Please wait a minute...

Frontiers of Earth Science

Front Earth Sci    2012, Vol. 6 Issue (4) : 433-444     DOI: 10.1007/s11707-012-0301-7
REVIEW ARTICLE |
Removal mechanisms of heavy metal pollution from urban runoff in wetlands
Zhiming ZHANG, Baoshan CUI(), Xiaoyun FAN
School of Environment, Beijing Normal University; State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing 100875, China
Download: PDF(244 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Solid particles, particularly urban surface dust in urban environments contain large quantities of pollutants. It is considered that urban surface dust is a major pollution source of urban stormwater runoff. The stormwater runoff washes away urban surface dust and dissolves pollutants adsorbed onto the dust and finally discharges into receiving water bodies. The quality of receiving water bodies can be deteriorated by the dust and pollutants in it. Polluted waters can be purified by wetlands with various physical, chemical, and biologic processes. These processes have been employed to treat pollutants in urban stormwater runoff for many years because purification of treatment wetlands is a natural process and a low-cost method. In this paper, we reviewed the processes involved during pollutants transport in urban environments. Particularly, when the urban stormwater runoff enters into wetlands, their removal mechanisms involving various physical, chemical and biologic processes should been understood. Wetlands can remove heavy metals by absorbing and binding them and make them form a part of sediment. However, heavy metals can be released into water when the conditions changed. This information is important for the use of wetlands for removing of pollutants and reusing stormwater.

Keywords wetlands      heavy metal      stormwater runoff      removal mechanisms     
Corresponding Authors: CUI Baoshan,Email:cuibs@bnu.edu.cn, cuibs67@yahoo.com   
Issue Date: 05 December 2012
 Cite this article:   
Baoshan CUI,Xiaoyun FAN,Zhiming ZHANG. Removal mechanisms of heavy metal pollution from urban runoff in wetlands[J]. Front Earth Sci, 2012, 6(4): 433-444.
 URL:  
http://journal.hep.com.cn/fesci/EN/10.1007/s11707-012-0301-7
http://journal.hep.com.cn/fesci/EN/Y2012/V6/I4/433
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Baoshan CUI
Xiaoyun FAN
Zhiming ZHANG
Fig.1  Flow diagram illustrating the processes involved during pollutants transport in urban environments
CityMean concentrations of heavy metals/(mg·kg-1)
CdCuCrNiPbZn
Riyadha)2.361.732.545.02134.0338.0
Madridb)Nd188.061.044.0192.7476.0
Warsawc)Nd154.3100.355.7174.01286.7
Ottawad)0.465.843.315.239.1112.5
Birminghame)1.6466.9Nd41.148.0534.0
Coventrye)0.9226.4Nd129.747.1385.7
Sydneyf)4.4147.083.627.2389.0657.0
Luandag)1.142.026.010.0351.0317.0
Budapesth)Nd351.0235.0326.0894.01608.0
Jordani)6.491.965.5Nd59.5639.8
Xi’anj)Nd95.0167.3Nd230.5421.6
Chongqingk)5.079.487.322.275.6169.7
Shanghail)1.0257.6264.366.4236.6753.3
Urumqim)Nd81.1109.7Nd82.7549.0
Baojin)Nd123.2126.748.8433.2715.3
Xianyango)0.1177.2NdNd52.7Nd
Shenyangp)4.481.3NdNd106.3334.5
Jinhuaq)Nd142.1219.844.4161.8758.7
Hangzhour)1.6116.051.325.9202.2321.4
Guangzhous)2.4176.078.823.0240.0586.0
Background values in soil of China0.122.661.026.926.0100.0
Tab.1  Mean concentrations of heavy metals in urban surface dust
CityWastewater typeHeavy metals/(μg·L-1)
CdCuPbZnCrNi
Nantesa)Raw runoff1.045.058.0356.0NdNd
Parisb)(median)Roof runoff1.337.0493.03422.0NdNd
Yard runoff0.823.0107.0563.0NdNd
Street runoff0.661.0133.0550.0NdNd
Isfahanc)Urban runoffNdNd278.0342.0NdNd
Genoad)Road runoffNd19.413.281.1NdNd
Roof runoffNd10.05.1446.7NdNd
Cremonae)Road runoff1)Nd1397.034.0222.01.57.4
Road runoff2)Nd469.011.0156.0NdNd
Road runoff3)Nd826.018.8260.07.0Nd
Road runoff4)Nd1683.719.8528.38.510.1
Macauf)Road runoff5)Nd13.410.043.0NdNd
Road runoff6)Nd33.381.0288.0NdNd
Guangzhoug)Road runoff26.50.1100.61.952.726.5
Road runoff11.90.051.30.58.711.9
Road runoff0.70.070.50.34.37.6
Rainfall0.20.00.20.1n.d.n.d.
