Please wait a minute...

Frontiers of Earth Science

Front. Earth Sci.    2015, Vol. 9 Issue (2) : 319-329     DOI: 10.1007/s11707-014-0454-7
RESEARCH ARTICLE |
Assessing the impact of urbanization on net primary productivity using multi-scale remote sensing data: a case study of Xuzhou, China
Kun TAN1,Songyang ZHOU1,Erzhu LI1,Peijun DU2,*()
1. Jiangsu Key Laboratory of Resources and Environment Information Engineering, China University of Mining and Technology, Xuzhou 221006, China
2. Key Laboratory for Satellite Surveying Technology and Applications of National Administration of Surveying and Geoinformation, Nanjing University, Nanjing 210093, China
Download: PDF(2053 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

An improved Carnegie Ames Stanford Approach (CASA) model based on two kinds of remote sensing (RS) data, Landsat Enhanced Thematic Mapper Plus (ETM+) and Moderate Resolution Imaging Spectroradiometer (MODIS), and climate variables were applied to estimate the Net Primary Productivity (NPP) of Xuzhou in June of each year from 2001 to 2010. The NPP of the study area decreased as the spatial scale increased. The average NPP of terrestrial vegetation in Xuzhou showed a decreasing trend in recent years, likely due to changes in climate and environment. The study area was divided into four sub-regions, designated as highest, moderately high, moderately low, and lowest in NPP. The area designated as the lowest sub-region in NPP increased with expanding scale, indicating that the NPP distribution varied with different spatial scales. The NPP of different vegetation types was also significantly influenced by scale. In particular, the NPP of urban woodland produced lower estimates because of mixed pixels. Similar trends in NPP were observed with different RS data. In addition, expansion of residential areas and reduction of vegetated areas were the major reasons for NPP change. Land cover changes in urban areas reduced NPP, which could chiefly be attributed to human-induced disturbance.

Keywords multi-scale remote sensing      net primary productivity      improved Carnegie Ames Stanford approach model      urbanization     
Corresponding Authors: Peijun DU   
Online First Date: 05 September 2014    Issue Date: 30 April 2015
 Cite this article:   
Kun TAN,Songyang ZHOU,Erzhu LI, et al. Assessing the impact of urbanization on net primary productivity using multi-scale remote sensing data: a case study of Xuzhou, China[J]. Front. Earth Sci., 2015, 9(2): 319-329.
 URL:  
http://journal.hep.com.cn/fesci/EN/10.1007/s11707-014-0454-7
http://journal.hep.com.cn/fesci/EN/Y2015/V9/I2/319
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Kun TAN
Songyang ZHOU
Erzhu LI
Peijun DU
Fig.1  Location of Xuzhou urban area, as seen from Landsat ETM+ band 3 image on October 1st, 2002.
Fig.2  Framework of CASA model.
MODIS ETM+
FPAR ? NPP/(gC·m?2·month?1) FPAR ? NPP/(gC·m?2·month?1)
2001 0.51 0.42 51.54 0.74 0.42 74.00
2002 0.52 0.40 57.91 0.82 0.41 88.36
2003 0.46 0.46 56.62 0.58 0.47 80.30
2004 0.52 0.40 54.37 0.59 0.40 63.18
2005 0.44 0.44 56.23 0.54 0.42 67.41
2006 0.50 0.47 63.94 0.51 0.47 64.12
2007 0.51 0.47 63.06 0.55 0.46 60.70
2008 0.46 0.43 41.95 0.63 0.43 57.77
2009 0.49 0.40 55.66 0.61 0.41 69.43
2010 0.41 0.37 42.63 0.52 0.37 53.02
Tab.1  Comparison of NPP parameters and NPP among different years
Fig.3  Mean NPP of different spatial scales during different years (UNIT: gC·m?2·month?1).
Fig.4  NPP distribution in Xuzhou from 2001 to 2010 using ETM+.
Fig.5  NPP distribution in Xuzhou City from 2001 to 2010 using MODIS.
NPP levels MODIS ETM+
lowest low high highest lowest low high highest
2001 17.69 52.50 84.13 108.69 19.00 52.31 82.94 107.21
2002 16.93 53.14 84.91 114.64 17.29 55.64 87.02 114.72
2003 17.36 52.12 85.03 119.53 14.79 54.72 85.68 118.37
2004 17.55 52.84 83.42 109.91 15.27 54.36 87.20 109.35
2005 17.15 51.52 86.32 124.69 14.82 55.92 85.28 122.97
2006 15.32 53.22 87.28 119.61 16.79 52.98 85.67 119.30
2007 14.97 54.47 85.27 112.58 16.12 54.27 85.07 113.63
2008 15.97 48.99 79.11 100.86 16.54 49.23 79.57 100.67
2009 17.10 52.46 84.86 115.87 13.11 54.24 88.47 113.75
2010 18.98 49.59 82.45 111.63 15.75 55.33 79.45 111.27
Tab.2  Comparison of NPP levels in different years atdifferent scales (unit: gC·m?2·month?1)
Fig.6  Mean comparison of NPP levels in different years at different scales (UNIT: gC·m?2·month?1).
NPP levels MODIS ETM+
lowest low high highest lowest low high highest
2001 28.05 44.61 23.61 3.73 30.81 37.26 27.11 4.81
2002 22.39 39.42 28.16 10.03 15.10 22.47 40.44 21.99
2003 28.58 38.53 23.37 9.51 19.75 28.98 36.08 15.19
2004 21.12 48.38 25.68 4.80 20.73 28.81 39.06 11.40
2005 28.71 36.98 23.34 10.97 16.36 30.82 40.58 12.25
2006 24.46 27.08 32.08 16.38 20.12 33.95 29.94 15.99
2007 18.24 38.61 33.97 9.18 25.99 30.52 33.14 10.35
2008 38.50 40.15 20.39 0.96 35.46 39.48 23.68 1.38
2009 28.30 37.20 26.91 7.58 25.71 32.40 33.26 8.63
2010 33.14 49.90 12.78 4.18 21.69 49.10 26.08 3.13
Tab.3  Area percentage of NPP levels in different years at different scales (unit: %)
Year GDP/100 million RMB Population/10 thousand Forest coverage/%
2001 681.49 901.86 23.5
2002 749.34 904.44 24
2003 852.26 908.66 25.5
2004 1031.12 916.85 25.5
2005 1226.65 925.31 25.0
2006 1464.74 934.73 25.5
2007 1747.87 940.95 26.6
2008 2118.84 946.86 27.7
2009 2390.16 957.61 28.7
2010 2942.14 972.89 30.9
Tab.4  The GDP, population and forest coverage of Xuzhou in different years
1 Del Grosso S, Parton W, Stohlgren T, Zheng D, Bachelet D, Prince S, Hibbard K, Olson R (2008). Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology, 89(8): 2117–2126
doi: 10.1890/07-0850.1
2 Dong D, Ni J (2011). Modeling changes of net primary productivity of karst vegetation in southwestern China using the CASA model. Acta Phytoecol Sin, 7(31): 1855–1866
3 Duffie J A, Beckman W A (2006). Solar engineering of thermal processes. New York: Wiley
4 Fang J (2000). Global Ecology. Beijing: Higher Education Press
5 Feng X, Liu G, Chen J M, Chen M, Liu J, Ju W M, Sun R, Zhou W (2006). Net primary productivity of China’s terrestrial ecosystems from a process model driven by remote sensing. Journal of environmental management, 85(3): 563–573
6 Field C B, Randerson J T, Malmstr?m C M (1995). Global net primary production: combining ecology and remote sensing. Remote Sens Environ, 51(1): 74–88
doi: 10.1016/0034-4257(94)00066-V
7 Franklin S E, Lavigne M B, Deuling M J, Wulder M A, Hunt Jr E R (1997). Estimation of forest leaf area index using remote sensing and GIS data for modelling ner primary production. International Journal of Remote Sensing, 18(16): 3459–3471
8 Hazarika M K, Yasuoka Y, Ito A, Dye D (2005). Estimation of net primary productivity by integrating remote sensing data with an ecosystem model. Remote Sens Environ, 94(3): 298–310
doi: 10.1016/j.rse.2004.10.004
9 Hejun Y(2006). Study on the formula of the solar declination and time difference in meteorology. Meteorological, Hydrological and Marine Instruments, 3(13): 011
10 Huang F, Qi X, Xu S (2011). Monitoring NPP changes in Changbai Mountain area, China with MODIS images. Geoinformatics, 2011 19th International Conference on.Shanghai, 1–4
11 Imhoff M L, Bounoua L, DeFries R, Lawrence W T, Stutzer D, Tucker C J, Ricketts T (2004). The consequences of urban land transformation on net primary productivity in the United States. Remote Sens Environ, 89(4): 434–443
doi: 10.1016/j.rse.2003.10.015
12 Li Y P, Ji J J (2001). Model estimates of global carbon flux between vegetation and the atmosphere. Adv Atmos Sci, 5(18): 807–818
13 Liu J, Chen J, Cihlar J, Chen W (1999). Net primary productivity distribution in the BOREAS region from a process model using satellite and surface data. J Geophys Res, 104(D22): 27735–27754
doi: 10.1029/1999JD900768
14 Liu Y, Ju W, He H, Wang S, Sun R, Zhang Y (2013). Changes of net primary productivity in China during recent 11 years detected using an ecological model driven by MODIS data. Front Earth Sci, 7(1): 112–127
doi: 10.1007/s11707-012-0348-5
15 Lu D, Xu X, Tian H, Moran E, Zhao M, Running S (2010). The effects of urbanization on net primary productivity in southeastern China. Environ Manage, 46(3): 404–410
doi: 10.1007/s00267-010-9542-y
16 Melgani F, Bruzzone L (2004). Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8): 1778–1790
17 Neitsch S L, Arnold J G, Kiniry J R, 2002. Soil and water assessment tool theoretical documentation version 2000. Grassland, Soil & Water Research Laboratory, TEMPLE, TEXAS
18 Piao J Y, Fang S L, Guo Q H (2001). Application of CASA model to the estimation of Chinese terrestrial net primary productivity. Acta Phytoecol Sin, 25(5): 603–608
19 Potter C S, Randerson J T, Field C B, Matson P A, Vitousek P M, Mooney H A, Klooster S A (1993). Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem Cycles, 7(4): 811–841
doi: 10.1029/93GB02725
20 Pranuthi G, Dubey S K, Tripathi S K (2012). Comparison of different models for estimation of net primary productivity in India. Journal of Agrometeorology, 2(14): 105–110
21 Prieto-Blanco A, North P R, Barnsley M J, Fox N (2009a). Satellite-driven modelling of Net Primary Productivity (NPP): theoretical analysis. Remote Sens Environ, 113(1): 137–147
doi: 10.1016/j.rse.2008.09.002
22 Prieto-Blanco A, North P R J, Barnsley M J, Fox N (2009b). Satellite-driven modelling of Net Primary Productivity (NPP): Theoretical analysis. Remote Sens Environ, 113(1): 137–147
doi: 10.1016/j.rse.2008.09.002
23 Ruimy A, Saugier B, Dedieu G (1994). Methodology for the estimation of terrestrial net primary production from remotely sensed data. J Geophys Res, 99(D3): 5263–5283
doi: 10.1029/93JD03221
24 Sasai T, Saigusa N, Nasahara K N, Ito A, Hashimoto H, Nemani R, Hirata R, Ichii K, Takagi K, Saitoh T M, Ohta T, Murakami K, Yamaguchi Y, Oikawa T (2011). Satellite-driven estimation of terrestrial carbon flux over Far East Asia with 1-km grid resolution. Remote Sens Environ, 115(7): 1758–1771
doi: 10.1016/j.rse.2011.03.007
25 Singh R, Rovshan S, Goroshi S, Panigrahy S, Parihar J (2011). Spatial and Temporal Variability of Net Primary Productivity (NPP) over Terrestrial Biosphere of India Using NOAA-AVHRR Based GloPEM Model. Journal of the Indian Society of Remote Sensing, 39(3): 345–353
doi: 10.1007/s12524-011-0123-1
26 Sun R, Zhu Q (1999). Net primary productivity of terrestrial vegetation: a review on related researches. Chinese Journal of Applied Ecology, 6(10): 757–760
27 Schuol J, Abbaspour K C (2007). Using monthly weather statistics to generate daily data in a SWAT model application to West Africa. Ecological modeling, 201(3): 301–311
28 Tan K, Du P J (2008). Hyperspectral remote sensing image classification based on support vector machine. Journal of Infrared and Millimeter Waves, 27(2): 123–128
doi: 10.3724/SP.J.1010.2008.00123
29 Tian G, Qiao Z(2014). Assessing the impact of the urbanization process on net primary productivity in China in 1989–2000. Environmental Pollution, 184: 320–326
30 Turner D P, Ritts W D, Cohen W B, Gower S T, Running S W, Zhao M, Costa M H, Kirschbaum A A, Ham J M, Saleska S R, Ahl D E (2006). Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens Environ, 102(3): 282–292
doi: 10.1016/j.rse.2006.02.017
31 Xu C, Liu M, An S, Chen J, Yan P (2007). Assessing the impact of urbanization on regional net primary productivity in Jiangyin County, China. J Environ Manage, 85(3): 597–606
doi: 10.1016/j.jenvman.2006.08.015
32 Yuan Q Z, Wu S H, Zhao D S, Dai E F, Chen L, Zhang L (2014). Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005. J Geogr Sci, 24(1): 3–17
doi: 10.1007/s11442-014-1069-3
33 Zhang X S (1989). The potential evapotranspiration (PE) index for vegetation and vegetation-climatic classification (2)-an introduction of main methods and pep program. Acta Phytoecol Sin, 3(13): 197–207
34 Zhao J, Yan X, Zhu Y (2007). Advance in research on net primary productivity of terrestrial vegetation. J Desert Res, 5(27): 780–786
35 Zhao M S, Heinsch F A, Nemani R R, Running S W (2005). Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ, 95(2): 164–176
doi: 10.1016/j.rse.2004.12.011
36 Zhou G S, Zhang X S (1996). Study on climate-vegetation classification for global change in China. Acta Bot Sin, 1(38): 8–17
37 Zhu W Q, Pan Y Z, Zhang J S (2007). Estimation of net primary productivity of Chinese terrestrial vegetation based on remote sensing. Journal of Plant Ecology, 3(31): 413–424
Related articles from Frontiers Journals
[1] Junyong AI,Lan FENG,Xiaowei DONG,Xiaodong ZHU,Yangfan LI. Exploring coupling coordination between urbanization and ecosystem quality (1985–2010): a case study from Lianyungang City, China[J]. Front. Earth Sci., 2016, 10(3): 527-545.
[2] Junyong AI,Xiang SUN,Lan FENG,Yangfan LI,Xiaodong ZHU. Analyzing the spatial patterns and drivers of ecosystem services in rapidly urbanizing Taihu Lake Basin of China[J]. Front. Earth Sci., 2015, 9(3): 531-545.
[3] Yongxue LIU,Jieli CHEN,Wangyu CHENG,Chao SUN,Saishuai ZHAO,Yingxia PU. Spatiotemporal dynamics of the urban sprawl in a typical urban agglomeration: a case study on Southern Jiangsu, China (1983–2007)[J]. Front. Earth Sci., 2014, 8(4): 490-504.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed