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Abstract The mechanism of risk allocation is designed
to protect all stakeholders, and it is vital to project success.
Qualitative and quantitative ways of optimizing risk
allocation have been well documented in extant literature
(e.g., allocation principles, models, and solutions), and the
foci of existing research are usually the maximization of
rational utility. Few research has focused on partners’
social preferences affecting the output of risk allocation.
This study presents a quantitative approach based on
modeling alliance member (AM)’s inequity aversion (IA)
to analyze risk-sharing arrangements in an alliance project.
Fehr and Schmidt’s inequity-aversion model is integrated
into modeling partner’s utility. This paper derives results
for an alliance leader (AL)’s optimal risk-sharing ratio and
AM’s optimal risk-management effort simultaneously. The
derivation is based on solving a restrained optimization
problem using the conception and methods from Stackel-
berg game theory. Results show that an AM’s IA
significantly affects risk allocation between AL and AM.
Specifically, envious preference is positively related to
AL’s optimal risk-sharing ratio, whereas guilty preference
negatively affects AL’s optimal risk-sharing ratio. These
findings will be of interest to academics and practitioners
involved in designing alliance negotiations.

Keywords public project, contract design, risk sharing,
inequity aversion, governance*

1 Introduction

Owing to its technological complexity and long duration,
infrastructure projects are confronted with a high degree of
integration between design, construction, consulting,
supplying, and other operation partners (Love et al.,
2010). Studies have shown that adversarial/uncooperative
relationships between contractors often cause project
failures (Ng et al., 2002; Ling et al., 2013). Consequently,
selecting an alliance to deliver a complex infrastructure
project is preferable (Kumaraswamy et al., 2005; Alder-
man and Ivory, 2007; Love et al., 2010). An alliance can
provide a favorable working environment aiming to
motivate partners cooperating and working toward the
same goal to achieve project success (Love et al., 2010;
Hosseinian and Carmichael, 2013a), and it is proven to be
a preferred project delivery method for infrastructure
projects (Hauck et al., 2004; Hosseinian and Carmichael,
2013b). Based on the fundamental principles of win–win,
all corporations joining the alliance need to share any pain
or gain during the project delivery period (Hosseinian and
Carmichael, 2013b). In other words, the alliance members
(AMs) need to share risks (Das and Kumar, 2011).
According to Tang et al. (2020), the arrangement of risk
allocation is specifically designed for adapting to the
contingent disturbances. However, as legally independent
commercial organizations, the priority for those alliance
parties is to seek profit as much as possible (Frank et al.,
2006). To a certain extent, the business nature of profit
pursuit may contribute to sharing other’s risk. Therefore,
undertaking a re-examination of the mainstream thinking
on risk allocation while dealing with alliance infrastructure
projects is needed.
Inappropriate risk allocation would lead to possible extra

costs, such as higher contingency and/or recovering fees
for lower quality work (Hartman et al., 1997; Lam et al.,
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2007; Jin and Zhang, 2011; Nasirzadeh et al., 2014). Thus,
discussion is ongoing as to the definition of optimal risk
allocation both in theory (Yescombe, 2002; Winch, 2010)
and practice (Casey and Bamford, 2014). Numbers of
qualitative and quantitative methods are developed to
analyze the problem of who should be responsible for risk
and the amount of risk-sharing percentage (Jin and Zhang,
2011; Khazaeni et al., 2012; Alireza et al., 2014).
However, mainstream thinking is strongly influenced by
homo economicus theory (Nasirzadeh et al., 2014), and it
is flawed in the sense that parties involving in delivering
projects are rational and narrowly self-interested actors.
The alliance partner with bounded rationality faces a social
preference that considerably affects people’s utility func-
tions (Luttmer, 2005), under which people make the
decision of effort or capital to control and manage risks.
According to studies in behavioral economics, people

not only are concerned about their own payoff, but also
compare with coworker’s payoffs; whether the payoff
distributions are fair will affect people’s behavior (Rey-
Biel, 2008). In other words, economic agents have a
social preference for fairness and resistance to incidental
inequalities (Rohde, 2010), the so-called “inequity aver-
sion (IA)”. This phenomenon has been demonstrated by
many experiments such as ultimatum games (Forsythe
et al., 1994), gift-exchange games (Clark et al., 2010), and
trust games (Nicholas, 2012). Furthermore, the existence
of IA is proven to constrain profit-seeking (Kahneman
et al., 1986). Consequently, IA is necessary to be recog-
nized when designing risk allocation strategy. However, no
studies on project risk allocation based on modeling
partners’ IA have been published. Until recently, Meng
et al. (2019) used an agent-based model using competitive
and social preference to optimize the timeline negotiation.
In this case, this paper focuses on alliance infrastructure
projects where the alliance partner’s decision/behavior is
not undertaken rationally but rather in a bounded rational
way. This paper mainly focuses on the relationship
between alliance leader (AL) and AM, but it has
applicability to other relationships. This IA-based risk
allocation model aims to bridge the research gap between
traditional risk management theory and modern behavior
theory.