Shanghaih)Roof runoff7)6.036.044.0688.014.0Nd
Roof runoff8)6.033.036.01129.011.0Nd
Roof runoff9)6.028.047.01035.014.0Nd
Shanghaii)Road runoff4.00.10.11.00.30.3
Nanjingj)Road runoff0.80.140.40.5NdNd
Tab.2  Heavy metals mean values of EMCs in runoff water
1 Al-Khashman O A (2004). Heavy metal distribution in dust, street dust and soils from the work place in Karak Industrial Estate, Jordan. Atmos Environ , 38(39): 6803–6812
doi: 10.1016/j.atmosenv.2004.09.011
2 Almas A, Lombnaes P, Sogn T, Mulder J (2006). Speciation of Cd and Zn in contaminated soils assessed by DGT-DIFS, and WHAM/Model VI in relation to uptake by spinach and ryegrass. Chemosphere , 62(10): 1647–1655
doi: 10.1016/j.chemosphere.2005.06.020 pmid:16084561
3 Al-Raihi M A, Al-Shayeb S M, Seaward M R D, Edwards H G M (1996). Particle size effect for metal pollution analysis of atmospherically deposited dust. Atmos Environ , 30(1): 145–153
doi: 10.1016/1352-2310(95)00164-T
4 Alvarezayuso E, García-Sánchez A (2003). Sepiolite as a feasible soil additive for the immobilization of cadmium and zinc. Sci Total Environ , 305(1–3): 1–12
doi: 10.1016/S0048-9697(02)00468-0 pmid:12670753
5 Apeagyei E, Bank M S, Spengler J D (2011). Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmos Environ , 45(13): 2310–2323
doi: 10.1016/j.atmosenv.2010.11.015
6 Boller M A (1997). Tracking heavy metals reveals sustainability deficits of urban drainage systems. Water Sci Technol , 35(9): 77–87
doi: 10.1016/S0273-1223(97)00186-8
7 Calmano W, Hong J F, Forstner U (1993). Binding and mobilization of heavy metal in contaminated sediment affected by the pH and redox potential. Water Sci Technol , 28(8–9): 223–235
8 Cao J Y, Zhang G J, Mao Z S, Fang Z H, Yang C (2009). Precipitation of valuable metals from bioleaching solution by biogenic sulfides. Miner Eng , 22(3): 289–295
doi: 10.1016/j.mineng.2008.08.006
9 Celis R, Hermosin M C, Cornejo J (2000). Heavy metal adsorption by functionalised clays. Environ Sci Technol , 34(21): 4593–4599
doi: 10.1021/es000013c
10 Chang J, Liu M, Li X H, Yu J, Lin X, Wang L L, Gao L (2009). Dissolved-particulate partitioning of heavy metals in urban road runoff of Shanghai. Advance Water Science , 20: 714–720 (in Chinese)
11 Charlesworth S, Everett M, McCarthy R, Ordó?ez A, Miguel E (2003). A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environ Int , 29(5): 563–573
doi: 10.1016/S0160-4120(03)00015-1 pmid:12742399
12 Chattopadhyay G, Lin K C P, Feitz A J (2003). Household dust metal levels in the Sydney metropolitan area. Environ Res , 93(3): 301–307
doi: 10.1016/S0013-9351(03)00058-6 pmid:14615241
13 Cheng S P, Grosse W, Karrenbrock F, Thoennessen M (2002). Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng , 18(3): 317–325
doi: 10.1016/S0925-8574(01)00091-X
14 DeBusk T A, Laughlin R B Jr, Schwartz L N (1996). Retention and compartmentalization of lead and cadmium in wetland microcosms. Water Res , 30(11): 2707–2716
doi: 10.1016/S0043-1354(96)00184-4
15 DeBusk W F (1999). Wastewater Treatment Wetlands: Contaminant Removal Processes. Gainesville University of Florida . http://edis.ifas.ufl.edu (accessed 10 Oct 2011)
16 Deng H, Ye Z H, Wong M H (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut , 132(1): 29–40
doi: 10.1016/j.envpol.2004.03.030 pmid:15276271
17 Dong J, Mao W H, Zhang G P, Wu F B, Cai Y (2007). Root excretion and plant tolerance to cadmium toxicity–a review. Plant Soil Environ , 53: 193–200
18 Doyle M O, Otte M L (1997). Organism-induced accumulation of iron, zinc and arsenic in wetland soils. Environ Pollut , 96(1): 1–11
doi: 10.1016/S0269-7491(97)00014-6 pmid:15093426
19 Droppo I G, Leppard G G, Flannigan D T, Liss S N (1997). The freshwater floc: a functional relationship of water and organic and inorganic floc constituents affecting suspended sediment properties. Water Air Soil Pollut , 99(1–4): 43–53
