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Abstract Production planning and scheduling are
becoming the core of production management, which
support the decision of a petrochemical company. The
optimization of production planning and scheduling is
attempted by every refinery because it gains additional
profit and stabilizes the daily production. The optimization
problem considered in industry and academic research is of
different levels of realism and complexity, thus increasing
the gap. Operation research with mathematical program-
ming is a conventional approach used to address the
planning and scheduling problem. Additionally, modeling
the processes, objectives, and constraints and developing
the optimization algorithms are significant for industry and
research. This paper introduces the perspective of produc-
tion planning and scheduling from the development
viewpoint.
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1 Introduction
1.1 Perspectives on production planning and scheduling

Production planning and scheduling are essential business
optimization strategies of the refinery and petrochemical
industry. The production process in the petroleum and
petrochemical industry is continuous and of large capacity.
Therefore, the optimal decision is necessary for stable
production and maximum profit of a company. Production
planning generally determines the material purchase, unit
load, and product distribution for a specific time (week,
month, or year) according to the market demand. Mean-
while, production scheduling determines the process
sequence and operation condition according to the material
balance and real-time properties. Although planning and
scheduling are of different time scales, the common
considerations contribute to the close relationship between
the two activities. The leading companies, such as
SINOPEC, BP, Exxon Mobil, and Shell, are taking
considerable effort to optimize their planning and
scheduling to cope with the changes in the market and
environmental policies.

Time and space are two rules that must be observed in
planning and scheduling. For instance, long-term planning
and short-term scheduling, continuous- and discrete-time
planning (scheduling) belong to the scale of time. The
purchasing, producing, selling plan, or the upstream,
midstream, and downstream planning (scheduling) are
under the scale of space. Reaching the overall maximum
profit considering the two scales in plant-wide optimiza-
tion is challenging. Although planning and scheduling are
different business optimization strategies, both aim to
determine the operation for a specific time. Scheduling
considers material balance and safety, usually in a short
time with continuous operation. By contrast, planning
focuses on material price and quality in extended periods
with the discrete operation. Despite these differences,
planning and scheduling problems will eventually be
formulated into some linear programming (LP), nonlinear
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programming (NLP), mixed-integer linear programming
(MILP), or mixed-integer nonlinear programming
(MINLP) problems, which can be solved by the conven-
tional optimization methods. Thus, an optimization
problem is the general view of the planning and scheduling
to minimize the cost and maximize the profit.

1.2 Development of software for production planning and
scheduling

Planning and scheduling generally comprise two subsys-
tems, namely, modeling and optimization, which have
been considerably developed in the past five decades. The
commercial software for planning and scheduling is based
on mature technologies and has been widely applied in
factories. Among these software developments, the
Refinery and Petrochemical Modeling System (RPMS)
by Honeywell Process Solutions is widely regarded as the
earliest software for planning systems. This software
employs a delta-base linear formulation providing a multi-
plant, multi-period model using automatic recursion
successive linear programming (SLP). The mixed-integer
programming (MIP) and distributive recursion handling
nonlinearities are also the built-in tools in RPMS. The
system components include the databases of the refining
and chemical processes for the practical application with
RPMS, while the user interface components comprise a
graphical user interface (GUI) and management system of
data, modes, cases, and reports. The features of RPMS,
which are also included in the Aspen Process Industry
Modeling System (PIMS) by Aspen Technology and the
Generalized Refining Transportation Marketing Planning
System by Haverly Systems, are typical in planning
software. Moreover, the PIMS-Advanced Optimization is
designed for global optimization with a proprietary
MINLP solver called Aspen XSLP. Another advanced
feature in the type of software is the importation or
integration of crude oil assays management systems, such
as ASSAY2 by Honeywell Process Solutions, Aspen
Assay Management by Aspen Technology, and H/CAMS
by Haverly Systems. The commercial software facilitate
the conversion from solving linear to solving nonlinear
(mixed-integer) models, especially for a large-scale
problem. The efficiency and convergence of solving the
optimization problem are the main focuses of such
software. Therefore, the convenience of users and the
stability of the systems are considered.

As for the scheduling software, the Aspen Petroleum
Scheduler™ is a widely used tool in refineries. This
software can automatically schedule activities of crude oil
distillation units (CDUs) and other downstream installa-
tions and configure the plan to match the actual operational
constraints. The gap between planning and scheduling is
reduced by sharing assay information with the PIMS.
Engineers can obtain a comprehensive view of the results
from its friendly user interface. However, the function of

the crude oil schedule is limited in the software. Thus,
users must manually decide the unloading plan of oil
carriers, the oil blending recipe, and the flow rates in
advance. The working process of the software is still semi-
manual. Aspen Technology also developed the Aspen
Plant Scheduler Family for other petrochemical scenarios.
This scheduler comprises a three-tiered scheduling solu-
tion (Plant Scheduler, Plant Scheduler-EA, Plant Schedu-
ler-EO) designed to address the varying degrees of
scheduling complexity. Besides, H/Sched by Haverly
Systems is an interactive scheduling system for refinery
operation, crude oil, and product blending. These schedul-
ing applications have implemented mixed-integer/linear
programming optimization and advanced heuristics
solvers. This type of software has been widely utilized by
refinery and petrochemical companies. However, the
software is often designed for some typical scenarios.
Additional details must be considered because the schedule
is involved with the execution level. Moreover, special
rules, conditions, or demands are usually found in some
specific enterprise, posing a challenge to the flexibility and
expandability of software. Meanwhile, the software must
be updated to handle the extensive uncertainty in the field,
such as that in shipment, material property, and unit
capacity. Thus, additional theoretical research in this area
1S necessary.

Except for these complete solution systems, algebraic
modeling language (AML) such as General Algebraic
Modeling System (GAMS) by GAMS Development
Corporation, A Mathematical Programming Language
(AMPL) by AMPL Optimization, and Linear, Interactive,
and Discrete Optimizer (LINDO) by LINDO Systems, can
also be used to perform planning and scheduling. The
AML-based software allows users to develop the mathe-
matical model for planning and scheduling optimization,
which is also fit for some other optimization problems.
Advanced Interactive Multidimensional Modeling System
(AIMMS) by Paragon Decision Technology, and Industrial
Modeling and Programming Language (IMPL) (Menezes
et al., 2015) by Industrial Algorithms are those with
higher-level modeling language for dedicated industrial
application. The models of the planning and scheduling
problem formulated in LP, MILP, and MINLP can be
solved by a variety of commercial solvers, such as CPLEX
by IBM, Gurobi, CONOPT (Drud, 1994), ANTIGONE
(Misener and Floudas, 2014), and BARON (Sahinidis,
1996).

Whether the software is a completed solution or AML-
based system, the general method used to handle planning
and scheduling problems is the mathematical program-
ming optimization to find the local or global optimum
solution. The scale and the complexity of the problem
impact the computational time and convergence of the
optimization. Therefore, an appropriately simplified model
is considered to be a tradeoff between the theoretical and
practical models in the real application.
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1.3 From industry to academic research

The industry needs the basic representation of the planning
and scheduling problem considering usability and main-
tainability. By contrast, academic research considering the
frontier and the innovation concentrate on the sophisticated
problem. In the past decades, the industry and academic
research have shown remarkable interest in production
planning and scheduling from the fundamental modeling
to the optimization algorithms. The industry seeks accurate
representation, leading to the development of advanced
techniques in academic research. The rest of this paper
discusses academic research in different aspects. Section 2
shows the fundamental models of planning and scheduling
problems and the optimization methods, which are general
models and algorithms for the majority. The general
models cannot express the complex correlations in the
process for certain situations. Therefore, Section 3
discusses the process models, especially those with
nonlinear correlations, used in the optimization problem.
Section 4 illustrates the optimization under uncertainty,
which is distinguished from the deterministic optimization
due to the planning and scheduling considering uncertain
prices and markets. Section 5 presents some industrial
cases in the application of the virtual manufacturing
system, which benefits from the optimization of planning
and scheduling. Section 6 discusses some of the remaining
challenges of planning and scheduling optimization.
Section 7 proposes the conclusions.

2 Production planning and scheduling
optimization

The production planning and scheduling activities cover
the entire supply chain in a refinery, as shown in Fig. 1. A
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typical refinery supply chain comprises crude vessel
transportation, crude storage and blending, distillation
and fraction processes, and product distribution. The
vessels carry the crude oil bought from the market,
which is then sent to the crude oil storage tanks for
blending and distillation. The crude oil is transported
through pipelines and then separated into different
distillation cuts as the intermediated resources for process
units in the CDUs. The fractions are treated in the
following reaction processes: Continuous catalyst reform-
ing (CCR), fluid catalytic cracking (FCC), Davison
circulating riser (DCR), hydrocracking (HCR), residuum
desulfurization (RDS), solvent deasphalting (SDA), diesel
hydrotreating (DHT), and residuum hydrotreating (RHT).
The treatment aims to produce intermediate products,
which are blended into several grades of naphtha,
kerosene, gasoline, and diesel. Meanwhile, byproducts,
such as liquefied petroleum gas, asphalt, coke, and some
petrochemical products, are generated from the distilla-
tions and reactors. All the qualified products are stored in
individual tanks and distributed to the sellers. The
production planning and scheduling cover the refinery
supply chain at different levels. The planner considers the
activity chain, including the crude purchase, cut scheme,
feed distribution, and production for a long time (month,
season, or year), which is the upper level and extended for
the recourses and the capacities. After the production plan
is made, the scheduler must execute the plan by
considering the detailed process information, such as the
arrival of crude vessels, the real-time tank liquid level, unit
condition, and repairment, to extend the monthly plan to
weekly or daily and make this plan feasible. The
optimization of planning and scheduling and their
combination have attracted considerable attention in the
research institute and industry through the development of
mathematical models, advanced algorithms, and different
constraints.
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Fig. 1 Scope of planning and scheduling in a refinery supply chain.
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2.1 Production planning and scheduling models

Optimization is the acknowledged approach to solve the
planning and scheduling problem. A standard optimization
problem comprises objective functions and constraints. In
production planning and scheduling, the objective function
can be profit-maximizing or cost-minimizing, while the
constraints can be the equality or inequality depending on
the mathematical representation of the problem. The
MINLP-based planning model, which was proposed by
Pinto et al. (2000), represents a general refinery topology
with nonlinear process models and blending relations. The
process unit models are considered to be nonlinear
equations comprising blending relations and process
equations. The bound constraints of the unit variables
comprise product specifications, maximum and minimum
unit feed flowrates, and limits on operating variables
(Moro et al., 1998). The process unit model was adopted in
an optimization problem of the petroleum supply chain
with tank and pipeline models (Neiro and Pinto, 2004).
Neiro and Pinto (2005) further extended the planning unit
model to a complete and flexible formulation in a
multiperiod planning problem.

The scheduling model is formulated as an MILP model for
continuous- and discrete-time representations. The schedul-
ing model is more specific than general planning models,
such as short-term crude oil, multiproduct pipeline, and
product blending scheduling. For short-term crude oil
scheduling, a discrete-time model (Lee et al., 1996; Joly
et al., 2002) and a continuous-time model (Jia et al., 2003; Jia
and lerapetritou, 2004; Mouret et al., 2009) determine the
operation of crude oil unloading, transfer, and charging. For
multiproduct pipeline scheduling, discrete-time and linear
disjunction scheduling (Rejowski Jr and Pinto, 2003; 2004)
and continuous-time (Rejowski Jr and Pinto, 2008) models
respectively determine the loading and unloading operations
of tanks and pipelines. For product blending scheduling, a
gasoline blending and distribution model (Jia and Ierape-
tritou, 2003; Méndez et al., 2006) and a short-term multi-
blending model (Glismann and Gruhn, 2001) determine the
blending recipes and production volumes, respectively. Shah
and lerapetritou (2011) built a continuous-time scheduling
model of production units and product blending considering
quantity, quality, and logistics decisions. The above planning
and scheduling models are built via mathematical program-
ming, which focuses on the representation of the objective
functions and constraints simplified from the real problem.

2.2 Optimization methods for the mathematical
programming problem

2.2.1 Convex optimization and nonconvex local
optimization

The mathematical programming method was adopted in
the planning and scheduling optimization strategies around

the late 20th century. Depending on the convex or
nonconvex problem, the computational complexity can
be P (polynomial) or NP (non-deterministic polynomial)-
hard, contributing to the differences in optimization
algorithms. The efficient algorithms of convex optimiza-
tion and nonconvex local optimization used to solve large-
scale LP, MILP, and NLP optimizations, such as CPLEX
(early OSL by IBM) and CONOPT (Drud, 1994), are
mature. The DICOPT (Grossmann and Raman, 2020) can
solve a series of NLP and MILP sub-problems for the
MINLP optimizations to obtain a local optimum solution.
In the 1990s, the limits of computing power and the
convergence of a mixed-integer or an NLP problem
restricted the development of complex planning and
scheduling models and global optimization strategies.
Therefore, the large-scale problems were decomposed into
sub-problems or assumed to be linear rather than nonlinear.

2.2.2 Global optimization algorithms

The formulation of a planning and scheduling problem
involves integer variables and nonconvex nonlinear terms,
such as the MILP and MINLP, which needs global
optimization algorithms to find the global optimum.
Some commercial solvers of global optimization, such as
ANTIGONE (Misener and Floudas, 2014) and BARON
(Sahinidis, 1996), are designed for the general mathema-
tical programming problems. These algorithms are deter-
ministic global optimization algorithms that can provide
theoretical guarantees of a global optimum within a
predefined tolerance in a finite time. Except for these
global solvers, some researchers introduced dedicated
global optimization algorithms, especially for the planning
and scheduling problem. Karuppiah et al. (2008) presented
an outer-approximation algorithm to obtain the global
optimum of the scheduling model of crude oil movement,
which only contained binary integer variables in the
MINLP. Castillo et al. (2017a; 2017b) proposed a global
optimization algorithm using piecewise McCormick
relaxation and normalized multiparametric disaggregation
technique for the scheduling of gasoline blending and
large-scale refinery planning with bilinear terms. The
global optimization based on heuristic strategies, such as
using genetic algorithms in refinery scheduling optimiza-
tion (Simao et al., 2007) and scheduling of crude oil
operations (Hou et al., 2017), has also been applied to the
production planning and scheduling problems.

The global optimization algorithms may be time-
consuming when dealing with a large-scale problem
(more than 5000 variables and constraints), especially
with large numbers (over 500) of integer variables and
nonlinear nonconvex terms (You et al., 2011; Castillo
et al., 2017b). The decomposition strategy is adopted to
accelerate the convergence of global optimization, which
decomposes the large-scale problem into a series of small
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sub-problems. Shah et al. (2009) proposed a structural
decomposition approach separating the problem as the
intermediate storage tanks to provide a few constraints in
the sub-problems. Shah et al. (2015) also decomposed the
large-scale refinery scheduling at the intermediate blending
component tanks into the production unit and product
blending scheduling problems. The mathematical decom-
positions, such as Bender decomposition, Lagrangian
decomposition, and bilevel decompositions, are another
strategy based on the mathematical formulation of the
problem. Bender decomposition, which is suitable for the
problem with complicated variables, is applied to solve the
stochastic programming problem of planning under
uncertainty (Li, 2013; Yang and Barton, 2016). The
Lagrangian decomposition, which is used for the problem
with complicated constraints, is employed to solve the
integration of production planning and scheduling problem
(Li and Ierapetritou, 2010; Mouret et al., 2011). The bilevel
decomposition is applied to the large-scale capacity
planning problem (Iyer and Grossmann, 1998; Mitra
et al., 2014) and the integration of planning and scheduling
problems under uncertainties (Chu et al., 2015).

3 Process model

The process models are the fundamental parts of produc-
tion planning and scheduling. In a traditional refinery, the
flowsheet can be separated into the crude oil distillation,
intermediate (e.g., reformer, cracker, hydrotreater), and
blending processes. The additional processes, such as
storage tanks, pipeline transfer, and utility systems, are the
extra parts of a model. The nonlinear models are used to
represent process models that have more flexibility and
accuracy than simplified linear models (Siamizade, 2019).
The process models used in the production planning and
scheduling are traditionally based on the empirical
correlation or regression of the rigorous model. The data-
driven approach to build the process models, such as
artificial neural network (ANN), surrogate (Slaback and
Riggs, 2007), data-based nonlinear (Li et al., 2016), and
piecewise linear (Gao et al., 2015) models, also has
application in the production planning and scheduling
problem.

3.1 CDU model

The CDU separates crude oil into intermediate streams
called distillation cuts. The fixed yield model is the most
simplified linear model, which cannot represent different
operation modes. A swing-cut model was proposed by
Zhang et al. (2001) to optimize the production planning
and scheduling problem. The sizes of swing-cuts are
predefined and can be cut into either of the adjacent
distillation cuts to represent different operation modes. The

swing-cut model has also been widely used in production
planning through planning software (e.g., RPMS, PIMS).
Some further improvements have been studied to introduce
nonlinearity. Li et al. (2005) proposed a procedure to
determine the optimal weight/volume transfer ratios of
CDU using the true boiling point (TBP) data and the cut-
points of the operation modes. The swing-cut model was
applied to refinery production planning integrated with the
fluidized-bed catalytic cracker and product blending
models. Guerra and Le Roux (2011a; 2011b) used the
swing-cut model based on volume transfer ratios with a
bias correcting the yields. Menezes et al. (2013) improved
the swing-cut model through microcuts and considering
the varying qualities in the corresponding light and heavy
parts of a swing-cut. Alattas et al. (2011) proposed a
nonlinear CDU model named fractionation index model,
which represents the CDU as a series of fractionation units.
The fractionation index model was investigated in single-
and multi-period production planning optimization (Alat-
tas et al., 2012). The hybrid CDU model proposed by Fu
and Mabhalec (2015) used the feed TBP and operational
variables to predict the TBP curves and bulk properties of
the distillation cuts (Fu et al., 2016). Their study in refinery
production planning (Fu et al., 2018) also revealed the
accuracy and flexibility of the hybrid CDU model.

3.2 Intermediate process and blending model

The intermediate process units in a refinery usually have
three main types: Reformer, cracker, and hydrotreater. The
traditional models of the process units are fixed yield
models, and the yields come from empirical or simulative
values depending on different operational modes. Li et al.
(2005) used a regression model of FCC to obtain the yields
for production planning. Alhajri et al. (2008) employed
simplified nonlinear process correlation models to predict
product yields and properties in refinery planning
optimizations. The correlation models for FCC are based
on nonlinear regression of simulative data from a rigorous
model. Guerra and Le Roux (2011a; 2011b) used nonlinear
empirical models for the FCC to express the product yields
and properties through the operating variables and feed
properties. Gueddar and Dua (2011) built the ANN model
of the CCR and the naphtha splitter units via a
disaggregation—aggregation based approach in the produc-
tion planning problem.

The blending models have been studied through
blending scheduling problems, such as discrete- and
continuous-time blending scheduling (Pinto et al., 2000;
Glismann and Gruhn, 2001). The blending models
considering different constraints in the industry, such as
blending recipes, storage tanks, inventory management,
and order delivery (Jia and lerapetritou, 2003; Li et al.,
2005; Méndez et al., 2006), make the models
distinguishable. Li et al. (2009) proposed a slot-based
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continuous-time scheduling model for gasoline blending
considering additional operations and policies, such
as blender setup times and limited inventory of
components.

3.3 Additional process model

The additional processes are the energy and transfer
systems, for example, the steam system and heat exchange
network providing the energy and pipelines and storage
tanks serving the transfer of streams in a refinery. The
coupling of additional processes with the entire refinery
must be optimized together with planning and scheduling.
Rejowski Jr and Pinto (2008) built a continuous-time
scheduling model of multiproduct pipeline systems
between the refineries and the depots. Zhang and Hua
(2007) proposed a utility system model of energy
utilization integrated with the processing system in a
plant-wide multiperiod planning problem. Zhang and
Rong (2008) built a fuel gas system model considering
the storage capability in a multi-period scheduling problem
of fuel gas operation in a refinery. van den Heever and
Grossmann (2003) proposed the integration of production
planning and scheduling of a hydrogen supply network
involving the logistic decisions. Jiao et al. (2012a) built a
discrete-time multi-period scheduling model of the hydro-
gen system in a refinery. Zhao et al. (2014; 2015) proposed
a multi-period production planning model for the inte-
grated optimization of refinery production and the utility
system.

3.4 Supply chain model

A typical supply chain in the petroleum industry includes
all the activities related to the production and processing of
materials, such as crude procurement and storage logistics,
transportation to the refineries, refinery operations, and
distribution and delivery of its products (Shah et al., 2011).
The complexity of supply chain models scales with the
number of process units and nonlinear process models.
Julka et al. (2002a; 2002b) proposed an agent-based supply
chain management framework and studied its refinery
application considering the crude selection and purchase.
Neiro and Pinto (2004) extended the process unit models to
the general model of supply chains. Yang et al. (2010)
considered the operation mode changeover and yield
fluctuations in a multiperiod supply chain optimization
model. Some refinery models (Zhang and Hua, 2007,
Gueddar and Dua, 2011; Zhao et al., 2014; 2015) can be
treated as supply chain models that keep the major
activities from the procurement to the operations and
simplify the others. Slaback and Riggs (2007) adopted
the surrogate model of the refinery-wide supply chain
to approximate the physical properties of process
models.

4 Planning and scheduling with uncertainty

The uncertainty evolved in production planning and
scheduling can have a variety of representations that can
be divided into three classes. The first class is the
uncertainty of the volatile market, which comprises the
price, supply and demand, policy, and environmental
factors. The second class is the uncertainty of the
properties of the streams, including raw materials and
intermediate streams. The third class is the uncertainty of
the process parameters, for instance, the fluctuations of the
yields. These classes of uncertainty can be studied
separately or simultaneously. Li et al. (2004) considered
the uncertainty of the raw material and the product demand
through the confidence level and fill rate, respectively. Risk
management using various risk measures, such as financial
risk (Barbaro and Bagajewicz, 2004), downside risk
(Eppen et al., 1989), and conditional value-at-risk (Rock-
afellar and Uryasev, 2000), is an approach used to address
the uncertainty in production planning and scheduling.
Pongsakdi et al. (2006) considered the uncertainty in
demand, market prices, raw material costs, and production
yields in planning using financial risk. Park et al. (2010)
chose the downside risk and regarded the price uncertainty
of the crude oil and the products in refinery planning.
Carneiro et al. (2010) adopted the conditional value-at-risk
considering the uncertainty of the product demand and
consumer budget. Ji et al. (2015) employed the operational
and financial hedging strategy to deal with the uncertainty
of crude oil prices in the crude oil procurement. The
financial risk management approach is formulated as a
scenario-based one- or two-stage stochastic programming
to optimize the expected value of the objective function.
Stochastic programming has also been used in other
planning and scheduling problems, such as supply chain
optimization with the uncertainty of product yields (Yang
et al., 2010), integration of crude selection, and refinery
optimization with the uncertainty of crude qualities (Yang
and Barton, 2016).

The chance-constrained and robust optimization are two
other approaches for optimization with uncertainty com-
pared with stochastic programming. Chance-constrained
optimization considers probabilistic constraints as part of
the optimization problem. Yang et al. (2017) proposed a
blending scheduling problem under the uncertainty of
component qualities. The chance-constrained optimization
has also been used in other production planning and
scheduling problems, such as optimization of refinery
hydrogen network with the uncertainty of hydrogen supply
and demand (Jiao et al., 2012b) and multi-period planning
with the uncertainty of component qualities (Jalanko and
Mabhalec, 2018). The robust optimization attempts to find a
satisfying solution to the worst case provided by a bounded
uncertainty set. Al-Qahtani and Elkamel (2010) performed
robust optimization to address the multisite integration and
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coordination strategies in a network of petroleum refineries
considering the uncertainty of the model parameters.

5 Virtual manufacturing of refinery

A virtual manufacturing system in a Chinese refinery is
established by integrating the mechanism modeling,
planning, scheduling, and unit optimization technologies
to solve the process modeling and global and unit
optimization problems. The architecture of the virtual
manufacturing system is shown in Fig. 2. The technique
structure can be divided into the following three layers:
The visualization, application, and model layers. In the
visualization layer, all the main units are rendered by three-
dimensional modeling, providing a virtual reality environ-
ment. The application layer is based on core application
software implementing several featured functions via the
GUI and industrial data communication. The functions of
the application layer comprise the following: 1) plant-wide
simulation and validation, 2) sensitivity analysis and case
studies, 3) unit operation optimization, and 4) plant-wide
production planning optimization. In the model layer, the
dedicated mechanism models of the primary units in the
refinery are integrated with the two former layers providing
simulation data. The models run parallel with the actual
units and validate in real-time using the data collected from
the actual process (from distributed control system (DCS),
real-time database, or laboratory analysis database). The
sensitivity analysis and operation optimization are func-
tions for simulating operation modes and optimizing the
operating conditions. The interaction of the application and
model levels improves the understanding and operation of
the process with highly accurate data, providing robust
support for planning and scheduling. The optimization of
planning and scheduling can be easily performed in this
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system with the mechanism models and the functions of
the application layer. For instance, a successive linearized
planning model is built in the system, and the parameters
of the planning model can be updated by the mechanism
models and operation optimization. Additionally, the
monthly plan is divided into weekly plans that operate
similarly to weekly schedules. Thus, planning and
scheduling can generate realistic implementation schemes
in the refinery. The function of plant-wide production
planning optimization is further illustrated by some real
industrial cases as follows.

The accuracy and feasibility are significantly improved
by combining the mechanism model and decision-making
application. This approach enables engineers to conduct
planning and scheduling with additional profit. Several
typical cases are generated from the virtual manufacturing
system for regular planning. Case 1: A monthly planning
optimization with the optimal operational parameters of the
process provides an effective route for processing residual
oil. The optimal plan decreases the capacity of the SDA
unit and maximizes the capacity of the delayed coke unit.
This plan aims to decrease the recycled heavy oil from the
SDA to the RHT unit and simultaneously satisfy the
demands of product oils. In this case, the recycled heavy
oil can be lowered by 20 t/h and the energy cost is
decreased by 486 kg EO/h. Case 2: Reorganization of the
diesel resource at the plant-wide level. This case indicates
the replacement of the diesel in the RHT feed with residue
oil to increase the FCC capacity to produce additional
diesel and gasoline. The removed diesel is sent to HCR and
DHT units to maintain high quality. This case provides an
effective way to transfer heavy oil to diesel and gasoline.
Case 3: A combination of the process optimization with
planning. The olefin derivatives, such as styrene, are
considered high-value products in the Chinese market.
Additional benzene from the aromatic process and olefin

Case Study

Fig. 2 Architecture of the virtual manufacturing system.
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from FCC are needed to maximize the yield of styrene. In
this case, benzene is sufficient, but ethylene is lacking
because the ethylene cracking unit does not exist in this
plant. Thus, the operation parameters must be optimized to
maximize the ethylene yield of FCC by using the
mechanism models. The plant-wide resources in PIMS,
such as CCR feed, benzene, and production mode of
styrene unit, are also optimized. Overall, styrene produc-
tion can be increased by 100 ton/month, resulting in a
considerable amount of profit. Except for the decision-
making cases, the smart manufacturing system can also be
used for real-time optimization. The process optimization
for CCR, HCR, and CDU is currently implemented with
advanced control. Such implementation helps engineers
optimize the reaction temperature, pressure, and reflux
ratio to gain additional valuable products and save energy.

According to statistics, engineers have used this system
to generate more than 80 planning cases, 900 unit
optimizing cases, and 1200 unit performance analyses
per year from 2016. The total yield of the light product oil
has increased by 2.8%, and the production loss rate has
reduced by 0.04%, which can help the company increase
the total profit of 1.316 billion yuan in three years. This
reproducible and promotable smart manufacturing applica-
tion is of considerable importance to the intelligent plant
system, which also provides a successful example for
smart process manufacturing.

6 Remaining challenges

Through the previous development of planning and
scheduling optimization, the problem definition considers
an increasing number of real industry constraints. The
long-term and multiperiod models and complex process
models, which rapidly increase the scale and complexity of
the problem, become the decision requirements. The
optimization under uncertainty remains the focus of risk
management in refineries. All these challenges require the
development of the optimization technique and highly
efficient CPUs.

Some academic studies involving enterprise-wide opti-
mization (Grossmann, 2005; 2012), molecular modeling
and management (Hu et al., 2002), integration of
production planning, scheduling, and process control
(Santander et al., 2020), and integration of refining and
petrochemical plant (Zhao et al., 2017) can still be
improved for practical application. The production plan-
ning and scheduling considering the environmental factors,
such as the corrosion effect (Kim et al., 2012), energy
efficiency (Wu et al., 2017), and CO, emission reduction
(Elkamel et al., 2008) in refineries, need additional
attention.

The academic research on optimization of the refinery
operations and strategies has achieved remarkable success,
such as the development of rigorous and simplified process
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models, the improvement of planning and scheduling
models, and the enhancement of large-scale MINLP
algorithms. Nevertheless, the issue of building and
simplifying the massive refinery unit models and optimiz-
ing the integrated refinery units in multilevel decisions
remains complicated. For example, the three sub-problems
(i.e., crude oil unloading and mixing, production operation
scheduling, and product blending and delivering) of
scheduling optimization are separately studied under
specific assumptions. The scheduling strategy level of
large refineries from the crude oil to the product blending
scheduling has not been systematically studied. The
rigorous process unit models with high accuracy remain
complicated, which introduces computational complexity
(e.g., large-scale problems and high nonlinearity) in the
solution of the large-scale MINLP. Therefore, the simpli-
fied unit models are adopted considering the optimization
efficiency, which causes deviations between the real
operations and optimal results. However, the impact of
the deviations has not been quantitatively described. Thus,
guaranteeing the reliability and maintainability of the
simplified model is difficult.

The models used in planning and scheduling are steady-
state models. However, the resident time needed from
crude to the final product is significant, and the switch of
the unit operation modes is in the transient state, which
needs the dynamic models. The research considering the
switching transient state in the scheduling has just started.
The latency of the streams in the overall process, which
affects the scheduling of the overall refinery, has not been
investigated.

The planning and scheduling problems are large-scale
MINLP problems, especially in large refineries, which are
optimized by the commercial solvers, such as BARON and
ANTIGONE. Thus, the optimization consumes an
immense amount of time. The utilization of the existing
computational resources, such as cloud and distributed
computing, is necessary to develop efficient solving
algorithms and strategies.

7 Conclusions

Production planning and scheduling are crucial decision-
making activities in a refinery. The decision optimization
can maximize the profit and satisfy the constraints.
Mathematical programming has long been adopted in
production planning and scheduling. Following the
development of the optimization technique, an increasing
number of constraints and complexity can be added into
the decision-making consideration, thus providing a
realistic application. The reaming challenges focus on
developing process models and optimization algorithms
that can utilize the computational resources and minimize
the deviations between the optimal solution and real
operations.
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