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Abstract Industrial intelligence is a core technology in
the upgrading of the production processes and manage-
ment modes of traditional industries. Motivated by the
major development strategies and needs of industrial
intellectualization in China, this study presents an
innovative fusion structure that encompasses the theore-
tical foundation and technological innovation of data
analytics and optimization, as well as their application to
smart industrial engineering. First, this study describes a
general methodology for the fusion of data analytics and
optimization. Then, it identifies some data analytics and
system optimization technologies to handle key issues in
smart manufacturing. Finally, it provides a four-level
framework for smart industry based on the theoretical and
technological research on the fusion of data analytics and
optimization. The framework uses data analytics to
perceive and analyze industrial production and logistics
processes. It also demonstrates the intelligent capability of
planning, scheduling, operation optimization, and optimal
control. Data analytics and system optimization tech-
nologies are employed in the four-level framework to
overcome some critical issues commonly faced by
manufacturing, resources and materials, energy, and
logistics systems, such as high energy consumption, high
costs, low energy efficiency, low resource utilization, and
serious environmental pollution. The fusion of data
analytics and optimization allows enterprises to enhance
the prediction and control of unknown areas and discover
hidden knowledge to improve decision-making efficiency.
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Therefore, industrial intelligence has great importance in
China’s industrial upgrading and transformation into a true
industrial power.
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1 Background

Industrial intelligence is a core technology that enhances
the global competitiveness of China’s industrial sector and
brings about significant changes in the production
processes and management modes of traditional industries.
The increased integration of manufacturing processes and
operation management systems transforms and upgrades
traditional industries, making them highly efficient,
refined, and environmentally friendly. Therefore, industrial
intelligence has great importance in China’s industrial
upgrading and transformation into a true industrial
power.

The steel industry is a typical example of highly
polluting industries that consume a large amount of
resources and energy. The steel industry in China, a
major steel producer, faces dual pressure. First, traditional
steel enterprises need to transform and upgrade for
strategic development. Second, new steel enterprises
need to pursue a sustainable development path. Therefore,
the industry must conserve energy and reduce emissions
through the intelligent transformation and upgrading of
production modes to achieve environment-friendly manu-
facturing. Reducing energy consumption, improving
product quality, and enhancing competitiveness are the
most practical ways to achieve this goal. Given the
physical essence of the dynamic operation processes in
manufacturing and the demands of the physical system,
intelligent steel plants should be constructed by integrating
the structural optimization of manufacturing processes and
digital information systems (Yin, 2017). Yin (2016)
explored the physical essence of the dynamic operations
in metallurgical processes, proposed a theoretical frame-
work for establishing new-generation steel manufacturing
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processes and described the concept, theory, and method of
a dynamic and precise design for steel plants. Smart
industry involves the integration of machines, resources,
products, and humans by maximizing the use of informa-
tion, communication, and optimization techniques based
on the analytics of industrial big data (Shao, 2017).

The application of production management in the steel
industry has attracted global attention in recent years. The
main focus has been on the research and development of
integrated production management systems. Many
researchers have conducted in-depth studies on the theory
and practice of production management in the steel
industry and achieved remarkable results. Tang et al.
(2001) reviewed key planning and scheduling problems
and solution methods for integrated steel production. Tang
et al. (2002b; 2012a; 2014a; 2014b; 2016a) defined two
modes of production, namely, serial-batch production
(processing jobs on the machine in sequence) and
parallel-batch production (processing jobs simultaneously
on the same machine). Moreover, Tang and Zhao (2008)
proposed a semi-continuous batch-scheduling model for
typical batch production scheduling problems in the
industry.

Tang et al. (2014a) studied an integrated charge batching
and casting width selection problem in the steelmaking and
continuous casting production process and employed
optimization technologies to make batching decisions
that improve the production efficiency of steelmaking.
Tang et al. (2014b) focused on the dynamic scheduling
problem of steelmaking and continuous casting production
and proposed an improved differential evolution algorithm
with an incremental mechanism to solve it. Tang et al.
(2002b) studied scheduling problems in steelmaking to
ensure the continuous, smooth, and timely execution of
production processes. The problem was successfully
solved by a hybrid algorithm based on Lagrange relaxation
and dynamic programming.

Yasuda et al. (1984) studied planning and scheduling in
the hot-rolling production process to determine coil
sequence and assignment to orders. They adopted a two-
stage method to solve the planning and scheduling
problem. In the first stage, a rough schedule was generated
according to the change in characteristics (e.g., thickness,
width, and heating temperature) between adjacent rolls. In
the second stage, the coils were allocated to orders based
on a rough scheduling solution. Lopez et al. (1998) and
Fang and Tsai (1998) solved the hot-rolling scheduling
problem using a tabu search algorithm and a genetic
algorithm, respectively.

Regarding the cold-rolling stage, Tang et al. (2016a)
studied the coil batching problem of batch annealing
operations considering energy utilization. A branch-and-
price-and-cut algorithm and a tabu search algorithm were
proposed to obtain the optimal and near-optimal solutions,
respectively. Sahay and Kapur (2007) proposed a mathe-
matical programming model for continuous annealing

process scheduling based on the heat transfer and
annealing dynamics of the production process. An
optimization algorithm was used to solve the model and
determine a schedule to improve the production efficiency
of the continuous annealing furnace. Sahay and Krishnan
(2007) established a mathematical model based on the
characteristics of continuous annealing, which predicted
the changing trends in the temperature and hardness of the
steel coil in an annealing furnace, and proposed an
algorithm to increase productivity. Valls Verdejo et al.
(2009) developed a mathematical programming model for
production scheduling problems in a continuous galvaniz-
ing production line and designed a tabu search algorithm to
identify feasible solutions. Tang et al. (2012a) studied a
coil sequencing problem in steel color-coating production.
A tabu search-based algorithm with composite neighbor-
hoods was proposed to obtain quickly the near-optimal
solution.

Regarding the logistics scheduling, Tang et al. (2002a)
studied the slab shuffling problem when steel-rolling
schedules were implemented. The problem was formulated
as an integer programming model. Then, a modified
generic algorithm with tailored generic operators was
proposed to solve the problem. Tang et al. (2012b) studied
item shuffling problems that arise in the logistics system of
steel production. They formulated the problem as a linear
integer programming model with additional sets of valid
inequalities, and proposed polynomial time algorithms for
special cases and a greedy heuristic for general cases. Tang
et al. (2015b) studied the integrated scheduling of loading
and transportation in steelmaking, which is characterized
by separated tractors and semitrailers. Tang et al. (2015c¢)
formulated the stowage problem as a mixed integer
programming model. They derived five valid inequalities
for the model and developed a tabu search algorithm. Tang
et al. (2019) studied the integrated production and delivery
scheduling problem. Some effective algorithms were
proposed for online and offline problems.

Researchers have studied similar management problems
for other industries. Brunaud and Grossmann (2017)
studied multilevel decision-making problems in the
process industry. Tang et al. (2015a; 2016b) investigated
the reshuffling and stacking problems for a terminal yard in
a logistics system. Tang and Che (2013) investigated the
generation scheduling under a CO, emission reduction
policy in the energy industry.

The management issues in steel production are usually
large-scale combinatorial optimization problems. The steel
production process consists of multiple stages, each
containing multiple parallel production lines. Moreover,
consecutive production stages are logistically linked.
Therefore, the whole production process forms a large-
scale crossover network. In previous research, problems
were normally solved through modeling and optimization
methods under specific assumptions. These assumptions,
together with subjective settings of the model parameters,
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inaccurate relationships between inputs and outputs, and a
lack of feedback in the whole process, result in deviations
from the practical production situation. Data analytics can
further explore the potential optimization capacity for
production management in steel enterprises. Introducing
data analytics can transform production management
issues into dynamic system models with feedback through
the whole optimization process, thus improving the
efficiency and effectiveness of production management.

Following two industrial revolutions, modern industry
realized mechanical and electrical automation. In recent
years, the rise of computers and the Internet, as well as the
development of operations research and management, has
promoted operations management optimization. Moreover,
scholars and industrial practitioners have begun an in-
depth exploration of data and intellectual resources with
the development of artificial intelligence (e.g., big data,
data analytics, and machine learning). Therefore, applying
operations research and artificial intelligence to tradition-
ally dominant industries, such as manufacturing, resources
and materials, energy, and logistics systems, is critical in
implementing smart and environment-friendly strategies
for industry development in China.

2 Innovative fusion structure of data
analytics and optimization in smart
industry

Operations research is the application of scientific and
especially mathematical methods to optimize the decision-
making process in the system. Artificial intelligence
endows the system with intellectual analytical abilities,
such as reasoning, discovering rules, and learning from
experience. System optimization is employed in operations
research and data analytics in artificial intelligence, mainly
in the industrial process. In this study, an innovative fusion
structure of data analytics and optimization for smart
industry is proposed. In the structure, data analytics and
optimization are combined to improve further the intelli-
gent capability of industries. On the one hand, the fusion of
data analytics and optimization demonstrates the utiliza-
tion of existing optimization methods to open further the
“black box” in industries and improve the prediction and
control of unknown areas. On the other hand, it reveals the
potential of data analytics methods to discover hidden
knowledge and thus improve decision-making efficiency.
Figure 1 illustrates the fusion structure of data analytics
and optimization for smart industry adopted in this study.
The central circle demonstrates the fusion of data analytics
and optimization (DAO), which is the core of the whole
research. The first ring around the central circle presents
the general fusion methodology of data analytics and
optimization. The second ring presents key technologies
based on the general fusion methodology, including
intelligent perception (e.g., understanding and description

of the industrial process), intelligent discovery (e.g.,
production condition diagnosis and production quality
prediction), optimal execution (e.g., process optimization
and optimal control), and optimal decision-making (e.g.,
whole-process production and inventory planning and
production/logistics batching and scheduling). The last
ring indicates the application of the methodology and
technology to manufacturing, resources and materials,
energy, and logistics systems to improve the industrial
intellectualization level and refine environment-friendly
manufacturing.

3 General fusion methodology of data
analytics and optimization in smart industry

This section describes the methodology for the fusion of
data analytics and optimization for smart industry.
Specifically, system optimization is combined with data
analytics along the following lines. 1) A fusion modeling
method is proposed to describe the complicated industrial
system. System optimization is used to model mathema-
tically the identifiable and quantifiable parts of the
industrial production process. Meanwhile, data analytics
supplements the mathematical model by constructing the
parts that are difficult to model and forming the parameters
of the model. 2) An analytics-based efficient system
optimization method is proposed to make optimal
decisions for engineering management and execution
issues. In the analytics-based method, the landscape of
the solution space can be obtained by dynamically
analyzing the search process of the system optimization
method. The landscape of the solution space can be used to
guide search direction and route, significantly improving
the optimization efficiency. 3) An optimization-based
high-precision data analytics method is proposed to
discover the rules implied in the complicated industrial
systems and lay the foundation for effective decision-
making to address large-scale engineering optimization
problems. Accordingly, the system optimization method is
adopted to improve the accuracy of data analytics. In
summary, the fusion methodology strongly supports the
accurate description of industrial systems, precise analytics
for complicated processes, and efficient optimization for
decision-making. Some examples of the integration of
system optimization methods and data analytics methods
are illustrated in Fig. 2.

3.1 Fusion modeling method

This study proposes the fusion of data analytics and
optimization to overcome the limitations of traditional
mathematical modeling. Decision-makers can scientifi-
cally measure, diagnose, and forecast anticipated
conditions and objects by applying data analytics to
resources, energy, logistics, equipment, and quality data of
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Fig. 1 Fusion structure of data analytics and optimization for smart industry.

production and logistics operations. Data analytics is then
combined with system optimization to establish the fusion
model. The fusion modeling method should consider the
following three cases.

3.1.1
model

Fusion modeling method for the parts that are hard to

Considering the complexity, dynamics, and uncertainty of
industrial production processes, expressing the manage-

ment objectives or production restraints by mathematical
formulations is often difficult. Data analytics is employed
to handle the parts that are hard to model. The functional
relationship between management objectives and decision
variables and among production restraints can be obtained
from historical production data. The fusion of data
analytics and optimization can effectively reduce the gap
between the established model and the objective system
and thus lay the foundation for the optimization of
complex industrial production processes.
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3.1.2 Fusion modeling method for the parameters that are
hard to set

When the industrial system is expressed as a mathematical
model, the relationships among multi-objectives, process
arguments, and constraint coefficients are represented by
parameters. Parameters are usually configured by personal
experience, simulations, and statistical methods. However,
in most cases, the regular methods can hardly reflect the
objective reality accurately because of the complexity of
the industrial system. Therefore, data analytics is used to
determine the model parameters. The input and output
relationships in the mathematical model are used as the
input for the machine learning method. Then, parameter
values for the mathematical model are obtained, and the
self-learning of model parameters is realized for complex
industry systems through data analytics.

3.1.3 Fusion modeling method for dynamic models

Complex industrial systems are often characterized by
dynamics and uncertainty. Process constraints and man-
agement requirements change with the production condi-
tions, leading to changes in parameters and optimization
objectives. Existing modeling methods are static and need
to be manually adjusted offline when the production
conditions change. Thus, they cannot satisfy the real-time
requirements of industrial systems. Therefore, system
optimization is combined with data analytics according
to time-varying production conditions. Through learning,
prediction, feedback, and adjustment, an online adjustment
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method with a closed-loop feedback structure is proposed.
The model parameters are adaptively modified, and the
optimization schemes are re-adjusted and re-optimized.

3.2 Analytics-based efficient system optimization method

Considering that industrial production is a large-scale,
multi-objective, dynamic, and nonlinear process, the
efficient system optimization methods combined with
data analytics are proposed. Through data analytics
methods, such as machine learning and reinforcement
learning, the search process of the system optimization
method is dynamically analyzed, and the structural features
of the optimization space and the influence of the search
direction on the objective are revealed. Then, the landscape
of optimization space can be outlined, which contributes to
reducing the solution space and learning the search
direction. Introducing data analytics into system optimiza-
tion methods can significantly improve optimization
efficiency and thus provide an effective optimization
solution for large-scale, practical, and complex engineer-
ing management problems. Four types of analytics-based
system optimization methods are listed in the following.

3.2.1 Integer optimization method based on data analytics
Traditional integer optimization methods can generate
optimal solutions for small- and middle-sized problems.
However, the solution process of the integer optimization
method can be seen as a “black box”. Problem character-
istics and objective rules in the solution process cannot be
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identified, resulting in large computational costs, long
solution time, and a limited scale of solvable instances.
Thus, integer optimization cannot be applied to solve
large-scale industrial problems. Considering the above
limitations, data analytics is introduced into the integer
optimization method. By intelligently analyzing the
iterative process of the algorithm, the structural features
of the decision space and the distribution rules of the
optimal solution are learned. Accordingly, iterative para-
meters and the optimization direction of the algorithm can
be adaptively selected to significantly increase the
optimization capabilities of the algorithm. The integer
optimization method combined with data analytics can
solve practical industrial problems efficiently.

3.2.2 Convex and sparse optimization method based on
data analytics

Given the mechanism complexity of industrial production
processes, accurately establishing or solving the convex
optimization model is often difficult. Therefore, common
convex and sparse optimization methods are hardly
employed in industrial practice. By introducing data
analytics into convex optimization, feedback analytics is
carried out on the actual data in the production process to
update and improve the convex optimization model
dynamically. Moreover, the historical data in the optimiza-
tion solution process is fully utilized to obtain the rules and
properties of the problem or algorithm, thus speeding up
the solution process.

3.2.3 Multi-objective intelligent optimization method based
on data analytics

The optimization of complex industrial production pro-
cesses, which is essentially a nonlinear multi-objective
optimization problem, usually includes multiple conflict-
ing objectives. To solve this problem, most studies on
multi-objective evolutionary algorithms have focused on
the design of evolutionary strategies and evolutionary
operators and the adaptive selection of parameters while
ignoring the analytics and utilization of intermediate
information generated during the iterative process of
evolutionary algorithms. To exploit and utilize such
information fully, a multi-objective optimization algorithm
based on data analytics is proposed. The algorithm first
dynamically estimates and constructs the shape of the
Pareto front of the optimization problem by analyzing
the intermediate solutions obtained in the evolution
process using data analytics. The decomposition tech-
nology is integrated on this basis. The scatter vector is
dynamically adjusted according to the constructed shape of
the Pareto front to be able to evenly distribute the
decomposition vector across the front. Finally, the evenly
distributed decomposition vector improves the search

dispersion and efficiency of the multi-objective evolu-
tionary algorithm, ensuring that the distribution of new
population is close to the real Pareto front. In summary,
the method aims to outline the landscape of the solution
space through data analytics and uses the obtained
information about the solution space to guide the
optimization process. The proposed method can be used
to obtain high-quality solutions for complex multi-
objective industrial problems.

3.2.4 Dynamic programming method based on data
analytics

Dynamic programming (DP) transforms the multi-stage
decision process into a series of sub-problems and uses the
sequential relationships between such small problems to
obtain the optimal solution to the original problem. With
the increase in problem size, the number of state variables
and the computational complexity of DP increase
exponentially, resulting in “the curse of dimensionality”,
which limits the capability of DP. To solve this problem,
expectations can be introduced in each stage to approx-
imate the utility function and improved with robust
optimization or data-driven methods. Another alternative
is to design an approximate function to estimate the future
impact of current decisions or control strategies in the DP
equations for them to meet the Bellman optimality
principle. The final optimal decision is obtained via
iterative approaching. This method is called approximate
dynamic programming (ADP). The design of the approx-
imate and evaluation functions directly affects the
performance of the ADP algorithm. Describing the future
impact (reward) of different decisions is equivalent to a
“black box” or random problem. Data analytics methods
can be used to learn problem mechanisms and character-
istics via a large amount of historical data. The obtained
relationship between reward and decision forms closed-
loop feedback for algorithm improvement.

3.3 Optimization-based high-precision analytics method

For complex industrial systems, data analytics methods,
such as machine learning, statistical physics-based learn-
ing, information theory (IT)-based learning, and reinforce-
ment learning, are used to analyze the historical data and
reveal hidden production rules. However, traditional data
analytics methods are usually based on a fixed modeling
framework, making little use of problem characteristics
and system optimization technologies. Thus, over-fitting
and low generalization often occur in practical applica-
tions. To solve this problem, system optimization methods
need to be used to transform the theory and methods of
traditional machine learning, thus improving modeling
accuracy and generalization ability. The system optimiza-
tion method is an important tool for extracting data
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features, detecting outliers, tuning multiple parameters,
and constructing deep adversarial networks to improve the
accuracy of the machine learning model. Some examples
of optimization-based analytics methods are introduced in
the following.

3.3.1 Machine learning method based on multi-objective
optimization

Ensemble learning is an important research field in
machine learning. Traditional methods include AdaBoost,
Bagging, and Random Forest. The limitation of these
methods is that the learning framework is fixed, which may
lead to over-fitting in practical applications. Therefore,
machine learning based on multi-objective optimization
targets at two conflicting objectives, namely, precision and
generalization ability, and uses evolutionary optimization
to construct ensemble learning machines. It can achieve the
multi-objective optimization of the ensemble learning
construction process and the self-adaptive evolution of the
ensemble architecture. The combination of machine
learning with multiple-objective optimization can effec-
tively overcome the limitation of traditional ensemble
learning and provide a new ensemble learning modeling
method that satisfies the precision requirements of the
industrial production process.

3.3.2 Machine learning method based on statistical physics

Data analytics is essentially a physics discovery problem.
Therefore, based on statistical physics, quantum physics,
and thermodynamics theory, and combined with statistics,
convex optimization, and intelligent optimization methods,
we study new learning methods based on physical theories
including the following. 1) Based on the theory of
statistical physics, the correlation is established between
the movement of a large number of microscopic particles
and the characteristics of macroscopic behaviors, corre-
sponding microscopic particles to data, and macroscopic
behaviors to knowledge, and an explainable learning
model with parameters having physical meaning is
constructed. 2) Based on the ground electronic state and
energy in quantum physics theory, quantum potential
energy, electron spin, space position, angular momentum,
and other factors are considered, and quantum space
topology is used to construct an ultra-micro learning model
and characterize the desired macroscopic properties index.
3) Based on the entropy concept of the measurement
system orderliness in thermodynamics, a probability
learning model based on entropy and enthalpy is
established, and the accuracy of the learning model is
improved by analyzing the correlation and evolution
characteristics of micro data and macro thermal phenom-
ena. In the above learning models based on different
physical theories, the effectiveness and robustness of

learning are further improved by using convex optimiza-
tion and intelligent optimization techniques.

3.3.3 Machine learning method based on IT

IT involves discovering effective methods for application
issues in communication systems using basic probability
and mathematical statistics tools. IT provides quite robust
measurements for data sets in the sense of probability
distributions. Such measurements can be used as under-
lying components for new machine learning methods,
showing that an IT-based method helps provide reasonable
learning models. Moreover, knowledge of the “black box”
of optimization algorithms can be precisely measured
according to the IT principle, which is used to reveal the
complex emergence behavior of the search process. IT-
based optimization algorithms can be used to enhance the
solution quality of optimization problems that stem from
the IT-based machine learning method. Therefore, the
accuracy of the method can be significantly improved.

3.3.4 Reinforcement learning-method based on intelligent
optimization

Reinforcement learning is used to optimize system
performance through iterative interactions and the evalua-
tion of environmental feedback. The mapping strategy is
continuously modified from state to action. The key is to
adjust the optimal action under different states through
learning. Traditional reinforcement learning often causes
problems, such as sensitive learning parameters, long
learning processes, and poor convergence. Given the
advantages of self-learning, self-adaptability, and parallel
computing, intelligent optimization is used to optimize the
parameters and determine the search direction for
reinforcement learning to speed up the convergence and
improve the stability of reinforcement learning. Combin-
ing reinforcement learning with intelligent optimization,
the large-scale stochastic dynamic issues in the industrial
production process can be dealt with effectively.

4 Technologies for data analytics and
optimization in smart industry

With the above methodology, several key technologies are
identified to handle analytics and optimization issues in
smart manufacturing, as shown in Fig. 3. In terms of
analytics, certain technologies are employed to understand
the complicated process and sequentially discover
unknown correlations and hidden production rules to
forecast trends and perform backtracking diagnosis. On
this basis, optimization is carried out to improve process
operations and production management to achieve smart
manufacturing capability.
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Fig. 3 Data analytics and optimization are used to handle key issues in smart industry.

4.1 Key technologies for data analytics in smart industry
Some key analytics-related technologies that play an
important role in smart industry are briefly introduced in
the following.

4.1.1 Industrial process understanding technology
Industrial process understanding mainly includes the
recognition of industrial image and video, comprehension
of sound and speech, and visualization of industrial
processes.

Image and video recognition plays an important role in
detecting and monitoring production processes. It is
usually carried out by experienced operators through the
actual observation of images. However, large-scale image
data and complex industrial production environment make
manual image recognition labor-intensive and less accu-
rate. Therefore, research on image and video recognition
based on image processing and deep learning, combined
with industrial practice, is the key to improve the
intellectualization level of quality detection, monitoring,
and fault diagnosis in industrial production processes.

The comprehension of sound and speech helps reveal
and recognize the real-time characteristics of production
lines and equipment by an analysis of sound signals from
the production process. Regressing production data
provide a mathematical expression that is consistent with
the propagation wave of sound signals. Therefore, the
comprehension of sound and speech technology should
involve sound-to-text recognition and production mechan-
ism modeling. First, digital data are converted into sound
data for multi-dimensional monitoring. Then, the sound

data, combined with the collected sound signals, are
analyzed, and the status of the equipment and production
lines is obtained. Finally, the adjustment scheme based on
the resulting status is fed back to the equipment and
production lines in the form of voice data for the audibility
of the production process.

The visualization of the industrial process restores the
dynamic production process to the greatest extent. The
whole production process model, integrated with a three-
dimensional simulation method, is established based on
virtual reality. Then, the established model is performed by
virtual reality devices for process visualization, which is
considered a “black box” (e.g., ironmaking). Moreover, the
process model can be combined with relevant production
parameters collected through monitoring the equipment
status, operator, and environment. Thus, the real-time
monitoring of the production process is allowed through
the linkage analysis of the process model and production
parameters.

4.1.2  Process monitoring and description technology

The monitoring and description of complex industrial
production processes are important to ensure safe produc-
tion, save energy consumption, and reduce emission.
Monitoring and description are used to measure the
production process (e.g., energy and resource consumption
at each production stage). For example, concerning energy
consumption, measurement problems can be divided into
three dimensions, namely, production process, product,
and medium, according to different measurement objects.
The primary task of energy measurement is to analyze and
filter out abnormal data and supplement missing data. In
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the process dimension, the consumption and recovery of
resources and energy in each production process are
statistically calculated, and the unit consumption and
recovery of resources and energy media in each process are
obtained. The product-oriented energy measurement
problem should be studied considering the various product
types in each process, differences in processes and
production lines, and intersection among products. The
consumption and recovery of resources and energy media
per unit output of each product play a vital role in
improving product quality and optimizing resource
allocation, which is determined by the statistical allocation
of resources and energy consumption and the recovery of
each process to products. The production indicators of
different dimensions should be identified to monitor
energy consumption effectively. In addition to process-
and product-oriented energy and resources measurement,
estimating energy and resource consumption based on the
media dimension and generating consumption statistics for
each medium are also important.

4.1.3 Production condition backtracking diagnosis
technology

Given that steel manufacturing processes are complex and
changeable, enterprises often encounter problems in
diagnosing production conditions, which have direct effect
on production efficiency and product quality. Therefore,
the analyses of complex production conditions have
practical significance in improving the safety and relia-
bility of the production process. Although the production
process cannot be accurately modeled because of high
temperatures and pressures, a condition diagnosis model
based on machine learning and statistical learning can be
established. The model construction requires a collection
of substantial production process data and the use of
statistical methods for data cleaning, feature clustering, and
correlation analysis. Thus, current and future production
conditions can be determined, and operators can be guided
toward the optimal scenario.

4.1.4 Product quality prediction technology

Analyzing quality data in the production process involves
recognizing variations in product quality from the
mathematical perspective. It combines the analysis and
induction of the relationship among various parameters in
the production process, environmental indicators, and
product performance indicators. Quality analytics allows
the enterprises to interpret effectively the relationship
between the current state of the production process
(considering the input) and the product performance
index (considering the output). Quality analytics applied
to the production process mainly aims to identify the
influence of product quality parameters, product perfor-

mance indicators, and enterprise benefits in the production
process. The correlation among the production process
analytics from the physical, mathematical, data, and
economic perspectives can be identified. The quality
analytical model of the production process is based on
physical principles and the mathematical relationship
among parameters. Given that actual industrial production
processes are complex and changeable, analytically
describing the material and energy transfer relations
among different processes is difficult. Therefore, the
mechanism is not clear, and the input—output relationship
of the black-box problem cannot be determined. On the
premise of collecting and analyzing big data, a quality
analytics model with a suitable input—output relationship
can be established to identify the influence of the related
factors on product quality and help managers to test
product quality during the production process. Such a
model also enables staff to optimize the follow-up
production process and achieve the goals of reducing
enterprise costs and energy consumption and improving
product quality.

4.2 Key technologies for system optimization in smart
industry

In this section, some key technologies that are used to
handle optimization issues in a steel industry are briefly
introduced.

4.2.1 Whole-process production and inventory planning
technology

The steel industry is characterized by long production
processes, including ironmaking, steelmaking, hot rolling,
and cold rolling, with complex logistics networks, high
temperatures, high energy consumption, high setup costs,
high changeover costs, long production cycles, and high
inventory levels (Fig. 4). The business includes multiple
production and logistics stages. Plant-wide inventory
planning aims to determine stock flows from one
production operation to another, inventory levels, changes
in each item of stock held, and the logistics of parallel
production lines of raw materials, in-process products, and
finished products in multiple production stages. A
scientific and rational determination of plant-wide inven-
tory planning can reduce production and logistics costs,
inventory costs, and energy consumption and improve
resource utilization to optimize the enterprise’s equipment
usage and maximize the overall benefits.

The complex and delicate production process, change-
able production conditions, and unpredictable market
demands in the steel industry make accurately expressing
practical problems using existing mechanisms difficult.
However, with the progress in science and technology,
precise onsite data can easily be acquired and stored. Data
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analytics can effectively extract critical data from a large
volume of incomplete and noisy practical data, thus
obtaining objective information and knowledge. Data
analytics-based plant-wide inventory planning in the steel
industry focuses on plant-wide production and inventory
control, considering all processes (i.e., raw materials,
ironmaking, steelmaking, continuous casting, hot rolling,
cold rolling, and sales) as a whole. Combining the
mechanism model with data analytics helps to establish
an appropriate optimal control model and construct a
reasonable production and inventory control strategy using
convex optimization.

4.2.2  Production/Logistics batching and scheduling
technology

Considering the huge equipment and high set-up costs in
the steel production process, the products must be
produced on equipment in batches to reduce production
costs. However, the products required by customers are
of high variety and low volume. The contradiction between
large-variety requirements and mass production mode

has brought great challenges to production management
(Fig. 5). How to reduce production costs and increase
profits by combining dispersive customer requirements
into batches is the key management problem faced in the
steelmaking, hot rolling, and cold rolling stages in the steel
industry.

Considering the production characteristics of the steel
industry, production/logistics batching and scheduling
refers to the assignment of jobs with identical or similar
characteristics to batches of reasonable size, which are
considered as production objects. The main task is to
determine the composition and size of batches, the
composition and length of campaigns, and the assignment
and schedule of batches (or campaigns) to machines and
devices to ensure product quality, shorten production
cycle, and reduce inventory, production costs, and material
and energy consumption. Most previous production and
logistics batch scheduling problems were solved using
deterministic parameters. For uncertain parameters, the
most common solution method is stochastic optimization.
Given that process parameters are generally difficult to
determine, data analysis is used to estimate the parameters

Whole-process production and inventory planning
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in actual production and logistics operations. Combining
data analytics with an optimization method can help solve
production and logistics batch scheduling problems.

4.2.3 Operation optimization technology for the production
process

According to the production process information, opera-
tion optimization for the production process scientifically
sets the values of production process parameters, such as
flow rate, pressure, and temperature. These values are set
without changing process flow and increasing equipment
to enable the quality, output, and cost of products to satisfy
the expected requirements (Fig. 6). Operation optimization
for production processes can be divided into stable-state
and dynamic optimization problems. For the stable-state
problem, the related information is available, and the
process parameters are relatively stable within a period.
However, for the dynamic problem, the related information
is dynamically available along with the production
process. The parameters of the production process must
be dynamically adjusted to adapt to frequent changes in
production conditions. Operating the industrial production
process is usually an optimization problem with complex
constraints, as well as large-scale, multi-objective, and
dynamic features. Therefore, establishing a precise
mechanism model is difficult. These challenges motivate
researchers to study the modeling and solution method for
operation optimization problems by using data analytics.
A dynamic model related to the time dimension is
established for the industrial production processes. The
state and operational variables in the model are time-
dependent. Mechanism models are developed for explicit
processes, whereas data analysis models are established for
processes with complex and uncertain factors through the
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collection and analysis of massive amount of data.
Dynamic mechanism models have a large number of
differential-algebraic equations. A suitable discretization
method must be chosen for highly accurate solutions.
Dynamic operation optimization identifies a set of time-
dependent operation curves to optimize the performance
index. For example, with the blast furnace, the distribution
process is analyzed from the physics perspective, then the
relationship between the distribution matrix and the radial
distribution of the ore-to-coke ratio is modeled. The radial
distribution of the ore-to-coke ratio is set by optimizing the
distribution matrix through an intelligent optimization
algorithm. Research on the optimization of the production
process is of great importance for product quality
improvement and the reduction of resource and energy
consumption as well as production and operation costs.

4.2.4 Optimal control technology for the production
process

Optimal control produces control policies with optimal
evaluation indexes (energy or costs) based on the
production parameters obtained through operation optimi-
zation. It allows the dynamic production system to be
maintained in the expected state. The basic framework of
optimal control is shown in Fig. 7. Typical research cases
are described in the following.

Steelmaking, for example, is a complex dynamic batch
process for which the mechanism model is difficult to
establish. When converter steelmaking is studied in
practice, the furnace temperature and carbon content in
the steelmaking process are predicted dynamically. On the
premise of sufficient data, the least-squares support vector
machine (LSSVM) is used to establish a dynamic
prediction model, and soft sensing technology is employed

= )
;:. .5' q
e
1 Continuous casting Slab yard

Fig. 6 Operation optimization in the steel industry.
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to predict the above parameters. To achieve the required
error accuracy, the distribution estimation algorithm
optimizes uncertain model parameters, ensuring that the
final predicted value satisfies the production process
requirements. In the dynamic optimization process, an
analytical optimization model is established for the
relevant control variables based on the LSSVM. The
distribution estimation algorithm helps optimize the model
and select the appropriate control strategy.

5 Engineering implementation of data
analytics and optimization technology
in smart industry

Dorf and Bishop (2011) pointed out that engineering is
concerned with understanding and controlling the materi-
als and forces of nature for the benefit of humankind.
Engineering practice depends on science research and
technology innovation. Science research, technology
innovation, and engineering practice generally present a
V-shaped structure in the time dimension, as shown in
Fig. 8. Yesterday’s technology innovation is based on
science research of the day before yesterday and

implemented in today’s engineering practice. In other
words, today’s science research lays the foundation for
tomorrow’s technology innovation and the engineering
practice of the day after tomorrow. Thus, research on the
fusion methods of data analytics and optimization
technology provides a strong basis for future engineering
practice.

A four-level framework for smart industry based on
theoretical and technological research on the fusion of data
analytics and optimization is proposed, as presented in
Sections 3 and 4. Under the four-level framework, data
analytics and optimization technology are employed to
overcome critical issues commonly faced by manufactur-
ing, resources and materials, energy, and logistics systems,
such as high energy consumption, high production costs,
poor production technology, low labor productivity, low
utilization rate of resources, and heavy environmental
pollution.

Figure 9 shows the four levels of the framework,
namely, perception, discovery, execution, and decision-
making. The collected sensory data (i.e., image, speech,
and text) are understood and described at the perception
level. Then, the production process is accurately diag-
nosed, and product quality is predicted at the discovery
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Fig. 7 Optimal control in the steel industry.
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Fig. 9 Four-level framework for data analytics and optimization application in smart industry.

level. Operation optimization and optimal control are
executed accordingly. Finally, the decision-making of
production planning and scheduling is optimized to gain
the capability of smart industry. Perception and discovery
are key to data analytics, whereas execution and decision-
making are key to system optimization. Under this
framework, data analytics supports system optimization,
and system optimization is dynamically adjusted according
to feedback from data analytics. The four levels of
perception, discovery, execution, and decision-making
constitute a closed-loop feedback structure.

Perception level

The perception level is the foundation of smart industry.
Key analytics issues at this level include industrial data
understanding, process monitoring, and description.
Understanding refers to recognizing industrial data (i.e.,
image, speech, and text) and visualizing the black-box
technology by virtual reality. Description refers to
obtaining and analyzing production process, resource,
and energy consumption data; processing abnormal and
missing data; and using data analytics to infer the
resources, energy consumption, and recovery in each
production stage.

Discovery level

The discovery level in smart industry is closely related to
production techniques, equipment, control systems, and
management. Key analytics issues are tackled for produc-

tion process diagnosis, product quality prediction, and
technological knowledge mining. Diagnosis refers to
analyzing the data of each product in each process based
on actual historical production process data; identifying the
production, resource, and energy bottlenecks; and analyz-
ing the basic causes of any failures in each process.
Through the in-depth analytics of the production process,
the technological knowledge behind the historical data can
also be discovered, thus providing support for the levels of
execution and decision-making. Prediction aims to reveal
the quality of products based on the current production
conditions and historical data, thus providing a scientific
basis for enterprise production planning and control
strategies.

Execution level

Key system optimization technologies at the execution
level include operation optimization and optimal control
for the production process. Operation optimization con-
trols the production process according to the mechanism
model or data analytics model, describing the quantitative
relationship between the operating parameters and relevant
economic indices. In other words, operations in the system
are monitored, and reasonable process parameters (e.g.,
flow, pressure, and temperature) are set without changing
the process flow and increasing the production equipment.
The aim is to improve product quality, produce economic
benefits, and optimize the production process. Then,
control policies are optimized according to the production
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parameters obtained by operation optimization to ensure
that the dynamic production process meets the expected
requirements.

Decision-making level

Decision-making for engineering management ranks at
the top in the smart industry ecosystem. Two key
optimization issues (i.e., whole-process production and
inventory planning and production/logistics batching and
scheduling) are identified to transform the production
process and improve the utilization of resources, energy,
and equipment. From raw materials to semi-finished
products to finished products, the whole-process produc-
tion and inventory planning problem is included in
optimally determining the output of each production unit,
the amount flowing between two consecutive operations,
and the inventory. Optimal planning can ensure a balanced
production load, reasonable inventory structure, and
smooth production process. Production/Logistics batching
and scheduling involve grouping customer requirements
into batches consistent with the whole-process production
and inventory plan, allocating the batches to equipment,
and sequencing and timing the processes to realize the
efficient utilization and optimal allocation of resources,
energy, and equipment.

6 Conclusions

This study focuses on how to upgrade the industry through
data analytics and optimization. To achieve this goal, it
proposes an integrated research structure encompassing the
theoretical foundation and technological innovation of data
analytics and optimization and their application to smart
industrial engineering. For the theoretical foundation, this
study proposes a fusion of data analytics and optimization
to overcome the limitation of the traditional single method
and improve optimization efficiency and analysis accuracy.
Key data analytics and optimization technologies are then
identified to realize smart manufacturing. Finally, a four-
level framework for smart industry is illustrated based on
the understanding of smart industry. This study may not
cover all aspects of smart industry, considering the
limitations of the research field. Industrial intellectualiza-
tion is an ever-progressing area.
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