2 Literature review

2.1 Studies on social preference

Social preference in previous studies can be classified into
two categories: Distributive and reciprocal ones. Distribu-
tive preferences mean that people care about the final
distribution, which are related to consequences and
outcomes (Konow, 2001). Reciprocal preferences mean
that people reward or punish others according to the
consequences (Croson and Konow, 2009). This research

mainly focuses on the output of risk allocation; therefore,
the distributive preference models are considered. To
describe people’s IA, fair process and social preference
(FS) model and equity, reciprocity, and competition (ERC)
model are developed. According to the FS model (Fehr and
Schmidt, 1999), people’s IA is based on the payoff gap
between himself/herself and everyone else. Different from
the FS model, the ERC model (Bolton and Ockenfels,
2000) proposed that people feel inequity by comparing the
average income of all partners. However, the AL shares
different types of risks with different AMs, and the AL
needs to design a risk allocation strategy for each member
in the alliance project. The risks shared between the AL
and different AMs are heterogeneous. Thus, no average
level of risk-sharing ratio is used in this study. Therefore,
owing to its prominence and simplicity, the FS model is
used in this paper to show the reduced form of IA, and the
concrete description of the model is provided in the
following sections.

2.2 Studies on risk allocation

The extant research on project risk allocation has been
mainly concerned with three subjects, namely, allocation
principle, affecting factor, and allocation method/model.
As for risk allocation principles, ex-ante allocating ratios
and listing each risk resources are mainstreams in the
field (Karim, 2011; Chan et al., 2018; Jin et al., 2019).
Abednego and Ogunlana (2006) and Chen and Hubbard
(2012) inclined to identify the definition of “appropriate”
risk allocation and the relationship among stakeholders.
Risk control capability, agents’ risk aversion, risk revenue,
and cost-benefit calculation are usually treated as the
affecting factors for allocating project risks (Chou and
Pramudawardhani, 2015; Osei-Kyei and Chan, 2015;
Kakati and Baruah, 2016). Risk allocation method/model
in the construction and project management literature can
be classified into two categories: Qualitative and quanti-
tative (Khazaeni et al., 2012). Qualitative risk allocation
methods contribute to the development of the risk
allocation matrix deciding which party is best for taking
responsibility for specific risk. Quantitative methods are
developed to solve quantitative problems like how much
percentage of risk is allocated to each party (Nasirzadeh
et al., 2014). Kate and Patil (2020) proposed an expected
monetary value method (EVM) for risk allocation, and the
model was empirically validated in power transmission
line projects. Similarly, Ameyaw and Chan (2016) and
Shan et al. (2018), respectively, applied the fuzzy-set
approach and artificial neural network (ANN) as an
integral and separately into risk allocating/analyzing
model using empirical evidence. Nasirzadeh et al. (2014)
presented an integrated fuzzy-system dynamics approach
to examine the relationship between project cost and risk-
sharing ratio. Using concepts from principal-agent theory,
Chang (2014) presented a risk allocation model based on
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contract incentive theory and pointed out the significant
effect of incentives on a contractor’s efficiency improve-
ment potential for risk management.
In summary, recent studies have identified various

factors that would affect the allocation of different risks
between the project owner and contractor. The contractor’s
internal risk allocation mechanism was not considered,
especially in mega infrastructure projects where the
contractor usually is a coalition or an alliance consisted
of different corporations. Moreover, the economic agents’
bounded rationality (e.g., IA), which directly affects the
risk management strategy, is not considered.
Therefore, this research aims to (1) investigate the

optimal risk allocation strategy for AL under AM’s
different types of IA, (2) revise the effect of individual
rationality (IR) level on the optimal risk-sharing ratio and
risk-management effort, (3) identify how IR level affects
utilities of AL and AM, and (4) select the allocation rules
that are most suitable and beneficial for delivering alliance
infrastructure projects. By voiding some risk allocation
proposal that is able to induce alliance to poor perfor-
mance, the optimal risk allocation model presented in this
study improves ex-ante welfare. By integrating the FS
model, this research attempts to derive a more realistic
model of the optimal risk allocation between AM and AL.
The derivation is based on solving optimization problems
using Stackelberg game theory that provides an appro-
priate basis for solving the leader and followers sequential
model.

3 Proposed risk allocation model

Fast-tracking is one of the most common project accelera-
tion techniques for alliance infrastructure projects (Balles-
teros-Pérez, 2017; Rasul et al., 2019). Under this
circumstance, design, procurement, and construction can
be overlapped to shorten the project timeline (Pishdad-
Bozorgi et al., 2016). The AL assigns the work to the
member, usually along with negotiations on timeline,
benefit, and risk. The AM’s working effort always depends
on the negotiation clauses and their behavioral bias. This

problem is a typical leader–follower problem in game
theory research, especially the Stackelberg game, and the
authors therefore performed the following models.
In this section, a risk allocation model between one

leader corporation and one member corporation will be
introduced in the context of alliance contracting. Notably,
any corporation’s decision (or behavior) depends on its
maximum utility. In this case, the main tasks of building a
risk allocation model are to analyze factors affecting
agent’s payoff and then to construct reasonable utility
functions. The flowchart of the proposed model can be
seen in Fig. 1. At the beginning of the construction period,
the AL offers a risk allocation proposal to AM through the
choice of risk-sharing ratio q. Under this allocation
structure, the AM then will decide on the best risk control
effort according to the utility function. Notably, the
economic agent’s IA is considered in modeling AM’s
utility.

3.1 Model formulation with no consideration of IA

The authors assume that the leader corporation in an
infrastructure alliance is solely responsible for the decision
of risk allocation, whereas the AMs determine their effort
on risk management. The interactions between AL and
AM represent a Stackelberg game with the sequence of
events as given in (A1)–(A3).
(A1) AL determines and announces the ratio q that will

share the risk which exists during AM’s construction
period.
(A2) AM determines the effort level e on risk manage-

ment, and different effort levels lead to different invest-
ments and methods in controlling risk.
(A3) The construction period starts and the outcome of

risk handling π is observed.
Here, AL’s decision rests on maximizing the utility

function, and AL also needs to consider AM’s benefit, that
is, AM’s optimal effort toward the risk allocation proposal.
Thus, the risk allocation between AL and AM is a
constrained optimization problem. According to previous
research on mathematical optimization methods, backward
induction is recommended as the main solution to solve for

Fig. 1 Flowchart of risk allocation model.
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the equilibrium decisions (Chu and You, 2014; Du et al.,
2014; Xue et al., 2014). The solving process is as follows:
(1) find AM’s optimal effort ê when achieving the
maximum expected utility and (2) substitute ê into AL’s
utility function and then solve optimal risk-sharing ratio by
maximizing AL’s expected utility.
After the risk-sharing perceptions of each party are put

on, AM then selects an effort level e of risk management to
meet the construction requirements. The selection of risk
management efforts is AM’s strategy to cope with AL’s
risk allocation proposal. During the construction period,
the member corporation needs to deal with many different
subtasks. Although AM will probably take different efforts
on risk management to deal with these subtasks, the effort
level e can still be applied in this study because the authors
consider e as an overall evaluation of AM’s efforts on the
entire project. In addition, AM needs to pay χðeÞ for the
risk management effort, and the utility function can be seen
(McAfee and McMillan, 1986; Laffont and Marimort,
2001):

χðeÞ ¼ 1

2
me2, (1)

where mmeasures AM’s cost on exerting efforts to control
risk.
Referring to the output function commonly used in

principal agent theory (Laffont and Marimort, 2001), the
authors assume that the output of risk allocation, denoted
as π, is a linear function of AM’s effort level that is
embodied in monetary units:

π ¼ eþ ε, (2)

where ε is the random exogenous variable following a
standard normal distribution, ε�N(0, σ2). Here, ε stands
for information asymmetry between AL and AM that
cannot be ignored in alliance contracting (Owen and
Yawson, 2013).
Theoretically, the precise information of an agent’s

effort cannot be observed by other parties (Bamberg et al.,
1987). Thus, AL cannot easily objectively monitor AM’s
effort level of risk management. However, AM is obligated
to inform AL about the final settlement. Therefore, π is an
observable value to AL. According to agent theory, to
stimulate agent’s effort, the owner needs to provide an
adjustable contract (Laffont and Marimort, 2001). Thus,
AL offers an incentive contract/negotiation (because the
relationship type between AL and AM is diverse, formal
and informal patterns are applied in practice) with a
controllable parameter to AM.
Equation (3) proposed by Scherer (1964) and Chang

(2014) describes the payment structure in the incentive
contract/negotiation offered by the AL. Under this
structure, AM receives payment P depending on a fixed-
target fee and the sharing of cost overruns. The fixed
construction fee Ф offered from AL is not involved with π,

and it does not only rely on the average cost for the specific
type of risk in the construction industry. Furthermore, the
risk-sharing ratio q is the moderate variable that represents
AL’s risk allocation strategy. If q = 0, then AL does not
want to share AM’s construction risk. Then, the payment
structure is similar to a fixed-price contract. By contrast, if
q = 1, the leader corporation in the alliance will be
responsible for all of the risks incurred on the project
delivery.

P ¼ Φþ qðπ –ΦÞ: (3)

AL’s purpose of risk sharing is to incentive AM’s effort
for risk control. According to Carvalho and Rabechini
Junior (2015), the output of high-quality risk management
is beneficial to achieve project success, in terms of
decreasing factors such as cost overrun. In this case, the
output of risk allocation can be seen as AL’s payoff.
Therefore, the gain of AL can be calculated as Eq. (2), and
AL’s pain is calculated as Eq. (3), then combining Eqs. (2)
and (3) can obtain the utility function of AL (UAL):

UAL ¼ π –P ¼ ð1 – qÞðπ –ΦÞ: (4)

In previous studies, the risk preference of the contractor
is not defined clearly, and different studies start with
different hypotheses. Early scholars considered the con-
tractor’s risk preference uncertain (Clark Brown, 1986;
1987). In some studies later, the contractor is supposed to
have a concave utility function reflecting loathing to risk
taking, also known as risk aversion (Chapman and Ward,
1994; Tseng and Yeh, 2014; Xu and Wang, 2014). By
contrast, some other researches posited that the contractor
has a neutral attitude toward project risk (Chiles and
McMackin, 1996; Laux, 2001; Hosseinian and Carmi-
chael, 2013b). The main purpose of this research is to
revise the effect of an agent’s IA on risk allocation. In this
case, the authors assume that AL and AM are risk-neutral
in the proposed model for better focusing on the main
topic. According to the expected utility hypothesis,

EALðqÞ ¼ ð1 – qÞ½EðπÞ –Φ� ¼ ð1 – qÞðe –ΦÞ, (5)

where EALðqÞ is AL’s expected utility arising from risk
sharing with AM. Similarly, combining Eqs. (1) and (3),
the utility function of AM (UAM) can be seen in Eq. (6):

UAM ¼ P – χðeÞ ¼ Φþ q π –Φð Þ – 1
2
me2: (6)

AM’s expected utility arising from risk allocation, EAMðeÞ,
can be elicited as:

EAMðeÞ ¼ Φþ qðe –ΦÞ – 1
2
me2: (7)

As mentioned previously, when AL pursues the
maximum utility, a constraint arises that AM also obtains
the maximum utility, also known as the incentive
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compatibility (IC) constraint. In the traditional restrained
optimization research, another constraint arises, namely,
the individual rationality (IR) constraint, which needs to be
solved. However, once an alliance contract is signed, any
of the partners involved in this contract generally does not
quit this alliance unless this corporation wants to undertake
the penalty. Thus, the authors assume AM will accept any
risk-sharing ratio proposed by AL.

Max
q, e

ð1 – qÞðe –ΦÞ, (8a)

s:t:        e 2 argmax Φþ qðe –ΦÞ – 1
2
me2

� �
: (8b)

Equation (8a) stands for maximizing AL’s expected utility,
and Eq. (8b) is AM’s IC constraint. Equations (8a) and (8b)
constitute the risk allocation model with no consideration
of IA.
Appendix I derives the solution to this constrained

maximization problem. AL’s optimal risk-sharing ratio is:

q̂ ¼ mΦþ 1

2
, (9)

and AM’s best effort level to control risk is:

ê ¼ mΦþ 1

2m
: (10)

Substituting Eqs. (9) and (10) into Eq. (5) can obtain AL’s
max expected utility under this situation:

EALðq̂Þ ¼ 1 – q̂ð Þ ê –Φð Þ ¼ ð1 –mΦÞ2
4m

: (11)

Similarly, the expected utility of AM can be elicited:

EAMðêÞ ¼
1þ 6mΦ – 3m2Φ2

8m
: (12)

3.2 Model formulation with consideration of IA

Previous research on IA indicates an agent’s expected
utility decreases with the widening gulf between his/her
payoff and others (Ho and Zhang, 2008; Rey-Biel, 2008;
Croson and Konow, 2009; Rohde, 2010). Therefore, the
authors describe an agent’s fairness concerns by intro-
ducing an outcome gap to his/her utility function. As
previously mentioned, Fehr and Schmidt (1999)’s IA
model (FS model henceforth) is used here as the basis of
the introduced model. According to the FS model, the
agent’s overall utility is composed of two parts. The first
part is the agent’s direct payoff, the other part is fairness
disutility. When two subjects are involved in the game, the
FS model can be modified to:

Vi ¼ Ui – δimax½ðUj –UiÞ, 0� – γimax½ðUi –UjÞ, 0�, (13)

where i is a particular subject while j is the compared
subject; Vi is the overall utility of i; and Ui is direct payoff
of i while Uj is direct payoff of j. Notably, the second and
third terms in Eq. (13) represent two patterns of fairness
disutility, namely, envy and guilt disutility (Rey-Biel,
2008). Subject i’s envious preference index di takes effect
in calculating the overall utility when Uj>Ui. By contrast,
the guilty preference index γi takes effect when Uj<Ui.
Consequently, the expressions of δimax½ðUj –UiÞ, 0� and
γimax½ðUi –UjÞ, 0�measure the utility loss from disadvan-
tageous inequity and advantageous inequity, respectively
(Ho and Zhang, 2008; Rey-Biel, 2008; Katok and Pavlov,
2013).
Notably, the leader corporation usually undertakes the

main construction part when delivering the infrastructure
project. In other words, AL occupies a sizeable proportion
in the general contract (also known as the D&C contract in
Australia and D&B contract in other countries). In this
situation, the AL benefits most from project success
compared with other alliance partners. Thus, the main task
of AL is to make sure all of the AMs’work is on budget, on
schedule, and on quality, that is, AL puts more concern on
risk control and management for the entire project than
AMs. Therefore, the payoff from risk allocation is not on
the priority list for AL to achieve. With this in mind, the
authors assume that AM is IA, whereas AL has no fairness
concerns when designing a risk allocation strategy. The IA-
based utility function of AM can be obtained as follows:

VAM ¼ UAM – δmax½ðUAL –UAMÞ, 0�

– γmax½ðUAM –UALÞ, 0�, (14)

where d is AM’s envy index, and γ is AM’s guilt index.
Envious and guilty preference indexes are psychological
factors, the more of their value represented, the higher
agents think of distributive fairness. The original assump-
tion of the FS model, nevertheless, allows for d> 1, but the
authors assume d 2 [0, 1] to ensure that IA is not dominant
but still has a substantial effect on the optimal risk
allocation model, because the authors believe AM cares
more about their direct payoff than about inequity in
practice. As for the guilty preference index, the authors use
Rey-Biel (2008)’s assumption of γ 2 [0, 1/2).
Considering the two conditions whether Uj>Ui or

Uj<Ui, this research therefore needs to rebuild risk
allocation models according to different scenarios. These
scenarios represent different types of IA.
Scenario I: Envious preference taking effect
When AM’s utility is less than AL’s utility (UAM<

UAL), envious preference takes effect on AM’s final
expected utility and leads to utility loss. Substituting
Eqs. (4) and (6) into Eq. (14) can obtain AM’s new utility
function under Scenario I:
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V 1
AM ¼ UAM – δðUAL –UAMÞ

¼ –
1

2
mð1þ δÞe2 þ ðq – δþ 2qδÞðeþ εÞ

þ ð1 – qþ 2δ – 2qδÞΦ: (15)

Due to risk neutrality, AM’s expected utility under envious
preference, E1

AMðeÞ, can be described as:

E1
AMðeÞ ¼ –

1

2
mð1þ δÞe2 þ ðq – δþ 2qδÞe

þ ð1 – qþ 2δ – 2qδÞΦ: (16)

In addition, the expression of AL’s expected utility under
envious preference, E1

ALðqÞ, remains as Eq. (5). Ultimately,
the IA-based risk allocation model under Scenario I can be
expressed as follows:

Max
q, e

ð1 – qÞðe –ΦÞ, (17a)

s:t:      e 2 argmax½E1
AMðeÞ�: (17b)

Backward induction is still used to find the optimal risk
allocation solutions, and the solving process can be found
in Appendix II. AL’s optimal risk-sharing ratio under
Scenario I is:

q̂1 ¼
1þ mΦþ ð3þ mΦÞδ

2ð1þ 2δÞ : (18)

Under this risk-sharing ratio, the optimal risk-management
effort level for AM is:

ê1 ¼
mΦþ 1

2m
: (19)

With the optimal risk-sharing ratio and risk-management
effort level, AL’s expected utility can be calculated as:

E1
ALðq̂1Þ ¼ 1 – q̂1ð Þ ê1 –Φð Þ ¼ ð1þ δÞð1 –mΦÞ2

4mð1þ 2δÞ , (20)

while AM’s expected utility is seen in Eq. (21):

E1
AMðê1Þ ¼

ð1þ δÞð1þ 6mΦ – 3m2Φ2Þ
8m

: (21)

Scenario II: Guilty preference taking effect
When AM finds that the utility is more than AL’s utility

(UAM>UAL), guilty preference affects AM’s final
expected utility and leads to utility loss.

