Please wait a minute...

Frontiers of Earth Science

Front. Earth Sci.    2017, Vol. 11 Issue (1) : 35-45     DOI: 10.1007/s11707-016-0571-6
RESEARCH ARTICLE |
Numerical research on evolvement of submarine sand waves in the Northern South China Sea
Qikun ZHOU1,Guanghai HU1,Yongfu SUN1(),Xiaohui LIU2,Yupeng SONG1,Lifeng DONG1,Changming DONG3,4
1. First Institute of Oceanography, SOA, Qingdao 266061, China
2. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, SOA, Hangzhou 310012, China
3. School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
4. Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095, USA
Download: PDF(5194 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Submarine sand waves, vital to seabed stability, are an important consideration for oceanic engineering projects such as oil pipe lines and submarine cables. The properties of surface sediment and the evolvement of submarine sand waves in a specified area in the South China Sea are studied using both a hydrological model and field observational data. The bottom flow field data between 2010 and 2011 in the study area are simulated by the Regional Ocean Model System (ROMS). The migration of submarine sand waves is calculated using Rubin’s formula along with typhoon data and bottom flow field data, which allows for the analysis of sand wave response under the influence of typhoons. The migration direction calculated by Rubin’s formula and bottom flow are very similar to collected data. The migration distance of different positions is between 0.0 m and 21.8 m, which reciprocates cumulatively. This shows that Rubin’s formula can predict the progress of submarine sand waves with the bottom flow simulated by ROMS. The migration distances of 2 sites in the study area are 2.0 m and 2.9 m during the typhoon “Fanapi”. The proportion of the calculated migration distance by the typhoon is 9.17% and 26.36% of the annual migration distance, respectively, which proves that the typhoon can make a significant impact on submarine sand waves.

Keywords submarine sand waves      migration      ROMS      Rubin’s formula      typhoon     
Corresponding Authors: Yongfu SUN   
Just Accepted Date: 25 April 2016   Online First Date: 17 May 2016    Issue Date: 23 January 2017
 Cite this article:   
Qikun ZHOU,Guanghai HU,Yongfu SUN, et al. Numerical research on evolvement of submarine sand waves in the Northern South China Sea[J]. Front. Earth Sci., 2017, 11(1): 35-45.
 URL:  
http://journal.hep.com.cn/fesci/EN/10.1007/s11707-016-0571-6
http://journal.hep.com.cn/fesci/EN/Y2017/V11/I1/35
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qikun ZHOU
Guanghai HU
Yongfu SUN
Xiaohui LIU
Yupeng SONG
Lifeng DONG
Changming DONG
Fig.1  Map of the study area.
Fig.2  Map shows the spatial distribution of the surface sediments and sand waves. The areas surrounded by red lines are the sand wave regions. Different infillings indicate different sediments: SG–sandy gravel; GS–gravely sand; CS–coarse sand; MS–medium sand; FS–fine sand; TS–silty sand; ST-sandy silt; STY–sand-silt-clay; STCa–calcareous biological sandy silt; ST(Ca)–biological sandy silt with calcium.
Fig.3  The comparison diagram of ridge lines at sand wave Region II: the black curves correspond to the ridge lines of sand waves, the upper curve for 2011 and the lower one for 2010. The curves surrounded by the rectangle show the migration trend and distance of sand waves at Region II.
Fig.4  The comparison diagram of ridge line at sand wave Region I: same as Fig. 3.
Fig.5  Model domain and the bathymetry.
Fig.6  Migration distance and route of sand waves in different sites: panel (a), (b), (c), (d) indicate Site 1, 2, 3, and 4, respectively. The little red circles denote the starting point and end point of the sand waves. The black points are the track of the sand waves.
Site Region Depth/m Wave height/m Median particle diameter/mm Incipient velocity/(m·s?1) Migration distance/m
1 II 121 0.7 0.372 0.3649 21.8
2 II 125 0.7 0.392 0.3686 11.0
3 I 190 2.9 2.142 0.5701 0
4 I 145 1.7 0.654 0.4243 1.9
Tab.1  Parameters and result of the simulation
Fig.7  Time series of flow velocity at point A. Upper panel: the red and black lines correspond to u and v velocity, respectively. Lower panel: the green and blue lines represent the angle and speed of current.
Fig.8  The flow direction distribution frequency of point A. Different colors indicate different velocity ranges.
Fig.9  Sand wave migration route during “Fanapi” period: left panel for sand wave of Site 1 and right panel for sand wave of Site 2. The meaning of the little red circle and black point are same as Fig. 6.
1 Anthony D, Leth J O (2002). Large-scale bedforms, sediment distribution and sand mobility in the eastern North Sea off the Danish west coast. Mar Geol, 182(3‒4): 247–263
doi: 10.1016/S0025-3227(01)00245-6
2 Ashley G M (1990). Classification of large-scale subaqueous bedforms: a new look at old problem. J Sediment Petrol, 60(1): 160–172
doi: 10.2110/jsr.60.160
3 Bai Y C, Yang X G, Tian Q, Zhang B (2009). Evolution characteristics of seabed sand wave in Northern South China Sea. J Hydraul Eng, 40(8): 941–955
4 Budgell W (2005). Numerical simulation of ice-ocean variability in the Barents Sea region. Ocean Dyn, 55(3‒4): 370–387
doi: 10.1007/s10236-005-0008-3
5 Camenen B , Larson M (2005). A general formula for non-cohesive bed load sediment transport. Estuarine, Coastal and Shelf Science, 63(1–2): 249–260
6 Dalrymple R W, Hoogendoorn E L (1997). Erosion and deposition on migrating shoreface-attached ridges, Sable Island, eastern Canada. Geoscience Canada, 24(1): 25–36
7 Di Lorenzo E (2003). Seasonal dynamics of the surface circulation in the Southern California Current System. Deep Sea Res Part II Top Stud Oceanogr, 50(14‒16): 2371–2388 doi:10.1016/S0967-0645(03)00125-5
8 Dinniman M S, Klinck J M, Smith W O Jr (2003). Cross-shelf exchange in a model of the Ross Sea circulation and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr, 50(22–26): 3103–3120
doi: 10.1016/j.dsr2.2003.07.011
9 Dong C M, Idica E Y, McWilliams J C (2009). Circulation and multiple-scale variability in the Southern California Bight. Prog Oceanogr, 82(3): 168–190
doi: 10.1016/j.pocean.2009.07.005
10 Dong Z H (2006). The influence on current ridge, sand wave and topography of Dongfang offshore by typhoon. Dissertation for Master Degree. Qing Dao: Ocean University of China
11 Egbert G D, Bennett A F, Foreman M G (1994). TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res, 99(C12): 24821–24852
doi: 10.1029/94JC01894
12 Egbert G D, Erofeeva S Y (2002). Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol, 19(2): 183–204
doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
13 Feng W K, Li W F, Shi Y H (1994). Dynamic study on sand wave geomorphology in Northern South China Sea. Acta Oceanol Sin, 16(6): 92–99
14 Gao S, Collins M B (1997). Changes in sediment transport rates caused by wave action and tidal flow time-asymmetry. J Coast Res, 13(1): 198–201
15 Haidvogel D B, Arango H G, Hedstrom K, Beckmann A, Malanotte-Rizzoli P, Shchepetkin A F (2000). Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dyn Atmos Oceans, 32(3): 239–281
doi: 10.1016/S0377-0265(00)00049-X
16 Hu R J (2006). Dynamical analysis of seafloor sandwaves in the outer continental shelf of the Northern South China Sea. Dissertation for Master Degree. Qing Dao: Ocean University of China
17 Kennedy A B, Slatton K C, Hsu T, Starek M J, Kampa K (2008). Ephemeral sand waves in the hurricane surf zone. Mar Geol, 250(3‒4): 276–280
doi: 10.1016/j.margeo.2008.01.015
18 Knaapen M A F (2005). Sandwave migration predictor based on shape information. J Geophys Res, 110(F4): F04S11
doi: 10.1029/2004JF000195
19 Li Y, Lin M, Jiang W B, Fan F (2011). Process control of the sand wave migration in Beibu Gulf of the South China Sea. Journal of Hydronamics, 23(4): 439–446
doi: 10.1016/S1001-6058(10)60134-5
20 Li Z W (2011). Research on hazardous geological factors in the outer shelf of Northern South China Sea and influence on the submarine pipelines. Dissertation for Master Degree. Qing Dao: Institute of Oceanology, Chinese Academy of Sciences
21 Lin M, Fan F X, Li Y, Yan J, Jiang W B, Gong D J (2009). Observation and theoretical analysis for the sand-waves migration in the North Gulf of South China Sea. Chin J Geophys, 52(3): 776–784
22 Liu X H, Dong C, Chen D, Su J (2014). The pattern and variability of winter Kuroshio intrusion northeast of Taiwan. Journal of Geophysical Research: Oceans, 119(8): 5380–5394
doi: 10.1002/2014JC009879
23 Luan X W, Peng X C, Wang Y M, Qiu Y (2010). Characteristics of sand waves on the Northern South China Sea Shelf and its formation. Acta Geol Sin, 84(2): 233–245
24 Ludwiek J C (1970). Sand waves in the tidal entrance to Chesapeake Bay preliminary observations. Chesapeake Science, 11(2): 98–110
25 Ma X C (2013). Formation, evolution and engineering significance of submarine sand waves and sand ridges, southeast of Hainan Island. Dissertation for Docter Degree. Qingdao: Institute of Oceanology, Chinese Academy of Sciences
26 Marchesiello P, McWilliams J C, Shchepetkin A (2003). Equilibrium structure and dynamics of the California Current System. J Phys Oceanogr, 33(4): 753–783
doi: 10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2
27 McBride R A, Moslow T F (1991). Origin, evolution and distribution of shoreface sand ridges, Atlantic inner shelf, U.S.A. Mar Geol, 97(1‒2): 57–85
doi: 10.1016/0025-3227(91)90019-Z
28 Peliz Á, Dubert J, Haidvogel D B, Cann B L (2003). Generation and unstable evolution of a density-driven eastern poleward current: the Iberian Poleward Current. J Geophys Res, 108(C8): 3268
doi: 10.1029/2002JC001443
29 Perillo G M E, Ludwick J C (1994). Geomorphology of a sand wave in lower Chesapeake Bay, Virginia, U.S.A.. Geo-Marine Letters, 4(2): 105–112
30 Ribberink J S (1998). Bed-load transport for steady flows and unsteady oscillatory flows. Coastal Engineering, 34(1‒2): 59–82
31 Rubin D M, Hunter R E (1982). Bedforms climbing in theory and nature. Sedimentology, 29(1): 121–138
doi: 10.1111/j.1365-3091.1982.tb01714.x
32 Saha S, Moorthi S, Pan H L, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou Y T, Chuang H Y, Juang H M H, Sela J, Iredell M, Treadon R, Kleist D, Van Delst P, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, Van Den Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm J K, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou C Z, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds R W, Rutledge G, Goldberg M (2010). The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc, 91(8): 1015–1057
doi: 10.1175/2010BAMS3001.1
33 Santoro V C, Amore E, Cavallaro L, De Lauro M (2004). Evolution of sand waves in the Messina Strait, Italy. Ocean Dyn, 54(3‒4): 392–398
doi: 10.1007/s10236-003-0087-y
34 Swift D J P, Field M E (1981). Evolution of a classic sand ridge field: Maryland sector, North American inner shelf. Sedimentology, 28(4): 461–482
doi: 10.1111/j.1365-3091.1981.tb01695.x
35 Van Rijn L C (1993). Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. Aqua Publications–I11, Amsterdam, The Netherlands
36 Wang S Y, Li D M (1994). Dynamic analysis on sand waves in continental shelf slope and continental slope of Pearl River Mouth Basin in South China Sea. Acta Oceanol Sin, 16(6): 122–132
37 Wang W W, Yan J, Fan F X (2007). The research situation of bed-form stability influenced by seabed sand wave migration under wave combined current conditions. Mark Sci, 31(3): 89–93
38 Warner J C, Geyer W R, Lerczak J A (2005a). Numerical modeling of an estuary: a comprehensive skill assessment. J Geophys Res, 110(C5): C05001
doi: 10.1029/2004JC002691
39 Warner J C, Sherwood C R, Arango H G, Signell R P (2005b). Performance of four turbulence closure models implemented using a generic length scale method. Ocean Model, 8(1–2): 81–113
doi: 10.1016/j.ocemod.2003.12.003
40 Wilkin J L, Arango H G, Haidvogel D B, Lichtenwalner C, Glenn S M, Hedström K S (2005). A regional ocean modeling system for the Long-term Ecosystem Observatory. J Geophys Res, 110(C6): C06S91
doi: 10.1029/2003JC002218
41 Xia D X, Wu S Y, Liu Z X, Yin P, Qi F Q, Ye Y C, Xie Q C, Chen X T, Lai X H, Chen X L (2001). Research on the activity of submarine sand waves off Dongfang, Hainan Island. Journal of Oceanography of Huanghai & Bohai Seas, 19(l): 17–24 (in Chinese)
42 Zhou C (2013). A study on the distribution and activity mechanism of sand waves on the Northern South China Sea Shelf. Dissertation for Master Degree. Qingdao: Institute of Oceanology, Chinese Academy of Sciences
Related articles from Frontiers Journals
[1] Juan LI,Xiaolei ZOU. Impact of FY-3A MWTS radiances on prediction in GRAPES with comparison of two quality control schemes[J]. Front. Earth Sci., 2014, 8(2): 251-263.
[2] Liang WANG, Xiaodong ZHAO, Yongming SHEN. Coupling hydrodynamic models with GIS for storm surge simulation: application to the Yangtze Estuary and the Hangzhou Bay, China[J]. Front Earth Sci, 2012, 6(3): 261-275.
[3] YIN Yong, ZOU Xinqin, ZHU Dakui, HUANG Jiaxiang. Sedimentary facies of the central part of radial tidal sand ridge system of the eastern China coast[J]. Front. Earth Sci., 2008, 2(4): 408-417.
[4] CHENG Jiubing, WANG Huazhong, GENG Jianhua, MA Zaitian. Methods and applications of 3-D wave equation common-azimuth prestack migration[J]. Front. Earth Sci., 2007, 1(3): 366-372.
[5] SHI Wanzhong, CHEN Honghan, CHEN Changmin, PANG Xiong, ZHU Ming. Pressure evolution and hydrocarbon migration in the Baiyun sag, Pearl River Mouth basin, China[J]. Front. Earth Sci., 2007, 1(2): 241-250.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed