051–1058
https://doi.org/10.1016/j.jhazmat.2010.05.120
24 X LLiu, L B Zhang, L P You, J B Yu, J M Zhao, L Z Li, Q Wang, FLi, C HLi, D YLiu, H FWu (2011). Differential toxicological effects induced by mercury in gills from three pedigrees of Manila clam Ruditapes philippinarum by NMR-based metabolomics. Ecotoxicology, 20(1): 177–186
https://doi.org/10.1007/s10646-010-0569-x
25 VMarie, P Gonzalez, MBaudrimont, J PBourdineaud, ABoudou (2006). Metallothionein response to cadmium and zinc exposures compared in two freshwater bivalves, Dreissena polymorpha and Corbicula fluminea. Biometals, 19(4): 399–407
https://doi.org/10.1007/s10534-005-4064-4
26 HMarschner (1995). Mineral Nutrition of Higher Plants. London: Academic Press, 3–4
27 I DMarsden, P S Rainbow (2004). Does the accumulation of trace metals in crustaceans affect their ecology—the amphipod example? J Exp Mar Biol Ecol, 300(1–2): 373–408
https://doi.org/10.1016/j.jembe.2003.12.009
28 BMorton (1986). Corbicula in Asia—an updated synthesis. Am Malacol Bull, 2: 113–124
29 K WNkpaa, K C Patrick-Iwuanyanwu, M O Wegwu, E B Essien (2016). Health risk assessment of hazardous metals for population via consumption of seafood from Ogoniland, River State, Nigeria: a case study of Kaa, B-Dere, and Bodo City. Environ Monit Assess, 188(1): 9
https://doi.org/10.1007/s10661-015-5006-4
30 J ONriagu (1996). A history of global metal pollution. Science, 272(5259): 223–224
https://doi.org/10.1126/science.272.5259.223
31 G LPeltier, J L Meyer, C H Jagoe, W A Hopkins (2008). Using trace element concentrations in Corbicula fluminea to identify potential sources of contamination in an urban river. Environ Pollut, 154(2): 283–290
https://doi.org/10.1016/j.envpol.2007.10.004
32 AQishlaqi, F Moore, GForghani (2009). Characterization of metal pollution in soils under two landuse patterns in the Angouran region, NW Iran: a study based on multivariate data analysis. J Hazard Mater, 172(1): 374–384
https://doi.org/10.1016/j.jhazmat.2009.07.024
33 P AReis, L Guilhermino, CAntunes, RSousa (2014). Assessment of ecological quality of the Minho estuary (Northwest Iberian Peninsula) based on metal concentrations in sediments and in Corbicula fluminea. Limnetica, 33: 161–173
34 MRomic, D Romic (2003). Heavy metals distribution in agricultural topsoils in urban area. Environmental Geology, 43(7): 795–805
https://doi.org/10.1007/s00254-002-0694-9
35 W AShoults-Wilson, J MUnrine, JRickard, M CBlack (2010). Comparison of metal concentrations in Corbicula fluminea and Elliptio hopetonensis in the Altamaha River system, Georgia, USA. Environ Toxicol Chem, 29: 2026–2033
https://doi.org/10.1002/etc.235
36 A CSmaal (2002). European mussel cultivation along the Atlantic coast: production status, problems and perspectives. Hydrobiologia, 484(1/3): 89–98
https://doi.org/10.1023/A:1021352904712
37 YSong, Y Huang (1991). Heavy metal levels in clam (Corbicula Fluminea) from Minjiang River, Fuzhou area. Oceanol Limnol Sin, 22: 187–190
38 C YSun, J S Liu, Y Y Wang, L Q Sun, H W Yu (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast china. Chemosphere, 92(5): 517–523
https://doi.org/10.1016/j.chemosphere.2013.02.063
39 PSun, B Wang (2004). Metal content and contamination assessment in Corbicula fluminea from the Yangtze River Estuary. Chin J Appl Environ Biol, 10: 79–83
40 MTürkmen, A Türkmen, YTepe, AAtes, K Gokkus (2008). Determination of metal contaminations in sea foods from Marmara, Aegean and Mediterranean seas: twelve fish species. Food Chem, 108(2): 794–800
https://doi.org/10.1016/j.foodchem.2007.11.025
41 USEPA (US Environmental Protection Agency) (1991). Risk Assessment Guidance for Superfund: Volume I Human Health Evaluation Manual (Part B, development of risk based preliminary remediation goals).Publication 9285.7-01B, Washington, DC: Office of Emergency and Remedial Response U.S. EPA
42 USEPA (US Environmental Protection Agency) (1999). Cancer Risk Coefficients for Environmental Exposure to Radionuclides. EPA/402/R-99/001. Office of Air and Radiation. Washington, DC
43 USEPA (US Environmental Protection Agency) (2015). Risk-Based Screening Table- Generic Tables. , 2016-5-30
44 JUsero, E Gonzάlez-Regalado, IGracia (1997). Trace metals in the bivalve molluscs Ruditapes decussatus and Ruditapes philippinarum from the Atlantic coast of Southern Spain. Environ Int, 23(3): 291–298
https://doi.org/10.1016/S0160-4120(97)00030-5
45 XWei, B Gao, PWang, H DZhou, JLu (2015). Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China. Ecotoxicol Environ Saf, 112: 186–192
https://doi.org/10.1016/j.ecoenv.2014.11.005
46 HZhang, Y Chen, HFan, MYang, F Chang, JNiu, GLei, W Zhang (2007). Climatic background of modern Corbicula fluminea and the stable isotopes of shells from the representative areas in continental China. Marine Geology & Quaternary Geologhy, 27(3): 77–84 (in Chinese)
Related articles from Frontiers Journals
[1] Hongxia LIU,Ying HU,Shihua QI,Xinli XING,Yuan ZHANG,Dan YANG,Chengkai QU. Organochlorine pesticide residues in surface water from Sichuan Basin to Aba Prefecture profile, east of the Tibetan Plateau[J]. Front. Earth Sci., 2015, 9(2): 248-258.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed