Please wait a minute...

Frontiers of Earth Science

Front. Earth Sci.    2017, Vol. 11 Issue (1) : 1-10     DOI: 10.1007/s11707-016-0573-4
RESEARCH ARTICLE |
Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements
Anyuan DIAO1,Jiong SHU1(),Ci SONG1,Wei GAO1,2,3
1. Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
2. Colorado State University, Department of Ecosystem Science and Sustainability, Fort Collins, Colorado 80523, USA
3. Colorado State University, Natural Resource Ecology Laboratory, Fort Collins, Colorado 80523, USA
Download: PDF(1094 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This article describes a global consistency check of CO2 satellite retrieval products from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounding Interferometer (IASI) using statistical analysis and data from the World Data Centre for Greenhouse Gases (WDCGG). We use the correlation coefficient (r), relative difference (RD), root mean square errors (RMSE), and mean bias error (MBE) as evaluation indicators for this study. Statistical results show that a linear positive correlation between AIRS/IASI and WDCGG data occurs for most regions around the world. Temporal and spatial variations of these statistical quantities reflect obvious differences between satellite-derived and ground-based data based on geographic position, especially for stations near areas of intense human activities in the Northern Hemisphere. It is noteworthy that there appears to be a very weak correlation between AIRS/IASI data and ten ground-based observation stations in Europe, Asia, and North America. These results indicate that retrieval products from the two satellite-based instruments studied should be used with great caution.

Keywords CO2      consistency check      AIRS      IASI      WDCGG     
Corresponding Authors: Jiong SHU   
Just Accepted Date: 29 November 2016   Online First Date: 20 December 2016    Issue Date: 23 January 2017
 Cite this article:   
Anyuan DIAO,Jiong SHU,Ci SONG, et al. Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements[J]. Front. Earth Sci., 2017, 11(1): 1-10.
 URL:  
http://journal.hep.com.cn/fesci/EN/10.1007/s11707-016-0573-4
http://journal.hep.com.cn/fesci/EN/Y2017/V11/I1/1
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Anyuan DIAO
Jiong SHU
Ci SONG
Wei GAO
Parameter Advanced Sounder
AIRS IASI GOSAT SCIMACHY
Available trace gases in the troposphere CO2, CH4, O3, CO, H2O, SO2 CO2, CH4, O3, CO, H2O, SO2, N2O CO2, CH4, O2, O3, H2O O3, O4, N2O, CH4, CO, CO2, H2O, SO2, HCHO
Sensor Infrared Sensor (IR) Infrared Sensor (IR) Near Infrared Sensor (NIR) short wave Infrared Sensor (SWIR)
Instrument type Grating Spectrometer Interferometer Cloud and
Aerosol Imager and near infrared/ SWIR radiometer
NIR channel 8 from nadir measurements
Observation
strategy
Nadir Nadir Nadir, target Limb, nadir
Spectral range/µm 3.74?4.61
6.20?8.22
8.80?15.4
3.62?5.0
5.0?8.26
8.26?15.5
0.758?0.775
1.56?1.72
1.92?2.08
5.56?14.3
0.24?0.44
0.4?1.0
1.0?1.7
1.94?2.04
2.265?2.38
Nominal altitude/km 705 819 666 790
Local time 13:30 21:30 13:00±0:15 10:00
Nominal launch date May 2002 October 2006 January 2009 March 2002
Lifetime/year 7 5 5 7
Tab.1  The parameters of advanced sounders: AIRS, IASI, GOSAT, and SCIMACHY
Type Units Type Units
The index of the AMSU FOV none Microwave surface class none
UTC Milliseconds since Jan 1, 1970 msec Microwave surface emissivity none
Retrieval latitude values for each AMSU FOV degrees North Number of MW spectral points AMSU FOV none
Retrieval longitude values for each AMSU FOV degrees East Number of surface emis hinge points per AMSU FOV none
View angle for each AMSU FOV degrees Number of cloud emis hinge points per AMSU FOV none
Satellite height above each AMSU FOV km Number of cloud layers per AMSU FOV none
Column averaged CO2 per AMSU FOV ppm Quality flags for retrieval none
Solar zenith angles for each AMSU FOV degrees Ispare diagnostics array from retrieval none
Ascending_Descending none Rspare diagnostics array from retrieval none
Surface height meters Cloud top pressure mb
Land fraction none Cloud top fractional coverage none
Surface pressure mb Pressure mb
Skin_Temperature Kelvin Effective_Pressure mb
Skin temperature from MIT retrieval Kelvin Effective_Pressure Kelvin
Skin temperature from the first guess Kelvin Temperature from MIT retrieval Kelvin
Temperature from the first guess Kelvin
Tab.2  IASI Level 2 products name-lists and the units (with NetCDFdata format)
Fig.1  Geographical distribution of WDCGG ground-based stations (green dots), selected for consistency check with IASI and AIRS total CO2 datasets.
Fig.2  Correlation coefficient variations for IASI products and WDCGG stations plotted against latitude.
Station name Latitude Longitude Altitude/m Country Correlation coefficient
Southern Great Plains 36.78 97.5 314 USA 0.43319
Point Arena 38.95 123.72 17 USA 0.41907
Begur 41.97 3.23 13 Spain 0.32707
Pic du Midi 42.9372 0.1411 2877 France 0.24789
Plateau Assy 43.25 77.87 2519 France 0.3104
Puy de Dome 45.7719 2.9658 1465 France 0.34257
Schauinsland 47.92 7.92 1205 Germany 0.26769
Tab.3  Low correlation coefficients for ground-based observations and retrieval products from IASI over inland areas
Fig.3  Variations in (a) correlation coefficient, (b) MBE, and (c) RMSE with latitude for the AIRS, IASI, and WDCGG data.
Fig.4  Monthly mean RD between AIRS/IASI and WDCGG for the retrieved CO2 concentrations versus the ground-based observations in the Northern and Southern Hemispheres from August 2008 to December 2010.
Station name Latitude Longitude Altitude/m Country Correlation coefficient
IASI AIRS
Danum Valley GAW baseline station 4.97 117.83 426 Malaysia 0.627492 0.053252
Pacific Ocean (30°N) 30 ?135 10 N/A 0.655413 0.327731
Tae-ahn Peninsula 36.72 126.12 20 Republic of Korea 0.712489 0.464544
Ulaan Uul 44.45 111.08 914 Mongolia 0.751756 0.281842
Shemya Island 52.72 174.08 40 USA 0.843974 0.291524
Puszcza Borecka/Diabla Gora 54.15 22.07 157 Poland 0.791776 0.400088
Heimaey 63.4 ?20.28 100 Iceland 0.792858 0.418004
Pallas-Sammaltunturi 67.97 24.12 560 Finland 0.800925 0.17097
Teriberka 69.2 35.1 40 Russian Federation 0.761182 0.135397
Zeppelinfjellet (Ny-Alesund) 78.9 11.88 475 Norway 0.734377 0.176992
Tab.4  Abnormal correlation coefficients for ground-based observations and retrieval products from IASI and AIRS for ten stations in Europe, Asia, and North America
1 Aumann H H, Chahine M T, Gautier C, Goldberg M D, Kalnay E, McMillin L M, Revercomb H, Rosenkranz P W, Smith W L, Staelin D H, Strow L L, Susskind J (2003). AIRS/AMSU/HSB on the aqua mission: design, science objectives, data products, and processing systems. IEEE Trans Geosci Rem Sens, 41(2): 253–264
doi: 10.1109/TGRS.2002.808356
2 Bai W G, Zhang X Y, Zhang P (2010). Temporal and spatial distribution of tropospheric CO2 over China based on satellite observations. Chin Sci Bull, 55(31): 3612–3618
doi: 10.1007/s11434-010-4182-4
3 Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Chance K V, Goede A P H (1999). SCIAMACHY: mission objectives and measurement modes. J Atmos Sci, 56(2): 127–150
doi: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2
4 Buchwitz M, de Beek R D, Burrows J P, Bovensmann H, Warneke T, Notholt J, Meirink J F, Goede A P H, Bergamaschi P, Körner S, Heimann M, Schulz A (2005a). Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models. Atmos Chem Phys, 5(4): 941–962
doi: 10.5194/acp-5-941-2005
5 Buchwitz M, de Beek R, Noël S, Burrows J P, Bovensmann H, Bremer H, Bergamaschi P, Körner S, Heimann M (2005b). Carbon monoxide, methane and carbon dioxide columns retrieved from SCIAMACHY by WFM-DOAS: year 2003 initial data set. Atmos Chem Phys, 5(12): 3313–3329
doi: 10.5194/acp-5-3313-2005
6 Butz A, Hasekamp O P, Frankenberg C, Aben I (2009). Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects. Appl Opt, 48(18): 3322–3336
doi: 10.1364/AO.48.003322
7 Chahine M, Barnet C, Olsen E T, Chen L, Maddy E (2005). On the determination of atmospheric minor gases by the method of vanishing partial derivatives with application to CO2. Geophys Res Lett, 32(22): L22803
doi: 10.1029/2005GL024165
8 Chalon G, Cayla F, Diebel D (2001). IASI: an advanced sounder for operational meteorology. In IAF, International Astronautical Congress, 52 nd, Toulouse, France
9 Christi M J, Stephens G L (2004). Retrieving profiles of atmospheric CO2 in clear sky and in the presence of thin cloud using spectroscopy from the near and thermal infrared: a preliminary case study. Journal of Geophysical Research: Atmospheres (1984–2012), 109(D4)
10 Gerbig C, Lin J C, Wofsy S C, Daube B C, Andrews A E, Stephens B B, Bakwin P S, Grainger C A (2003). Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 1. Observed spatial variability from airborne platforms. J Geophys Res, D, Atmospheres, 108(D24): 4756
doi: 10.1029/2002JD003018
11 Grieco G, Masiello G, Matricardi M, Serio C (2013). Partially scanned interferogram methodology applied to IASI for the retrieval of CO, CO2, CH4 and N2O. Opt Express, 21(21): 24753–24769
doi: 10.1364/OE.21.024753
12 Hilton F, Armante R, August T, Barnet C, Bouchard A, Camy-Peyret C, Capelle V, Clarisse L, Clerbaux C, Coheur P F, Collard A, Crevoisier C, Dufour G, Edwards D, Faijan F, Fourrié N, Gambacorta A, Goldberg M, Guidard V, Hurtmans D, Illingworth S, Jacquinet-Husson N, Kerzenmacher T, Klaes D, Lavanant L, Masiello G, Matricardi M, McNally A, Newman S, Pavelin E, Payan S, Péquignot E, Peyridieu S, Phulpin T, Remedios J, Schlüssel P, Serio C,Strow L, Stubenrauch C, Taylor J, Tobin D, Wolf W, Zhou D (2012). Hyperspectral earth observation from IASI: five years of accomplishments. Bull Am Meteorol Soc, 93(3): 347–370
doi: 10.1175/BAMS-D-11-00027.1
13 IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151
14 Kuang Z, Margolis J, Toon G, Crisp D, Yung Y (2002). Space borne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: an introductory study. Geophys Res Lett, 29(15): 11-1–11-4
doi: 10.1029/2001GL014298
15 Kuze A, Suto H, Nakajima M, Hamazaki T (2009). Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Appl Opt, 48(35): 6716–6733
doi: 10.1364/AO.48.006716
16 Maddy E S, Barnet C D, Goldberg M, Sweeney C, Liu X (2008). CO2 retrievals from the atmospheric infrared sounder: methodology and validation. J Geophys Res, D, Atmospheres, 113(D11): D11301
doi: 10.1029/2007JD009402
17 O’Dell C W, Connor B, Bösch H, O’Brien D, Frankenberg C, Castano R, Christi M, Eldering D, Fisher B, Gunson M, McDuffie J, Miller C E, Natraj V, Oyafuso F, Polonsky I, Smyth M, Taylor T, Toon G C, Wennberg P O, Wunch D (2012). The ACOS CO2 retrieval algorithm–Part 1: description and validation against synthetic observations. Atmos Meas Tech, 5(1): 99–121
doi: 10.5194/amt-5-99-2012
18 Olsen E T (2009). AIRS Version 5 Release Tropospheric CO2 Products. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
19 Olsen E T, Fishbein E, Granger S, Lee S Y, Manning E, Weiler M, Blaisdell J, Susskind J. (2007). AIRS/AMSU/HSB Version 5 Data Release User Guide
20 Olsen S C, Randerson J T (2004). Differences between surface and column atmospheric CO2 and implications for carbon cycle research. Journal of Geophysical Research: Atmospheres (1984–2012), 109(D2)
21 Phulpin T, Cayla F, Chalon G, Diebel D, Schlüssel P (2002). IASI on board Metop: project status and scientific preparation. In 12th International TOVS Study Conference, Lorne, Victoria, Australia (Vol. 26)
22 Schlüssel P, Hultberg T H, Phillips P L, August T, Calbet X (2005). The operational IASI level 2 processor. Adv Space Res, 36(5): 982– 988
doi: 10.1016/j.asr.2005.03.008
23 Tiwari Y K, Gloor M, Engelen R J, Chevallier F, Rödenbeck C, Körner S, Peylin P, Braswell B H, Heimann M (2006). Comparing CO2 retrieved from Atmospheric Infrared Sounder with model predictions: implications for constraining surface fluxes and lower-to-upper troposphere transport. J Geophys Res, D, Atmospheres, 111(D17): D17106
doi: 10.1029/2005JD006681
24 Wang T, Shi J, Jing Y, Xie Y (2012). Investigation of the consistency of atmospheric CO2 retrievals from different space-based sensors: intercomparison and spatiotemporal analysis. Chin Sci Bull, 58(33): 4161–4170
doi: 10.1007/s11434-013-5996-7
25 WMO GAW Report No. 161 (2005). 12th WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Tracers Measurement Techniques.Geneva: World Meteorological Organization
26 Zhou C, Shi R, Liu C, Gao W (2013). A correlation analysis of monthly mean CO2 retrieved from the Atmospheric Infrared Sounder with surface station measurements. Int J Remote Sens, 34(24): 8710–8723
doi: 10.1080/01431161.2013.847295
27 Zhou M, Shu J, Song C, Gao W (2014). Sensitivity studies for atmospheric carbon dioxide retrieval from atmospheric infrared sounder observations.Journal of Applied Remote Sensing, 8: 083697-2–083697-16
Related articles from Frontiers Journals
[1] Jiashuo LI,Ran LUO,Qing YANG,Haiping YANG. Inventory of CO2 emissions driven by energy consumption in Hubei Province: a time-series energy input-output analysis[J]. Front. Earth Sci., 2016, 10(4): 717-730.
[2] Yin LIU,Xiaolei ZOU. Quality control of AIRS total column ozone data within tropical cyclones[J]. Front. Earth Sci., 2016, 10(2): 222-235.
[3] Liang ZHANG,Dexiang LI,Justin EZEKIEL,Weidong ZHANG,Honggang MI,Shaoran REN. CO2 geological storage into a lateral aquifer of an offshore gas field in the South China Sea: storage safety and project design[J]. Front. Earth Sci., 2015, 9(2): 286-299.
[4] Chengkang GAO,Dan WANG,Baohua ZHAO,Shan CHEN,Wei QIN. Analyzing and forecasting CO2 emission reduction in China’s steel industry[J]. Front. Earth Sci., 2015, 9(1): 105-113.
[5] Na DUAN,Cong LIN,Pingzhi WANG,Jing MENG,Hui CHEN,Xue LI. Ecological analysis of a typical farm-scale biogas plant in China[J]. Front. Earth Sci., 2014, 8(3): 375-384.
[6] S Chidambaram, M.V Prasanna, U Karmegam, C Singaraja, S Pethaperumal, R Manivannan, P Anandhan, K Tirumalesh. Significance of pCO2 values in determining carbonate chemistry in groundwater of Pondicherry region, India[J]. Front Earth Sci, 2011, 5(2): 197-206.
[7] Hong ZHANG, Agnes LIM, Robert HOLZ, Steve DUTCHER, Fred NAGLE, Liam GUMLEY, Hung-Lung HUANG, Jinnian WANG, Runhe SHI, Wei GAO, . Analysis and characterization of the synergistic AIRS and MODIS cloud-cleared radiances[J]. Front. Earth Sci., 2010, 4(3): 363-373.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed