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Abstract The field of engineering management usually
involves evaluation issues, such as program selection, team
performance evaluation, technology selection, and supplier
evaluation. The traditional self-evaluation data envelop-
ment analysis (DEA) method usually exaggerates the
effects of several inputs or outputs of the evaluated
decision-making unit (DMU), resulting in unrealistic
results. To address this problem, scholars have proposed
the cross-efficiency evaluation (CREE) method. Compared
with the DEA method, CREE can rank DMUs more
completely by using reasonable weights. With the
extensive application of this technique, several problems,
such as non-unique weights and non-Pareto optimal
results, have arisen in CREE methods. Therefore, the
improvement of CREE has attracted the attention of many
scholars. This paper reviews the theory and applications of
CREE, including the non-uniqueness problem, the aggre-
gation of cross-efficiency data, and applications in
engineering management. It also discusses the directions
for future research on CREE.

Keywords cross-efficiency evaluation, efficiency,
secondary goal model, aggregation, review*

1 Introduction

Engineering management is a discipline that applies
managerial principles to teams, projects, programs, and
technologies to add value to the current operations of
technology-based organizations (Chang, 2008). With the
development of disciplines, engineering management
continues to be adjusted, and new concepts are being
defined. Therefore, a completely accurate definition of
engineering management is impossible to provide. More-
over, different areas of the world have different definitions
of “engineering management” (Lannes, 2001). In the field
of engineering management, homogeneous decision-mak-
ing units (DMUs), such as team performance (Brannick
et al., 1997), technology (Talluri and Paul Yoon, 2000),
project management (Li and Lei, 2007), organizational
operational efficiency (Andersen and Petersen, 1993; Sun
et al., 2013), and environmental performance (Xu and Li,
2012), are often necessary to evaluate and rank. For the
evaluation of DMUs, various methods have been proposed
(Zopounidis and Doumpos, 2002; Sun et al., 2017b).
Among these methods, data envelopment analysis (DEA)
has been attracting increasing attention from scholars
(Cook and Seiford, 2009; Lim et al., 2014). DEA provides
evaluation results through a linear programming method
but does not use subjective factors in weight setting and
hence, produces acceptable evaluation results (Charnes
et al., 1978; Sun et al., 2017c). In a set of comparable
DMUs, DEA can identify the best-performing DMUs and
form an effective frontier. Furthermore, DEA can measure
the efficiency levels of nonfrontier units and determine
benchmarks against which such inefficient units can be
compared (Cook and Seiford, 2009).
Although widely used in performance evaluation, DEA

has some deficiencies (Wu et al., 2011b). For example,
DEA cannot distinguish efficient DMUs sufficiently
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because all efficient DMUs receive the same perfect score
(Sun et al., 2013). In addition, the weights used to calculate
efficiency scores are usually beneficial to the evaluated
DMU, i.e., the weights may be extremely unrealistic,
resulting in a false impression of DMU efficiency (Dyson
and Thanassoulis, 1988; Wong and Beasley, 1990). To
address these problems, scholars have proposed various
extended DEA models, of which the cross-efficiency
evaluation (CREE) method is the most popular. Based on
traditional DEA, CREE was first proposed by Sexton et al.
(1986). Unlike the traditional self-evaluation mechanism
in DEA, CREE combines self- and peer-evaluation
mechanisms (Anderson et al., 2002). CREE can not only
distinguish DMUs sufficiently (Boussofiane et al., 1991)
but also create a fair evaluation atmosphere. In CREE
evaluation, if all DMUs jointly evaluate a particular DMU
as the most efficient, then it truly is the best-performing
DMU. With these advantages, CREE has been applied to
performance evaluation and resource allocation in the
fields of environment (Chen et al., 2017), manufacturing
(Shang and Sueyoshi, 1995), supply chain (Yu et al.,
2010), Olympics (Wu et al., 2009b), and transportation and
logistics (Cui and Li, 2015).
As the variety of CREE applications widens, several

problems have emerged. For instance, the weights of
CREE are obtained using traditional DEA, but the latter
may have multiple weight solutions; this condition leads to

cross-efficiency scores (CESs) being non-unique in general
(Doyle and Green, 1994; Wu et al., 2012a), a problem
labeled as the non-uniqueness of weights. Moreover, the
traditional CREE method uses an arithmetic average
method to aggregate all CESs, meaning that the final
results are not Pareto optimal and they may not be accepted
by all decision-makers (Despotis, 2002). To solve the two
main problems, scholars have made various improvements
to CREE and proposed extended models. Figure 1 shows
the number of papers related to CREE published annually,
revealing that it has been attracting increasing attention
from scholars. Table 1 presents the top 10 authors,
journals, and institutions, respectively, which have pub-
lished most papers on CREE. The table indicates that most
of the papers about CREE were published in journals for
the fields of production operations, operations research,
and industrial engineering.
The main objective of this study is to review CREE in

theory and practice. On the theoretical side, this paper
reviews the non-uniqueness of CREE weights and the
aggregation of CESs. On the practical side, this paper
reviews the application of CREE in the field of engineering
management and covers such areas as environment,
transportation, manufacturing, and supply chains.
The remainder of this paper is organized as follows.

Section 2 introduces the traditional CREE and its short-
comings. Section 3 reviews the CREE secondary goal

Fig. 1 Numbers of papers about CREE published annually (data source: Web of Science Core Collection; search topic: cross-efficiency;
categories: management, operations research, and management science).

Table 1 Top 10 authors, journals, and institutions with most published papers about CREE

Authors Journals Institutions

Wu, Jie European Journal of Operational Research Chinese Academy of Sciences, China

Liang, Liang Computers & Industrial Engineering University of Science and Technology of China, China

Wang, Yingming Journal of the Operational Research Society Islamic Azad University, Iran

Ruiz, José L. Expert Systems with Applications Fuzhou University, China

Sun, Jiasen Annals of Operations Research Universidad Miguel Hernández, Spain

Sirvent, Inmaculada International Journal of Production Research City University of Hong Kong, China

Chu, Junfei Journal of Cleaner Production Worcester Polytechnic Institute, USA

Yang, Feng Omega Soochow University, China

Chin, Kwai-Sang RAIRO-Operations Research Hefei University of Technology, China

Zhu, Qingyuan Applied Mathematical Modeling Sultan Qaboos University, Oman

Notes: Source: Web of Science Core Collection; Search topic: Cross-efficiency.
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models, which mainly solve the problem of the non-
uniqueness of weights. Section 4 reviews the aggregation
methods of CESs. Section 5 covers the applications of
CREE. Section 6 presents the conclusions and directions
for future research.

2 Traditional CREE

Assuming nDMUs, each DMUj (j = 1, 2,..., n) consumesm
different resources to produce s different outputs. The
input and output vectors are denoted, respectively, as: Xj =
(x1j, x2j,..., xmj) and Yj = (y1j, y2j,..., ysj). For the evaluated
DMUd (d = 1, 2,..., n), the efficiency score can be obtained
by linear programming with Model (1).

maxEdd ¼
Xs
r¼1

Urdyrd

s:t:
Xm
i¼1

Widxij –
Xs
r¼1

Urdyrj³0, j ¼ 1, 2,:::, n,

Xm
i¼1

Widxid ¼ 1,

Wid³0, i ¼ 1, 2,:::, m,

Urd³0, r ¼ 1, 2,:::, s: (1)

In Model (1), Wid (i = 1, 2,..., m) and Urd (r = 1, 2,..., s)
represent the weights of xij and yrj, respectively. The weight
selection of Model (1) must follow the principle of
maximizing efficiency Edd, i.e., the weights are the most
favorable for DMUd to obtain its maximum efficiency
score. Model (1) is also known as the self-evaluation DEA
model (Charnes et al., 1978). The main disadvantage of
Model (1) is the selection of the most advantageous
weights of each DMU for itself, thereby causing the
efficiency scores of all DMUs to lack comparability (Wu
et al., 2012a; 2016a). Aiming at this problem, Sexton et al.
(1986) proposed a CREE technique based on the multiple
use of Model (1). The main idea of CREE is to use a peer-
evaluation mechanism to eliminate the drawbacks of the
self-evaluation DEA model (Wu et al., 2012b). A set of
optimal weights ðW *

1d ,:::, W
*
md , U

*
1d ,:::, U

*
sdÞ of DMUd is

obtained by solving Model (1). Given the optimal weights
of DMUd, the CES of DMUj can be obtained using the
following equation:

Edj ¼

Xs
r¼1

U *
rdyrj

Xm
i¼1

W *
idxij

, d, j ¼ 1, 2,:::, n: (2)

The CESs of all DMUs can be obtained using Model (1)
and Eq. (2). For DMUj, the efficiency of using CREE is
calculated using the following equation:

Ej ¼
1

n

Xn
d¼1

Edj, j ¼ 1, 2,:::, n: (3)

Three major defects remain in CREE. First, the optimal
weights of Model (1) are unnecessarily unique; conse-
quently, the CES obtained using Eq. (2) may be randomly
generated (Doyle and Green, 1994). Second, the efficiency
obtained using the arithmetic averaging method in Eq. (3)
loses the correlation between the weights and CESs; hence,
decision-makers cannot obtain valuable information to
improve the performance of DMUs (Wu et al., 2012b).
Third, the efficiency scores of DMUs obtained using the
arithmetic averaging method are not Pareto optimal,
making it difficult for several DMUs to accept such
evaluation results (Wu et al., 2016a). To solve these
problems, scholars have proposed many improved models.
The theoretical development of CREE is shown in Fig. 2.
The progress of the research on CREE is reviewed in detail
in the following sections.

3 Secondary goal models of CREE

Aiming at the problem of the non-uniqueness of weights,
many secondary goal models have been proposed. These
models can be divided into benevolent, aggressive, neutral,
weight relaxation, and other strategic models.

3.1 Benevolent and aggressive secondary goal models

Doyle and Green (1994) first proposed solving the problem
of the non-uniqueness of weights by using secondary goal
models, which include the benevolent and aggressive
strategic models. In the benevolent strategic model, the
optimal weights must maintain the self-evaluation effi-
ciency of the evaluated DMUd and maximize the average
efficiency of the other DMUs simultaneously. In the
aggressive strategic model, the optimal weights minimize
the average efficiencies of the other DMUs while
maintaining the self-evaluation efficiency of the evaluated
DMUd. To solve the nonlinear models of Doyle and Green
(1994), Liang et al. (2008a) used slack variables to extend
the benevolent and aggressive secondary goal models, of
which Model (4) is one.

min
Xn
j¼1

δ
0
j

s:t:
Xs
r¼1

Urdyrj –
Xm
i¼1

Widxij þ δ
0
j ¼ 0, j ¼ 1, 2,:::, n,

Jie WU et al. Methods and applications of DEA cross-efficiency: Review and future perspectives 201



Xm
i¼1

Widxid ¼ 1,

Xs
r¼1

Urdyrd ¼ 1 – δ*d ,

Wid , Urd, δ
0
j³0, for all i, r, j: (4)

In Model (4), δ*d is the inefficiency of DMUd, and the
objective function attempts to maximize the efficiencies of
the other DMUs. Liang et al. (2008a) also proposed other
strategic models and discussed their application scenarios.
Wang and Chin (2010a) argued that the desirable target
CES used by Liang et al. (2008a) was unrealistic because
not every DMU could achieve perfect efficiency; hence,
they changed the desired target efficiency from perfect
efficiency to CCR (named after its developer Chames,
Cooper and Rhodes) efficiency. Wu et al. (2016b)
considered CCR efficiency as infeasible for several
DMUs. To obtain feasible target efficiency for each
DMU, Wu et al. (2016b) proposed a target-setting model
to calculate desirable and undesirable CESs that were
achievable. The two target scores were then simulta-
neously introduced into the secondary goal model. The
target-setting model of Wu et al. (2016b) is expressed as:

φmax=min
dj ¼ max=min

Xs
r¼1

Urdyrj

s:t:
Xm
i¼1

Widxij –
Xs
r¼1

Urdyrj³0, j ¼ 1, 2,:::, n,

Xm
i¼1

Widxij ¼ 1,

      E*
dd  
Xm
i¼1

Widxid –
Xs
r¼1

Urdyrd ¼ 0,

Wid, Urd³0, for all i, r: (5)

In Model (5), φmin
dj and φmax

dj are the undesirable and
desirable target CES for DMUj, respectively. A similar
technique was presented by Chen and Wang (2020), who
proposed target-setting methods based on a cross-efficient
and possible reference set to improve the CES of DMUs.
Replacing the traditional maximizations and minimiza-

tions of the average efficiency of other DMUs, Lim
(2012b) used the min/max function as the objective
function and proposed a bisection algorithm for solving a
CREE model.

3.2 Neutral secondary goal models

Wang and Chin (2010b) argued that the evaluated DMUd

should optimize its own weighted input or output without
considering the effects on the efficiencies of the other
DMUs, in contrast to the benevolent and aggressive
models. Hence, they proposed a neutral secondary goal
model to maximize each weighted output of the evaluated
DMUd. Subsequently, Wang et al. (2011a) extended this
model, aiming to maximize each weighted input and
output simultaneously. Ramón et al. (2010b) extended the
slack elimination DEA model of Ramón et al. (2010a) into
CREE and proposed a neutral secondary goal model that
prevent inefficient DMUs from using unrealistic weights.
Ramón et al. (2011) further proposed a peer-restricted
CREE model to narrow the differences among weights and
eliminate zero weights. Wang et al. (2011b) introduced a
virtual DMU into the CREE model and proposed a series
of secondary goal models by expanding or reducing the
gaps between the weighted inputs or outputs of the

Fig. 2 Theoretical development of CREE.
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evaluated DMUd and those of the virtual DMU. A similar
study (Shi et al., 2019) proposed a neutral CREE by
introducing virtual DMUs. To reduce the differences
among weights and eliminate zero weights, Wu et al.
(2012a) proposed the following weight balance model:

min
Xs
r¼1

jldr j þ
Xm
i¼1

jγdi j
! 

s:t:
Xm
i¼1

Widxij –
Xs
r¼1

Urdyrj³0, j ¼ 1, 2,:::, n,

Xm
i¼1

Widxid ¼ 1,

Xs
r¼1

Urdyrd ¼ Edd ,

    Urdyrd þ ldr ¼ Edd=s, r ¼ 1, 2,:::, s,

Widxid þ γdi ¼ 1=m, i ¼ 1, 2,:::, m,

Wid³0, i ¼ 1, 2,:::, m,

Urd³0, r ¼ 1, 2,:::, s: (6)

In Model (6), γdi (ldr ) is used to reduce the large
differences among the weighted inputs (outputs) of DMUd.
Specifically, Model (6) is designed to equate each weighted
input to 1/m and each weighted output to Edd/s as much as
possible. To reduce the number of zero weights, Wu et al.
(2012a) further proposed a weight restriction model, and a
similar model can also be found in Wang et al. (2012).
The abovementioned models use weighted inputs and

outputs. Several scholars have also proposed efficiency-
neutral secondary target models. For example, Liang et al.
(2008a) proposed a slack-based secondary goal model that
made the CESs of other DMUs close to their averages. Wu
et al. (2016b) adopted the idea that the secondary goal
model should make the CES of each DMU close to a
specific value (e.g., the average of the desirable and
undesirable CES targets).

3.3 Weight relaxation secondary goal models

The benevolent, aggressive, and neutral models all follow
a rule that the evaluated DMUd uses only a set of weights
to obtain its self-evaluation efficiency and the CESs of
other DMUs. However, several scholars have relaxed this
rule and proposed a series of extended CREE models. For
example, Ramón et al. (2014) proposed two models for
obtaining all the possible weights of DMUs to avoid the

choice between benevolent and aggressive strategies. A
similar idea is presented in Yang et al. (2012). Liang et al.
(2008b) introduced game theory into CREE and proposed
a game CREE model, in which DMUs are regarded as
players in a non-cooperative game and each DMU can
evaluate the other DMUs by using a different set of
weights. The game CREE model of Liang et al. (2008b) is
as follows:

max
Xs
r¼1

Ud
rjyrj

s:t:
Xm
i¼1

Wd
ij xil –

Xs
r¼1

Ud
rjyrl³0, l ¼ 1, 2,:::, n,

Xm
i¼1

Wd
ij xij ¼ 1,

�d
Xm
i¼1

Wd
ij xid –

Xs
r¼1

Ud
rjyrd£0,

Wd
ij , U

d
rj³0, for all i, r: (7)

In Model (7), the efficiency of DMUd cannot be lower
than rd, and the other DMUs strive to maximize their
CESs. Model (7) must be solved repeatedly, and a new
efficiency rd is obtained each time. To solve Model (7),
Liang et al. (2008b) designed an algorithm, proved the
convergence of the algorithm, and verified that the optimal
solution obtained using the algorithm would always be a
Nash equilibrium. This model effectively overcomes the
non-uniqueness problem of weights in the traditional
CREE method, strongly promoting the theory of the CREE
method and extending its application in game scenarios.
Following the work of Liang et al. (2008b), Wu et al.
(2009a) proposed a modified game CREE model to obtain
nonnegative CESs and applied the model to evaluate the
efficiency of countries participating in the Olympics. Wu
et al. (2009e) applied the model of Liang et al. (2008b) to
analyze preference voting, while Wu and Liang (2012)
extended it to multiple-criteria decision-making (MCDM)
and proposed a cross-evaluation MCDM method for
ranking alternatives. Liu et al. (2017a) combined the
ideas of the aggressive CREE and the game CREE of
Liang et al. (2008b), then proposed an aggressive game
CREE model to distinguish among all DMUs. Li et al.
(2018) proposed a balanced CREE model and applied the
iterative procedure of Liang et al. (2008b) to obtain
optimal balanced CESs for DMUs.
To obtain Pareto optimal CESs, Wu et al. (2009d)

integrated the Nash bargaining game into the CREE
method. Efficiency was obtained by bargaining between
CCR efficiency and CES, and the authors concluded that
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the efficiency obtained using the Nash bargaining game
model was Pareto optimal. Wu et al. (2016a) further
proposed a Pareto optimal test model to determine if a CES
was Pareto optimal and a CES Pareto improvement model
to improve CESs that were not Pareto optimal.

3.4 Other strategic models of CREE

In addition to the benevolent, aggressive, neutral, and
weight relaxation models, scholars have also proposed
secondary goal models that use other strategies. For
example, Wu et al. (2009f) proposed an innovative CREE
model to optimize the order of each DMU:

minId ¼
Xn
j¼1

zdj

s:t:
Xs
r¼1

Urdyrj –
Xm
i¼1

Widxij£0, j ¼ 1, 2,:::, n,

Xm
i¼1

Widxid ¼ 1,

Xs
r¼1

Urdyrd ¼ Edd,

Xs
r¼1

Urdyrj

Xm
i¼1

Widxij

þ hdj ¼

Xs
r¼1

Urdyrd

Xm
i¼1

Widxid

¼ Edd , j ¼ 1, 2,:::, n,

    0£hdj þMzdj < M þ ε, j ¼ 1, 2,:::, n,

  zdj 2f0, 1g and hdj is free, j ¼ 1, 2,:::, n,

Wid, Urd³0, for all i, r: (8)

In Model (8), the first, second, and third constraints are
to ensure the self-evaluation efficiency of DMUd. In the
fourth constraint, the efficiency of DMUd is compared with
the efficiencies of the other DMUs, and hdj represents the

efficiency deviation between DMUd and DMUj. If h
d
j < 0

(hdj > 0), then the efficiency of DMUd is less (greater) than

that of DMUj. In the fifth and sixth constraints, zdj is a 0–1
variable, which acts as a counter in Model (8),M is a large
positive number, and ε is a non-Archimedean element. If
hdj ³0, then we have zdj ¼ 0; if hdj £0, then we have

zdj ¼ 1. In the objective function, Id represents the total

number of times that zdj ¼ 1 (j = 1, 2,..., n). In accordance
with the objective function and the sixth constraint, the
purpose of Model (8) is to find a set of optimal weights to
let zd*j ¼ 0 as much as possible, i.e., to choose a set of

weights to let hdj < 0 as few times as possible.
In addition to the model of Wu et al. (2009f), a multiple-

criteria CREE model that considered multiple objective
functions was proposed by Örkcü and Bal (2011) to solve
the problem of the non-uniqueness of weights. Lam (2010)
combined discriminant analysis, the super-efficiency DEA
model, and mixed-integer linear programming with the
CREE method to obtain a method that preserved the
classification results of the traditional DEA. Rödder and
Reucher (2011) proposed using the CREE method for
input allocation. Alcaraz et al. (2013) discussed the
problem of the non-uniqueness of weights in CREEs and
proposed a sorting-based CREE program that generated a
sorting range for each DMU and then ranked the DMUs by
comprehensively analyzing the sorting ranges of all the
DMUs. Lin et al. (2016) proposed an iterative CREE
method for determining a unique weight set and reducing
the number of zero weights.
To resolve the problem of negative CESs in the model of

variable returns to scale (VRS), Lim and Zhu (2015)
proposed a CREE method based on a geometric view of
the relationship between the models of VRS and constant
returns to scale. Du et al. (2014) proposed a resource
allocation method based on an iterative CREE method and
proved that this method was always feasible. Lim (2012a)
incorporated CREE into a context-dependent DEA to
overcome the drawbacks of the original context-related
DEA and used an illustrative example to demonstrate the
applicability and usefulness of this context-dependent
CREE model. Ruiz (2013) introduced the direction
distance function into CREE to evaluate the efficiency of
a DMU on the basis of input and output perspectives. To
evaluate the efficiency of a DMU with interval data, Wu
et al. (2013) proposed the interval CREE model and used
the multiattribute method to rank interval CESs. Wu et al.
(2016c) introduced a concept of satisfaction into CREE
models, designed an algorithm to solve them, and
demonstrated that this algorithm could obtain a unique
set of optimal weights for each DMU. Sun et al. (2018c)
proposed an altruism CREE model that no longer
guaranteed the self-evaluation efficiency of DMUs and
allowed the self-evaluation efficiency of each DMU to
change adaptively, thereby increasing the flexibility of the
cross-evaluation process. To consider the attitude toward
risks of the decision-maker, Liu et al. (2019) introduced
prospect theory into CREE and proposed a prospect CREE
model. Kao and Liu (2019) introduced CREE into network
system analysis and proposed network CREE models,
which were applied to practical cases with series and
parallel structures.
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4 Aggregation of CESs

The traditional CREE method uses the arithmetic average
method to aggregate all CESs. However, the efficiency
results obtained using the arithmetic average method lose
the correlation between weights and CESs and are not
Pareto optimal. To overcome the shortcomings, scholars
have recently proposed a series of CES aggregation
methods to replace the arithmetic average method. For
instance, Wu et al. (2009c) regarded each DMU as a player
in a cooperative game, defined the characteristic function
values of the alliance and various sub-allies, and combined
cooperative game theory with the CREE method. Then, the
aggregation weights of each DMU were calculated using
the Shapley values of the players in the cooperative game.
Using the concept of information entropy, Wu et al.
(2011a; 2012b) transformed the CES matrix into an
entropy matrix and proposed an entropy decision model,
which used the obtained weights to aggregate all CESs.
Song et al. (2017) used the benevolent and aggressive
models to calculate two sets of CES matrices for all DMUs,
then the entropy decision model of Wu et al. (2011a) was
applied to aggregate all CESs. Song and Liu (2018)
extended this model with a variance coefficient method.
Zerafat Angiz et al. (2013) proposed a two-step sorting-
based aggregation method. The CES matrix was first
transformed into a ranking order matrix, and a first-order
model was then used to obtain aggregation weights. Wang
and Wang (2013) proposed a least-square deviation
approach to measure the importance index of each CES
and calculate the aggregation weights of all CESs in
accordance with their importance indices. To rank efficient
DMUs, Hong and Jeong (2017) proposed two heuristic
approaches based on the CREE method. Unlike other
CREE methods, these approaches do not use any linear
programming model but can completely rank all DMUs.
The aforementioned methods objectively calculate the

aggregation weights of CESs. Considering the subjective
preferences of decision-makers in the aggregation, Yang
et al. (2013) applied the evidence reasoning method to
aggregate CESs. Yang et al. (2012) combined stochastic
multi-criteria acceptance analysis with CREE and pro-
posed an acceptability index to complete the aggregation
process. Wang and Chin (2011) applied the ordered
weighted averaging (OWA) method to aggregate CESs.
In accordance with the subjective judgments of the
decision-makers, the OWA method can assign different
weights to the self- and peer-efficiencies of each DMU.
Subsequently, Oukil (2019) proposed an improved OWA
CREE aggregation method.
In reality, the input and output data of DMUs may be

uncertain. On the basis of this situation, scholars have
proposed various fuzzy CREE methods. Aiming at the
aggregation problem of interval CES, Wu et al. (2011b;
2013) proposed an improved technique for order of

preference by similarity to ideal solution (TOPSIS). This
proposed TOPSIS method can obtain aggregation weights
through multiattribute decision-making techniques and
calculate the final efficiency of each DMU using the
aggregated weights. Considering the lack of sufficient
discrimination capability of fuzzy DEA, Chen and Wang
(2016) proposed a fuzzy cross-efficiency model and
applied the minimax regret-based method of Wang et al.
(2005) to rank interval efficiency. In the case of interval
output–input data, Jahanshahloo et al. (2011) proposed a
super-efficiency CREE method and applied the TOPSIS
method to identify all alternatives. Liu (2018) used the
aggressive and benevolent models to obtain the interval
CESs of each DMU and applied a signal-to-noise ratio
index to rank all DMUs.

5 Applications

The cross-efficiency method has been applied in engineer-
ing management, which includes the fields of environ-
mental analysis, transportation and logistics, manufactur-
ing industry, and supply chains. This section reviews the
applications of CREE in the four fields.

5.1 Application of CREE in environmental analysis

With the deterioration of the environment, increasing
attention is being paid by scholars to environmental issues
(Sun et al., 2018a; 2018b; 2018c; 2019; Wu et al., 2019a;
2019b; 2020), leading to the frequent use of CREE to
evaluate environmental performance (Sun et al., 2017a).
Sarkis and Weinrach (2001) evaluated government-sup-
ported, environment-friendly waste treatment technologies
by using DEA and CREE methods. The results showed
that previous DEAmethods could be used to evaluate these
technologies, but CREE was more appropriate if managers
wanted to differentiate among technologies. Lu and Lo
(2007) regarded smoke, dust, and sulfur dioxide emissions
as undesirable outputs and used a CREE model to evaluate
the economic and environmental efficiency scores of 31
provinces in China. They found that the coastal areas of
China were superior to the inland areas in terms of
economy and environment. Lee and Farzipoor Saen (2012)
proposed an advanced DEA model based on CREE to
measure the sustainable performance of enterprises. The
results showed that the proposed model could effectively
identify the levels of sustainable development of enter-
prises. Using the concept of CREE, Guo and Wu (2013)
proposed a maximal balance index to evaluate the
environmental efficiency of 32 paper mills. Their empirical
study showed that the proposed index yielded a stable and
unique ranking for all the paper mills. Mahdiloo et al.
(2015) proposed a multi-objective model by incorporating
CREE to evaluate the technical, environmental, and
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ecological efficiency of suppliers at Hyundai Steel
Company. They compared the proposed model with a
traditional eco-efficiency measurement model and con-
cluded that the former could effectively reduce the burden
of calculation. Lo Storto (2016) used a DEA model and a
CREE model to evaluate the eco-efficiency of 116 Italian
provincial capital cities, then used the Shannon entropy
index to aggregate all the efficiencies.
Considering undesirable outputs, Liu et al. (2017b) used

a CREE model to evaluate the ecological efficiency of
thermal power plants in China. They regarded ranking
priority as the secondary goal of CREE to solve the
problem of the non-uniqueness of weights. Geng et al.
(2017) used a traditional DEAmodel and a CREEmodel to
evaluate the environmental efficiency of ethylene produc-
tion in China and found that the CREE model could fully
rank all ethylene plants effectively. Hatami-Marbini et al.
(2017) proposed a fuzzy CREE model to evaluate the eco-
efficiency of a supplier and demonstrated the practicability
of the proposed model by analyzing a case in the
semiconductor industry. Liu et al. (2018) applied the
CREE model to analyze the carbon emission efficiency of
urban agglomerations in China from 2008 to 2015. The
results showed that the carbon emission efficiency of urban
agglomerations in China had not improved considerably.
Zoroofchi et al. (2018) applied three methods, including
CREE, to evaluate the sustainable performance of 15
suppliers of an Iranian soft drink company. The authors
concluded that their models could improve the ability to
identify desirable suppliers.

5.2 Application of CREE in transportation and logistics

Considering the extreme weighting of traditional DEA,
Sarkis (2000) used a CREE approach to evaluate the
operational efficiency of airports in the United States.
However, the author indicated that the average weights of
the cross-efficiency approach could not measure the
importance of each input or output. Sarkis and Talluri
(2004) applied the aggressive CREE method to assess the
operational efficiency of 44 major airports in the United
States. Barros (2006) applied a CREE method and other
DEA models to assess the performances of Italian seaports
and obtained empirical results showing that Italian seaports
exhibited relatively high efficiency. Lin and Tseng (2007)
used CREE and other DEA methods to analyze the
operational efficiency of the main container ports in the
Asia-Pacific region and identify the trends in port
efficiency. They also discussed the effects of various
inputs and outputs on port efficiency. Wu et al. (2009g)
proposed an improved CREE method to analyze the
efficiency of 28 container ports in 12 countries in Asia and
concluded that the overall economy of a country had a
remarkable effect on port efficiency performance. Wu et al.
(2010) used the CREE method to evaluate the performance
of 77 container ports worldwide and demonstrated that the

CREE method could provide a unique ordering for all the
container ports. Wu and Goh (2010) compared the
operational efficiencies of ports in emerging and advanced
markets by using the DEA and CREE approaches. Their
empirical studies showed that no port in an advanced
market would be an ideal role model in this field. Rezaee
et al. (2016) proposed a game CREE approach for
assessing the operational efficiency of transportation
systems and demonstrated that their approach could
distinguish among transportation systems effectively.

5.3 Application of CREE in the manufacturing industry

With its complete ranking capability, the CREE technique
has been extensively used for performance evaluation in
the manufacturing industry. This application of CREE
includes the evaluation of flexible manufacturing systems
(Shang and Sueyoshi, 1995), the selection of industrial
robots (Baker and Talluri, 1997; Braglia and Petroni, 1999;
Sun et al., 2017b), the justification of advanced manu-
facturing technologies (Talluri and Paul Yoon, 2000), labor
allocation in a cellular manufacturing system (Ertay and
Ruan, 2005), the performance evaluation of fabless
enterprises (Chu et al., 2008), and the efficiency evaluation
of industrial systems (Wang and Chin, 2011).
Scholars have also combined CREE with other methods

to analyze manufacturing performance. Sun (2002)
employed the aggressive CREE method and “false positive
index” proposed by Baker and Talluri (1997) to evaluate
and rank computer numerical control machines in
accordance with their system specifications and costs.
Tan et al. (2017) combined the CREE model and the
balanced scorecard method to evaluate the service
performance of the automobile industry.

5.4 Application of CREE in supply chains

Yu et al. (2010) used the CREE method to estimate the
efficiency of a supply chain in an information-sharing
scenario. To classify inventory from multiple attributes,
Chen (2011) proposed applying CREE to multi-criteria
inventory classification and concluded that the CREE
method could aggregate each item from the most and least
advantageous attributes. Park et al. (2014) suggested a
CREE-based weighted linear optimization method for the
fine classification of inventory items and also compared
other methods with the proposed method through
simulation.
CREE has also been used for supplier selection.

Considering the competition among suppliers, Ma et al.
(2014) used the game CREE method of Liang et al.
(2008b) to evaluate supplier performance. Their
case studies showed that the method of Liang et al.
(2008b) could obtain unique and Pareto optimal
efficiency for suppliers. Noorizadeh et al. (2013) applied
the CREE method to supplier selection while handling
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nondiscretionary inputs. To consider the undesirable
output of a supplier, Zoroufchi et al. (2012) proposed a
comprehensive method based on CREE and slack-based
measure models. The results showed that this method
could effectively identify the best suppliers. Dotoli et al.
(2016) combined CREE and the Monte Carlo method to
formulate a supplier selection method under uncertain
conditions, which could help decision-makers select
suitable partners when the input and output data are
uncertain. Hatami-Marbini et al. (2017) proposed a CREE
method and an algorithm for product-based sustainable
supplier selection and used a case in the semiconductor
industry to demonstrate the applicability of this method
and the effectiveness of the algorithm.

6 Conclusions and research prospects

DEA is an excellent tool for evaluation in various fields,
especially in engineering management. However, the
classical DEA model cannot distinguish among DMUs
that are efficient, making it generally impossible to be used
directly in obtaining a full ranking of DMUs. The CREE
method can effectively avoid the shortcomings of the
classical DEA method by integrating two mechanisms:
Self- and peer-evaluation. The final efficiency of each
DMU is determined by the optimal weights chosen not
only by itself but also by the other DMUs. Thus, the
unrealistic weight problem in the classical DEA method
can be solved, and all DMUs can be ranked sufficiently.
In terms of theory, much progress has been made in

CREE techniques. In terms of applications, the CREE
method has also been widely used, particularly in the field
of engineering management. Nevertheless, some challen-
ges and key problems should be solved by future CREE
research. First, scholars have proposed many strategic
secondary goal models to solve the problem of the non-
uniqueness of weights. However, engineering management
practitioners often encounter various evaluation standards,
such as project scheme selection, risk identification, and
human resource management. No accepted standard for
determining which strategy model should be used for a
particular scenario is available, which often confuses
decision-makers who must select a model. In future
research, scholars should classify the various evaluation
problems of engineering management and list the applica-
tion scenarios of the models in accordance with the
characteristics of the CREE methods.
Second, in reality, competition and cooperation often

exist simultaneously among DMUs. For example, compe-
titors may establish research and development (R&D)
partnerships for the acquisition and integration of external
knowledge to maximize their benefits (Enberg, 2012).
Most of the existing game CREE methods assume that all
DMUs are either cooperative or competitive. The simple
competition or cooperative CREE methods obviously

cannot be used directly in situations in which cooperation
and competition exist simultaneously. In future research, a
statistical analysis method, such as the cluster analysis
method, can be used first to identify cooperative or
competitive relationships among DMUs. Then, the coo-
petition CREE is used to evaluate the performance of these
DMUs. The multi-objective planning method can also be
introduced into CREE to characterize the cooperative or
competitive relationship between the evaluated DMUd and
other DMUs. Therefore, studying how to expand the game
CREE model by integrating a statistical analysis method or
the multi-objective planning method to solve complex
game problems is valuable.
Third, in the field of manufacturing or engineering,

decision-makers often need to focus on productivity
changes in different periods from a dynamic perspective.
For example, the adjustment of a certain input (e.g.,
transmission line) of an electric power enterprise would
affect the efficiency of not only the current period but also
the next period (von Geymueller, 2009). The existing
CREE methods are based on static perspectives, and
minimal attention has been paid to research on dynamic
CREE. In a dynamic environment, the traditional static
CREE methods have difficulty providing decision-makers
with high-quality decision-making information. To mea-
sure dynamic performance, scholars have proposed the
Malmquist productivity index (MPI) (Färe et al., 1994).
Nonetheless, the existing self-assessment MPI may over-
estimate the efficiency, resulting in the miscalculation of
productivity changes (Ding et al., 2019). Thus, studying
how to combine the MPI with CREE to deal with real
dynamic production is a worthy focus in the future.
Fourth, in the fields of engineering and manufacturing,

several large enterprises, such as petroleum enterprises,
often have subsystems or subenterprises (Song et al.,
2015). The production processes of such enterprises are
considerably complex. Multiple processes that are difficult
to measure using traditional methods should be evaluated
to improve efficiency. Accordingly, many network DEA
methods have been proposed, but they encounter the
problem of having neither unique nor realistic weights. In
future research, the network DEA model could be
combined with CREE techniques. This network CREE
model could not only overcome the shortcomings of the
traditional network DEA model, but also provide scientific
and reasonable results for the performance evaluation and
improvement of network systems.
Fifth, resource allocation issues are often involved in

production or manufacturing activities. For example, a
manufacturing factory needs to plan carefully how to
allocate resources to each plant to achieve optimal
production (Yu and Hu, 2014). For resource allocation,
special attention should be paid to possible conflicts that
involve related production activities that compete for
limited resources. Although game CREE effectively
combines game and DEA methods, most of these models
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can be used only for efficiency evaluation. Hence, a
necessary and interesting direction for future research is
the use of the game CREE method for resource allocation
in complex situations involving such conflicts.
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