V 2
AM ¼ UAM – γðUAM –UALÞ

¼ –
1

2
mð1 – γÞe2 þ ðqþ γ – 2qγÞðeþ εÞ

þ ð1 – q – 2γþ 2qγÞΦ: (22)

Equation (22) expresses the new form of AM’s utility
affected by guilty preference. Here, the expected utility for
AM and AL can be obtained as shown in Eqs. (23) and
(24):

E2
AMðeÞ ¼ –

1

2
mð1 – γÞe2 þ ðqþ γ – 2qγÞe

þ ð1 – q – 2γþ 2qγÞΦ, (23)

E2
ALðqÞ ¼ ð1 – qÞðe –ΦÞ: (24)

Then, the new risk allocation model under Scenario II can
be rebuilt as follows:

Max
q, e

ð1 – qÞðe –ΦÞ, (25a)

s:t:      e 2 argmax½E2
AMðeÞ�: (25b)

Similar to the former section, AL’s optimal risk-sharing
ratio q̂2 and AM’s optimal risk-management effort level ê2
can be acquired. The proof can be found in Appendix III.

q̂2 ¼
1þ mΦ – ð3þ mΦÞγ

2ð1 – 2γÞ , (26)

ê2 ¼
mΦþ 1

2m
: (27)

With the optimal solution of risk allocation, AL’s expected
utility can be calculated as Eq. (28):

E2
ALðq̂2Þ ¼ 1 – q̂2ð Þ ê2 –Φð Þ ¼ ð1 – γÞð1 –mΦÞ2

4mð1 – 2γÞ , (28)

while AM’s expected utility is seen in Eq. (29):

E2
AMðê2Þ ¼

ð1 – γÞð1þ 6mΦ – 3m2Φ2Þ
8m

: (29)

4 Discussion

The above theoretical development shows that the optimal
risk allocation for the alliance contracting is affected by an
agent’s IA. The effect of IA level on the optimal risk
allocation ratio can be seen in Fig. 2. As AM forms a more
envious preference, it prefers AL to share a higher rate of
risk. Conversely, as AM forms a more guilty preference, it
prefers AL to share a lower rate of risk. The proof is shown
in Appendix IV and leads to the following proposition.
Proposition 1a: The optimal risk-sharing allocation to

the leader corporation increases when the member’s level
of envious preference increases.
Proposition 1b: The optimal risk-sharing allocation to

the leader corporation decreases when the member’s level
of guilty preference increases.

Xiang DING et al. Optimal risk allocation in alliance infrastructure projects 331



Comparing Eqs. (19) and (27) with Eq. (10), the optimal
effort level for AM to control risk remains steady in any IA
situation. According to Eq. (10), the value of AM’s effort
level is decided by two parameters: m and Ф. Here, m
measures the relationship between AM’s cost and risk-
management effort, in other words, m reflects the
corporation’s risk management capability. Ф is fixed by
the average level of this specific type of risk. Thus, Ф
represents the level of risk that AM needs to handle,
leading to the following proposition.
Proposition 2: The AM’s IA does not affect the optimal

effort to control risk. By contrast, AM’s effort relies on
AM’s risk management capability and risk level.
The main reason to explain why the AM’s effort stays

unchangeable is that AL’s risk allocation decision is on the
basis of maximizing AM’s utility and therefore to stimulate
AM exerting the maximum level of effort on controlling
risk. In general, Propositions 1 and 2 manifest that AL can
modify the risk-sharing ratio to adjust the IA situation and
maintain AM at the same level of effort when IA affecting
AM’s risk management decision.
The analyses on expected utility in former sections

indicate that IA also affects the best-expected utility of AL.

Letting
ð1 –mΦÞ2

4m
as a constantUc, the effect of IA level on

AL’s utility can be seen in Fig. 3. When AM prefers to
become more envious, the maximum expected utility that

AL can acquire decreases. By contrast, the guiltier that AM
becomes, the higher the expected utility that AL can
obtain. The proof is seen in Appendix V and leads to the
following propositions.
Proposition 3a: An alliance with an envious preferred

member (the IA level of envious preference above 0) leads
to AL expected utility decrease.
Proposition 3b: An alliance with a guilty preferred

member (the IA level of guilty preference above 0) leads to
AL expected utility increase.
Comparing Eqs. (21) and (29) with Eq. (12), the

expected utility of AM is obviously in a linear relation
with IA level. Under Scenario I, E1

AM ê1Þ ¼ ð1þ δÞEAMðêÞð
means the function of AM’s expected utility is mono-
tonically increasing. By contrast, E2

AM ê2Þ ¼ ð1 – γÞ�ð
EAMðêÞ means the function of AM’s expected utility is
monotonically decreasing under Scenario II. This decrease
leads to the following propositions.
Proposition 4a: In the situation of envious preference

taking effect, the expected utility of AM increases when
AM’s IA level increases.
Proposition 4b: In the situation of guilty preference

taking effect, the expected utility of AM decreases when
AM’s IA level increases.
The propositions imply that with inequity averse agents,

the utilities of AL and AM are interdependent. Thus, risk
allocation needs to be more carefully designed. In
particular, as the Stackelberg leader in the model, AL
needs to seriously consider discovering different member’s
IA type and level to decide an optimal risk allocation rate
leading to the maximum output of risk management.

Fig. 2 Optimal risk-sharing ratio of AL vs. IA level under
different scenarios (Notes: “Normal” in the picture stands for the
scenario without considering IA. According to Appendix IV, the
authors let mФ = 0.5 to simulate the optimal risk-sharing ratio
under different scenarios).

Fig. 3 AL’s expected utility vs. IA level under different
scenarios (Note: “Normal” in the picture stands for the scenario
without considering IA).
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5 Conclusions

Perceived fair allocation and sharing of risks among alliance
partners is critical to the delivery performance of infra-
structure projects (Love et al., 2014; Lomoro et al., 2020).
Allocation of risks involves assigning various types of risks
(e.g., requirement risk, technology risk, and performance
risk) to the alliance partners. This paper focuses on sharing
specific risks between partners (e.g., in case of cost overrun,
the share of each partner on the extra costs).
Practically, whether decision-makings of optimizing

project risk allocation are scientific and reasonable relies
on negotiations among alliance partners. The literature on
risk sharing had a high focus on the utility and ignored
irrational behaviors such as social preference. FS model
has been used to model an alliance partner’s expected
utility while considering the effect of the partner’s inequity
aversion. Moreover, according to the two types of social
preference, this research establishes two scenarios to
analyze the effect of IA on the risk allocation model.
Then, the outcomes of adapted models are compared with
the utility maximization model without considering IA.
Using Stackelberg game theory, the optimal risk-sharing
ratio is derived by identifying the value corresponding to
the maximum utility of the adapted model.
The simulation results showed that the agent’s IA was a

vital factor in alliance risk–benefit negotiations. However,
the results depend on different scenarios. Specifically, the
AM’s expected utility increases with the IA level when
envious preference takes effect. Simultaneously, the AL’s
utility decreases with AM’s IA level. Under this circum-
stance, the AL needs to use a high risk-sharing ratio to
facilitate the member’s working effort. For practitioners, this
finding inclines that ALs can find a balance between the
working requirements and AM’s envious preference. ALs
should increase their focus on members who perform high
levels of requirements and adapt different incentives to keep
these members’ envious preference at low levels. By
contrast, the AM’s expected utility decreases with the IA
level when guilty preference takes effect. In this condition,
the AL can allocate more risk-sharing ratio to AM. At
practice, the two types of social preferences can be converted
to each other to a certain extent. Thus, AL cannot increase
AM’s risk-sharing ratio continuously and needs to validate
the statement of AM’s social preference. Generally, the
optimal risk-sharing ratio is highly related to alliance
partner’s IA and its preference category. The findings
suggest that ALs should focus on the IA levels of AMs,
and adjusting risk-sharing ratio accordingly will result in
optimal efforts of alliance partners in dealing with the risks.
The findings of this research will be of interest to academics
and practitioners involved in designing alliance negotiations.
Some limitations of this paper lead to several directions

for future research. First, this study is conducted in the
setting of a bi-vitiate relationship between ALs and AMs.

As a result, the findings of this study ignore the effects of
other alliance partners. However, in practice, alliance
partners are likely to compare their shares of risk and
utilities with other partners to form perceptions of fairness
of the risk-sharing arrangements. Due to ignoring the
existence of other project partners, the approach taken by
this study can be further improved. Second, this study
assumed that AL and AM were risk-neutral. This
assumption helps in focusing on the effect of IA of the
alliance partners. Future studies could consider modeling
risk aversion for alliance partners. Such an undertaking
will require substantial effort in reformulating the utility
functions. Finally, the findings need to be validated in
alliance projects empirically.
Overall, the authors of this paper hoped to spark a new

line of research to explore the optimal risk arrangements on
the basis of cognizing agent’s behavior, which can
eventually lead to interdisciplinary studies of traditional
project management theory and modern behavior science
in an institutional level.

Appendix

I Derivation of the optimal risk-allocation ratio with
no consideration of IA

Differentiating Eq. (7) with respect to e yields:

∂EAMðeÞ
∂e

¼ q –me ¼ 0: (A1)

Simplifying Eq. (A1), the IC constraint can be replaced by:

e ¼ q

m
: (A2)

Substitute Eq. (A2) into Eq. (5):

EALðqÞ ¼ –
q2

m
þ Φþ 1

m

� �
q –Φ: (A3)

Differentiating Eq. (A3) with respect to q yields:

∂EALðqÞ
∂q

¼ –
2q

m
þ Φþ 1

m

� �
¼ 0: (A4)

Simplifying Eq. (A4) can obtain the optimal risk-allocation
ratio as seen in Eq. (9). In this case, AM’s effort level can
be obtained by substituting Eq. (9) into Eq. (A2).

II Derivation of the optimal risk-allocation ratio under
Scenario I

Differentiating Eq. (16) with respect to e yields:
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∂E1
AMðeÞ
∂e

¼ –mð1þ δÞeþ q – δþ 2qδ ¼ 0: (A5)

Simplifying Eq. (A5), the new IC constraint under
Scenario I can be obtained:

e1 ¼
q – δþ 2qδ
mð1þ δÞ : (A6)

Substitute Eq. (A6) into E1
ALðqÞ:

E1
ALðqÞ ¼

ð1 – qÞðq – δþ 2qδÞ
mð1þ δÞ – ð1 – qÞΦ, (A7)

then differentiate Eq. (A7) with respect to q:

∂E1
ALðqÞ
∂q

¼ –
2ð1þ 2δÞ
mð1þ δÞ qþ 3δþ 1

mð1þ δÞ þ Φ: (A8)

Yielding Eq. (A8) to 0, the optimal risk-allocation ratio
can be obtained as seen in Eq. (18). Substituting Eq. (18)
to Eq. (A6) can acquire AM’s best effort level under
Scenario I.

III Derivation of the optimal risk-allocation ratio under
Scenario II

Differentiating Eq. (23) with respect to e yields:

∂E2
AMðeÞ
∂e

¼ –mð1 – γÞeþ qþ γ – 2qγ ¼ 0: (A9)

Simplifying Eq. (A9), the new IC constraint under
Scenario II can be obtained:

e2 ¼
qþ γ – 2qγ
mð1 – γÞ : (A10)

Substitute Eq. (A10) into Eq. (24):

E2
ALðqÞ ¼

ð1 – qÞðqþ γ – 2qγÞ
mð1 – γÞ – ð1 – qÞΦ, (A11)

then differentiate Eq. (A11) with respect to q:

∂E2
ALðqÞ
∂q

¼ –
2ð1 – 2γÞ
mð1 – γÞ qþ 1 – 3γ

mð1 – γÞ þ Φ: (A12)

Yielding Eq. (A12) to 0, the optimal risk-allocation ratio
can be obtained as seen in Eq. (26). Substituting Eq. (26) to
Eq. (A10) can acquire AM’s best effort level under
Scenario II.

IV Proof for Propositions 1a and 1b

Differentiating Eq. (18) with respect to d:

∂q̂1
∂δ

¼ ð1 –mΦÞ
2ð1þ 2δÞ2 : (A13)

The optimal risk-sharing ratio for AL when no social

preference exists is q̂ ¼ mΦþ 1

2
and q̂ 2 ½0, 1�, then

mФ£1 can be deduced. Consequently,
∂q̂1
∂δ

³ 0 can be

obtained, suggesting that the function of optimal risk-
sharing ratio under Scenario I is monotonically increasing
with respect to the level of envious preference d.

This result supports Proposition 1a. Similarly,
∂q̂2
∂γ

¼
mΦ – 1

2ð1 – 2γÞ2 £ 0 can be found, and it implies the function of

optimal risk-allocation ratio under Scenario II is mono-
tonically decreasing with respect to γ, then Proposition 1b
can be obtained.

V Proof for Propositions 3a and 3b

Differentiating Eq. (20) with respect to d:

∂E1
AL q̂1ð Þ
∂δ

¼ ð1 –mΦÞ2
4m

δ – 1

ð1þ δÞ2 : (A14)

Given that (1 –mФ)2> 0, 4m> 0, (1+ d)2> 0 and d 2
[0, 1], E1

AL q̂1Þð can be found to be an increasing function of
d. Moreover, d = 0 means that no IA is present, and
Eq. (11) equals Eq. (20). Thus, when AM has a level of
envious preference (d> 0), the maximum utility AL can
obtain in this situation is consistently less than in the
situation in which no IA exists, supporting Proposition 3a.
Similarly, differentiating Eq. (28) with respect to γ can find
E2
AL q̂2Þð as a decreasing function. Therefore, when AM has

a level of guilty preference (γ> 0), the maximum utility
AL can obtain in this situation is always more than in
the situation where no IA exists. This finding supports
Proposition 3b.
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