doi: 10.1007/BF02406843
20 Dulaing G, Ryckegem G, Tack F, Verloo M (2006). Metal accumulation in intertidal litter through decomposing leaf blades, sheaths and stems of Phragmites australis. Chemosphere , 63(11): 1815–1823
doi: 10.1016/j.chemosphere.2005.10.034 pmid:16330074
21 Duzgoren-Aydin N S, Wong C S C, Aydin A, Song Z, You M, Li X D (2006). Heavy metal contamination and distribution in the urban environment of Guangzhou, SE China. Environ Geochem Health , 28(4): 375–391
doi: 10.1007/s10653-005-9036-7 pmid:16752128
22 Eckley C S, Branfireun B (2009). Simulated rain events on an urban roadway to understand the dynamics of mercury mobilization in stormwater runoff. Water Res , 43(15): 3635–3646
doi: 10.1016/j.watres.2009.05.022 pmid:19576611
23 El-Shatnawi M K J, Makhadmeh I M (2001). Ecophysiology of the planterhizosphere system. J Agron Crop Sci , 187(1): 1–9
doi: 10.1046/j.1439-037X.2001.00498.x
24 EPRI (1990). Trace Element Removal by Adsorption/Co-precipitation. Process Design Manual, GS-7005 . Palo Alto, CA
25 Faiz Y, Tufail M, Javed M T, Chaudhry M M, Naila-Siddique (2009). Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan. Microchem J , 92(2): 186–192
doi: 10.1016/j.microc.2009.03.009
26 Ferreira-Baptista L, Miguel E (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos Environ , 39(25): 4501–4512
doi: 10.1016/j.atmosenv.2005.03.026
27 Fletcher T D, Deletic A, Mitchell V G, Hatt B E (2008). Reuse of urban runoff in Australia: a review of recent advances and remaining challenges. J Environ Qual , 37(5_Supplement): S116–S127
doi: 10.2134/jeq2007.0411 pmid:18765758
28 Gan H Y, Zhou M N, Li D Q, Zhou Y Z (2007). Characteristics of heavy metal pollution in highway runoff. Urban Environment & Urban Ecology , 20: 34–37 (in Chinese)
29 Gevao B, Semple K T, Jones K C (2000). Bound pesticide residues in soils: a review. Environ Pollut , 108(1): 3–14
doi: 10.1016/S0269-7491(99)00197-9 pmid:15092962
30 Gnecco I, Berretta C, Lanza L G, La Barbera P (2005). Storm water pollution in the urban environment of Genoa, Italy. Atmos Res , 77(1–4): 60–73
doi: 10.1016/j.atmosres.2004.10.017
31 Gopal B, Ghosh D (2008). Natural Wetlands. Amsterdam: Elsevier Press
doi: 10.1016/B978-008045405-4.00067-7
32 Gromairemertz M C, Garnaud S, Gonzalez A, Chebbo G (1999). Characterisation of urban runoff pollution in Paris. Water Sci Technol , 39(2): 1–8
doi: 10.1016/S0273-1223(99)00002-5
33 Groudev S N, Bratcova S G, Komnitsas K (1999). Treatment of waters polluted with radioactive elements and heavy metals by means of a laboratory passive system. Miner Eng , 12(3): 261–270
doi: 10.1016/S0892-6875(99)00004-7
34 Han Y M, Du P X, Cao J J, Eric S P (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci Total Environ , 355(1–3):176–186
doi: 10.1016/j.scitotenv.2005.02.026
35 Hares R J, Ward N I (2004). Sediment accumulation in newly constructed vegetative treatment facilities along a new major road. Sci Total Environ , 334–335 : 473–479
doi: 10.1016/j.scitotenv.2004.04.051 pmid:15504533
36 Hartley W, Dickinson N M (2010). Exposure of an anoxic and contaminated canal sediment: mobility of metal(loid)s. Environ Pollut , 158(3): 649–657
doi: 10.1016/j.envpol.2009.10.030 pmid:19913340
37 Huang J L, Du P F, Ou Z D, Lei M H, Zhao D Q, Ho M H, Wang Z S (2006). Characterization of urban roadway runoff in Macau. China Environ Sci , 26: 469–473 (in Chinese)
38 ITRC (Interstate Technology & Regulatory Council) (2003). Technical and Regulatory Guidance Document for Constructed Treatment Wetlands. The Interstate Technology & Regulatory Council Wetlands Team
39 Jaradat Q M, Momani K A, Jbarah A A Q, Massadeh A (2004). Inorganic analysis of dust fall and office dust in an industrial area of Jordan. Environ Res , 96(2): 139–144
doi: 10.1016/j.envres.2003.12.005 pmid:15325874
40 Joshi U M, Vijayaraghavan K, Balasubramanian R (2009). Elemental composition of urban street dusts and their dissolution characteristics in various aqueous media. Chemosphere , 77(4): 526–533
doi: 10.1016/j.chemosphere.2009.07.043 pmid:19692111
41 Kabata-Pendias A, Pendias H (2001). Trace Elements in Soils and Plants. 3rd ed. Boca Raton , FL: CRC Press
42 Kalavrouziotis I K, Koukoulakis P H (2009). The environmental impact of the platinum group elements (Pt, Pd, Rh) emitted by the automobile catalyst converters. Water Air Soil Pollut , 196(1–4): 393–402
doi: 10.1007/s11270-008-9786-9
43 Kelderman P, Osman A A (2007). Effect of redox potential on heavy metal binding forms in polluted canal sediments in Delft (The Netherlands). Water Res , 41(18): 4251–4261
doi: 10.1016/j.watres.2007.05.058 pmid:17640704
44 Khairy M A, Barakat A O, Mostafa A R, Wade T L (2011). Multielement determination by flame atomic absorption of road dust samples in Delta Region, Egypt. Microchem J , 97(2): 234–242
doi: 10.1016/j.microc.2010.09.012
45 Khan S, Ahmad I, Shah M T, Rehman S, Khaliq A (2009). Use of constructed wetland for the removal of heavy metals from industrial wastewater. J Environ Manage , 90(11): 3451–3457
doi: 10.1016/j.jenvman.2009.05.026 pmid:19535201
46 Kr?pfelová L, Vymazal J, ?vehla J, Stíchová J (2009). Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environ Pollut , 157(4): 1186–1194
doi: 10.1016/j.envpol.2008.12.003 pmid:19124182
47 Küsel K (2003). Microbial cycling of iron and sulfur in acidic coal mining lake sediments. Water Air Soil Pollut , 3: 67–90
48 Lacerda L D, Carvalho C E V, Tanizaki K F, Ovalle A R C, Rezende C E (1993). The biogeochemistry and trace metals distribution of mangrove rhizospheres. Biotropica , 25(3): 252–257
doi: 10.2307/2388783
49 Legret M, Pagotto C (1999). Evaluation of pollutant loadings in the runoff waters from a major rural highway. Sci Total Environ , 235(1–3): 143–150
doi: 10.1016/S0048-9697(99)00207-7 pmid:10535115
50 Li C, Li F Y, Zhang Y, Liu T W, Hou W (2008a). Spatial distribution characteristics of heavy metals in street dust in Shenyang City. Ecol Environ , 17: 560–564 (in Chinese)
51 Li F Q, Pan H M, Ye W, Zhu L D, Wang Z G (2008b). Specificity of the heavy metal pollution and the ecological hazard in urban dust. Journal of Anhui Agricultural Sciences , 36: 2495–2498 (in Chinese)
52 Li H, Shi J Q, Shen G, Ji X L, Fu D F (2009). Characteristics of rainfall runoff discharge rule caused by heavy metals on express highway. Journal of Southeast University , 39(2): 345–349
53 Li Y C, Wu H, Luo W H (2008c). Research on the polluting characterization of heavy metals caused by urban runoff in Huiyang District: I. Analysis of heavy metal contents in urban surface Sediments. Research of Environmental Sciences , 21(3): 51–56 (in Chinese)
54 Li Z P, Chen Y C, Yang X C, Wei S Q (2006). Heavy metals contamination of street dusts in core zone of Chongqing Municipality. J Soil Water Conserv , 20(1): 114–116, 138 (in Chinese)
55 Liang Y, Wong M H (2003). Spatial and temporal organic and heavy metal pollution at Mai Po Marshes Nature Reserve, Hong Kong. Chemosphere , 52(9): 1647–1658
doi: 10.1016/S0045-6535(03)00505-8 pmid:12867199
56 Lisiewicz M, Heimburger R, Golimowski J (2000). Granulometry and the content of toxic and potentially toxic elements in vacuum-cleaner collected, indoor dusts of the city of Warsaw. Sci Total Environ , 263(1–3): 69–78
doi: 10.1016/S0048-9697(00)00667-7 pmid:11194164
57 Liu Y Y, Liu H F, Liu M (2009). Concentrations and health risk assessment of urban surface dust in Urumqi. Arid Zone Research , 26(5): 750–754 (in Chinese)
doi: 10.3724/SP.J.1148.2009.00750
58 Lizama A K, Fletcher T D, Sun G (2011). Removal processes for arsenic in constructed wetlands. Chemosphere , 84(8): 1032–1043
doi: 10.1016/j.chemosphere.2011.04.022 pmid:21549410
59 Locke M A, Gaston L A, Zablotowicz R M (1997). Acifluorfen sorption and sorption kinetics in soil. J Agric Food Chem , 45(1): 286–293
doi: 10.1021/jf960240r
60 Lu X W, Wang L J, Li L Y, Lei K, Huang L, Kang D (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater , 173(1–3): 744–749
doi: 10.1016/j.jhazmat.2009.09.001 pmid:19811870
61 Luo H B, Luo L, Huang G, Liu P, Li J X, Hu S, Wang F X, Xu R, Huang X X (2009). Total pollution effect of urban surface runoff. J Environ Sci , 21(9): 1186–1193 (in Chinese)
doi: 10.1016/S1001-0742(08)62402-X pmid:19999964
62 Ma Z B, Li C S, Zeng H (2011), Characterization of stormwater runoff pollution in rapid urbanizing areas. J Soil Water Conserv , 25(3):1–6 (in Chinese)
doi: 1009-2242(2011)03-0001-06
63 MacFarlane G R, Pulkownik A, Burchett M D (2003). Accumulation and distribution of heavy metals in the grey mangrove, Avicennia marina (Forsk) Vierh: biological indication potential. Environ Pollut , 123(1): 139–151
doi: 10.1016/S0269-7491(02)00342-1 pmid:12663214
64 Machemer S D, Wildeman T R (1992). Adsorption compared with sulfide precipitation as metal removal processes from acid mine drainage in a constructed wetland. J Contam Hydrol , 9(1–2): 115–131
doi: 10.1016/0169-7722(92)90054-I
65 Makepeace D K, Smith D W, Stanley S J (1995). Urban stormwater quality: summary of contaminant data. Crit Rev Environ Sci Technol , 25(2): 93–139
doi: 10.1080/10643389509388476
66 Malandrino M, Abollino O, Giacomino A, Aceto M, Mentasti E (2006). Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. J Colloid Interface Sci , 299(2): 537–546
doi: 10.1016/j.jcis.2006.03.011 pmid:16581085
67 Matagi S V, Swai D, Mugabe R (1998). A review of heavy metal removal mechanisms in wetlands. African Journal of Tropical Hydrobiology and Fisheries , 8: 23–35
68 Mays P A, Edwards G S (2001). Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecol Eng , 16(4): 487–500
doi: 10.1016/S0925-8574(00)00112-9
69 McAlister J J, Smith B J, T?r?k A (2006). Element partitioning and potential mobility within surface dusts on buildings in a polluted urban environment, Budapest. Atmos Environ , 40(35): 6780–6790
doi: 10.1016/j.atmosenv.2006.05.071
70 Meharg A A, Cairney J W (1999). Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res , 30: 69–112
doi: 10.1016/S0065-2504(08)60017-3
71 Méndez-Armenta M, Ríos C (2007). Cadmium neurotoxicity. Environ Toxicol Pharmacol , 23(3): 350–358
doi: 10.1016/j.etap.2006.11.009 pmid:21783780
72 Miguel E, Llamas J F, Chacón E, Berg T, Larssen S, Royset O, Vadset M (1997). Origin and patterns of distribution of trace elements in street dust: unleaded petrol and urban lead. Atmos Environ , 31(17): 2733–2740
doi: 10.1016/S1352-2310(97)00101-5
73 Moorhead K K, Reddy K R (1988). Oxygen transport through selected aquatic macrophytes. J Environ Qual , 17(1): 138–142
doi: 10.2134/jeq1988.00472425001700010022x
74 Morse J W (1994). Interactions of trace metals with authigenic sulfide minerals: implications for their bioavailability. Mar Chem , 46(1-2): 1–6
doi: 10.1016/0304-4203(94)90040-X
75 Mulligan C N, Davarpanah N, Fukue M, Inoue T (2009). Filtration of contaminated suspended solids for the treatment of surface water. Chemosphere , 74(6): 779–786
doi: 10.1016/j.chemosphere.2008.10.055 pmid:19084263
76 Murakami M, Fujita M, Furumai H, Kasuga I, Kurisu F (2009). Sorption behavior of heavy metal species by soakaway sediment receiving urban road runoff from residential and heavily trafficked areas. J Hazard Mater , 164(2–3): 707–712
doi: 10.1016/j.jhazmat.2008.08.052 pmid:18823702
77 Murakami M, Nakajima F, Furumai H (2008). The sorption of heavy metal species by sediments in soakaways receiving urban road runoff. Chemosphere , 70(11): 2099–2109
doi: 10.1016/j.chemosphere.2007.08.073 pmid:17959221
78 Ngabe B, Bidleman T F, Scott G I (2000). Polycyclic aromatic hydrocarbons in storm runoff from urban and coastal South Carolina. Sci Total Environ , 255(1–3): 1–9
doi: 10.1016/S0048-9697(00)00422-8 pmid:10898390
79 Oh S, Kwak M Y, Shin W S (2009). Competitive sorption of lead and cadmium onto sediments. Chem Eng J , 152(2–3): 376–388
doi: 10.1016/j.cej.2009.04.061
80 Otte M L, Kearns C C, Doyle M O (1995). Accumulation of arsenic and zinc in the rhizosphere of wetland plants. Bull Environ Contam Toxicol , 55(1): 154–161
doi: 10.1007/BF00212403 pmid:7663086
81 Papiri S, Todeschini S, Valcher P (2008). Pollution in stormwater runoff in a highway toll gate area. In: The 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK , 2008, 1–10
82 Papoyan A, Pi?eros M, Kochian L V (2007). Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol , 175(1): 51–58
doi: 10.1111/j.1469-8137.2007.02073.x pmid:17547666
83 Peng J F, Song Y H, Yuan P, Cui X Y, Qiu G L (2009). The remediation of heavy metals contaminated sediment. J Hazard Mater , 161(2–3): 633–640
doi: 10.1016/j.jhazmat.2008.04.061 pmid:18547718
84 Quan W M, Han J D, Shen A L, Ping X Y, Qian P L, Li C J, Shi L Y, Chen Y Q (2007). Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Mar Environ Res , 64(1): 21–37
doi: 10.1016/j.marenvres.2006.12.005 pmid:17306362
85 Rangsivek R, Jekel M R (2005). Removal of dissolved metals by zero-valent iron (ZVI): kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Res , 39(17): 4153–4163
doi: 10.1016/j.watres.2005.07.040 pmid:16181656
86 Rasmussen P E, Subramanian K S, Jessiman B J (2001). A multi-element profile of housedust in relation to exterior dust and soils in the city of Ottawa, Canada. Sci Total Environ , 267(1–3): 125–140
doi: 10.1016/S0048-9697(00)00775-0 pmid:11286208
87 Reboreda R, Ca?ador I (2007). Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environ Pollut , 146(1): 147–154
doi: 10.1016/j.envpol.2006.05.035 pmid:16996176
88 Reinelt L E, Horner R R (1995). Pollutant removal from stormwater runoff by palustrine wetlands based on comprehensive budgets. Ecol Eng , 4(2): 77–97
doi: 10.1016/0925-8574(94)00002-M
89 Richard F C, Bourg A C M (1991). Aqueous geochemistry of chromium: a review. Water Res , 25(7): 807–816
doi: 10.1016/0043-1354(91)90160-R
90 Salomons W, Stigliani W M (1995). Biogeodynamics of Pollutants in Soils and Sediments: Risk Assessment of Delayed and Non-linear Responses. New York: Springer-Verlag, 331–343
91 Seo D C, Yu K W, DeLaune R D (2008). Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: batch and column experiments. Chemosphere , 73(11): 1757–1764
doi: 10.1016/j.chemosphere.2008.09.003 pmid:18926554
92 Sheoran A S, Sheoran V (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng , 19(2): 105–116
doi: 10.1016/j.mineng.2005.08.006
93 Shi G, Chen Z, Bi C, Li Y, Teng J, Wang L, Xu S (2010). Comprehensive assessment of toxic metals in urban and suburban street deposited sediments (SDSs) in the biggest metropolitan area of China. Environ Pollut , 158(3): 694–703
doi: 10.1016/j.envpol.2009.10.020 pmid:19926184
94 Shi X M, Wang J H (2009). Street surface dust heavy metal pollution state and assessment in Xianyang City. Progress in Geography , 28: 435–440 (In Chinese)
95 Shutes R B E (2001). Artificial wetlands and water quality improvement. Environ Int , 26(5–6): 441–447
doi: 10.1016/S0160-4120(01)00025-3 pmid:11392764
96 Singh S P, Tack F M, Verloo M G (1998). Heavy metal fractionation and extractability in dredged sediment derived surface soils. Water Air Soil Pollut , 102(3–4): 313–328
doi: 10.1023/A:1004916632457
97 Sobolewski A (1999). A review of processes responsible for metal removal in wetlands treating contaminated mine drainage. Int J Phytoremediation , 1(1): 19–51
doi: 10.1080/15226519908500003
98 Sriyaraj K, Shutes R B E (2001). An assessment of the impact of motorway runoff on a pond, wetland and stream. Environ Int , 26(5–6): 433–439
doi: 10.1016/S0160-4120(01)00024-1 pmid:11392763
99 St-Cyr L, Campbell P G C (1996). Metals (Fe, Mn, Zn) in the root plaque of submerged aquatic plants collected in situ: relations with metal concentrations in the adjacent sediments and in the root tissue. Biogeochemistry , 33(1): 45–76
doi: 10.1007/BF00000969
100 Stephens S R, Alloway B J, Parker A, Carter J E, Hodson M E (2001). Changes in the leachability of metals from dredged canal sediments during drying and oxidation. Environ Pollut , 114(3): 407–413
doi: 10.1016/S0269-7491(00)00231-1 pmid:11584639
101 Sundby B, Vale C, Cacador I, Catarino F, Madureira M J, Caetano M (1998). Metal-rich concretions on the roots of salt marsh plants: mechanism and rate of formation. Limnol Oceanogr , 43(2): 245–252
doi: 10.4319/lo.1998.43.2.0245
102 Taebi A, Droste R L (2004). Pollution loads in urban runoff and sanitary wastewater. Sci Total Environ , 327(1–3): 175–184
doi: 10.1016/j.scitotenv.2003.11.015 pmid:15172580
103 Tam N F Y, Wong Y S (1996). Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environ Pollut , 94(3): 283–291
doi: 10.1016/S0269-7491(96)00115-7 pmid:15093488
104 Terzakis S, Fountoulakis M S, Georgaki I, Albantakis D, Sabathianakis I, Karathanasis A D, Kalogerakis N, Manios T (2008). Constructed wetlands treating highway run off in the central Mediterrantan region. Chemo sphere , 72(2): 141–149
doi: 10.1016/S0925-8574(98)00116-5
105 Thurston K A (1999). Lead and petroleum hydrocarbon changes in an urban wetland receiving stormwater runoff. Ecol Eng , 12(3–4): 387–399
106 USEPA (1983). Results of the Nationwide Urban Runoff Program, Volume I–Final Report. NTIS PB84–185552. Washington D C: US Environmental Protection Agency
107 USEPA (1995). Economic Benefits Of Runoff Controls. Office of Wetlands, Oceans and Watersheds (4503F) , EPA 841-S-95–002. http://www.epa.gov/nps/runoff.html (accessed 10 Oct 2011)
108 USEPA (1996). National Water Quality Inventory: Report to Congress, EPA841-R-97–008, April 1998, ES-13
109 van den Berg G A, Gustav Loch J P, van der Heijdt L M, Zwolsman J J G (1999). Mobilisation of heavy metals in contaminated sediments in the river Meuse, The Netherlands. Water Air Soil Pollut , 116(3–4): 567–586
doi: 10.1023/A:1005146927718
110 Vermette S J, Irvine K N, Drake J J (1991). Temporal variability of the elemental composition in urban street dust. Environ Monit Assess , 18: 69–77
111 Walker D J, Hurl S (2002). The reduction of heavy metals in a stormwater wetland. Ecol Eng , 18(4): 407–414
doi: 10.1016/S0925-8574(01)00101-X
112 Wang B, Li T (2009). Buildup characteristics of roof pollutants in the Shanghai urban area, China. Journal of Zhejiang University-Science A , 10(9): 1374–1382 (in Chinese)
doi: 10.1631/jzus.A0920019
113 Weis J S, Weis P (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int , 30(5): 685–700
doi: 10.1016/j.envint.2003.11.002 pmid:15051245
114 Wieβner A, Kappelmeyer U, Kuschk P, K?stner M (2005). Influence of the redox condition dynamics on the removal efficiency of a laboratory-scale constructed wetland. Water Res , 39(1): 248–256
doi: 10.1016/j.watres.2004.08.032 pmid:15607183
115 Wilson D J, Chang E (2000). Bioturbation and the oxidation of sulfide in sediments. J Tenn Acad Sci , 75: 76–85
116 Windom H L, Byrd T, Smith R G, Huan F (1991). Inadequacy of NASQUAN data for assessing metal trends in the nation’s rivers. Environ Sci Technol , 25(6): 1137–1142
doi: 10.1021/es00018a019
117 Wu P, Zhou Y S (2009). Simultaneous removal of coexistent heavy metals from simulated urban stormwater using four sorbents: a porous iron sorbent and its mixtures with zeolite and crystal gravel. J Hazard Mater , 168(2–3): 674–680
doi: 10.1016/j.jhazmat.2009.02.093 pmid:19303211
118 Xu S P, Jaffé P R (2006). Effects of plants on the removal of hexavalent chromium in wetland sediments. J Environ Qual , 35(1): 334–341
doi: 10.2134/jeq2005.0181 pmid:16397109
119 Xu W H, Huang H, Wang A H, Xiong Z T, Wang Z Y (2006). Advance in studies on activation of heavy metal by root exudates and mechanism. Ecol Environ , 15: 184–189 (in Chinese)
120 Yao Z G, Gao P (2007). Heavy metal research in lacustrine sediment: a review. Chin J Oceanology Limnol , 25(4): 444–454
doi: 10.1007/s00343-007-0444-7
121 Yeh T Y (2008). Removal of metals in constructed wetlands. Pract Period Hazard Toxic Radioact Waste Manage , 12(2): 96–101
doi: 10.1061/(ASCE)1090-025X(2008)12:2(96)
122 Zhang M, Wang H (2009). Concentrations and chemical forms of potentially toxic metals in road-deposited sediments from different zones of Hangzhou, China. J Environ Sci , 21(5): 625–631 (in Chinese)
doi: 10.1016/S1001-0742(08)62317-7 pmid:20108664
123 Zhou P, Huang J C, Li A W F, Wei S (1999). Heavy metal removal from wastewater in fluidized bed reactor. Water Res , 33(8): 1918–1924
doi: 10.1016/S0043-1354(98)00376-5
124 Zoppou C (2001). Review of urban storm water models. Environ Model Softw , 16(3): 195–231
doi: 10.1016/S1364-8152(00)00084-0
125 Zouboulis A I, Loukidou M X, Matis K A (2004). Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils. Process Biochem , 39(8): 909–916
doi: 10.1016/S0032-9592(03)00200-0
126 Zoumis T, Schmidt A, Grigorova L, Calmano W (2001). Contaminants in sediments: remobilisation and demobilisation. Sci Total Environ , 266(1–3): 195–202
doi: 10.1016/S0048-9697(00)00740-3 pmid:11258817
Related articles from Frontiers Journals
[1] Yuanjie ZHU,Xinwei LU,Linna YANG,Lijun WANG. Accumulation and source of heavy metals in sediment of a reservoir near an industrial park of northwest China[J]. Front. Earth Sci., 2016, 10(4): 707-716.
[2] Changhai WANG. Driving forces behind the construction of an eco-compensation mechanism for wetlands in China[J]. Front. Earth Sci., 2016, 10(3): 487-497.
[3] Yintao LU,Changyuan TANG,Jianyao CHEN,Hong YAO. Assessment of major ions and heavy metals in groundwater: a case study from Guangzhou and Zhuhai of the Pearl River Delta, China[J]. Front. Earth Sci., 2016, 10(2): 340-351.
[4] I. C. EZEKWE, E. ODUBO, G. N. CHIMA, I. S. ONWUCHEKWA. Groundwater occurrence and flow patterns in the Ishiagu mining area of southeastern Nigeria[J]. Front Earth Sci, 2012, 6(1): 18-28.
[5] Shafi Noor ISLAM. Threatened wetlands and ecologically sensitive ecosystems management in Bangladesh[J]. Front Earth Sci Chin, 2010, 4(4): 438-448.
[6] Stephen J. MORREALE, Kristi L. SULLIVAN, . Community-level enhancements of biodiversity and ecosystem services[J]. Front. Earth Sci., 2010, 4(1): 14-21.
[7] Peng TIAN, Yingxia LI, Zhifeng YANG. Effect of rainfall and antecedent dry periods on heavy metal loading of sediments on urban roads[J]. Front Earth Sci Chin, 2009, 3(3): 297-302.
[8] SHEN Mingjie, YAN Haitao, HU Shouyun, BLAHA Uli., RÖSLER Wolfgang., APPEL Ewin., HOFFMANN Viktor.. Magnetic properties of urban soil profile and their significance for traffic pollution–Case study of the capital airport expressway in Beijing[J]. Front. Earth Sci., 2008, 2(4): 400-407.
[9] HUANG Jiaxiang, YIN Yong, ZHU Xiaobing, XU Jun. Spatial distribution features and environment effect of heavy metal in intertidal surface sediments of Guanhe estuary, Northern Jiangsu Province[J]. Front. Earth Sci., 2008, 2(2): 147-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed