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Abstract Condition-based maintenance (CBM) detects
early signs of failure and dictates when maintenance
should be performed based on the actual condition of a
system. In this paper, we first review some of the recent
research on CBM under various physical structures and
signal data. Then, we summarize several kinds of
prognostic models that use monitoring information to
estimate the reliability of complex systems or products.
Monitoring information also facilitates operational deci-
sions in production planning, spare parts management,
reliability improvement, and prognostics and health
management. Finally, we suggest some research opportu-
nities for the reliability and operations management
communities to fill the research gap between these two
fields.
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1 Introduction

Significant advances have been achieved in sensor
technology, allowing manufacturers to collect product
condition and other relevant information easily. Condition-
based maintenance (CBM) emerges with the application of
this technology in the manufacturing process and the after-
sales market. CBM is a maintenance strategy based on the
condition of products to minimize the costs associated with

parts, personnel, tools, and so on. The key to CBM is
performing maintenance actions proactively before
failures occur, without suspending product use. However,
developing monitoring and maintenance solutions based
on real-time sensor information is a huge challenge.
Three major challenges exist in the field of CBM. The

first challenge at the most fundamental level is designing
the system structures and the sensor networks. The second
challenge is producing reliable diagnostics about the future
states of a product and estimating its remaining useful life.
The last challenge is utilizing prognostic information to
support decisions, such as maintenance, replacement,
product life cycle analysis, and procurements. Numerous
works have been proposed to deal with these three
challenges.
Focusing on the first challenge, many studies have

proposed various models to describe the structures and
relationships of different components to estimate the
reliability of multi-component systems. We summarize
the literature considering different kinds of multi-unit
systems, such as two-unit and series-parallel systems, to
recognize the impact of their CBM structures and compare
them with single-component systems. Monitoring different
components, that is, collecting and analyzing different
types and structures of monitoring data may be a technical
challenge. To facilitate data analysis, we classify the data
by different criteria as discussed in Section 2.2.
A popular means of addressing the second obstacle is

finding a proper condition-based model to estimate
reliability. Three kinds of assessment approaches could
be adopted. The most common condition is the degradation
lifetime of products. On the basis of the continuity of
products’ states, estimation models can be divided into two
categories: Continuous- and discrete-state models. In
practice, degradation is continuous in most cases and can
be modeled directly as a continuous stochastic process,
such as the Wiener (Zhang et al., 2018), inverse Gaussian
(Wang and Xu, 2010), and gamma processes (Cheng et al.,
2018; Zhao et al., 2018b). Furthermore, degradation can
also be approximated through a discrete-state degradation
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process using Markov chains. Predicting the remaining
useful life of products based on degradation modeling is
also one of the most popular topics (Zhao et al., 2018a).
Moreover, usage-based models treat usage rate as a general
factor, which is always considered in the reliability
estimation of products. In this case, the failure rate of a
product is used as an index to find the influence of usage in
the model (Walter and Flapper, 2017; Verbert et al., 2018).
In addition to the two kinds of models above, many papers
have investigated other event conditions, such as internal
jumps, external shocks, periodic backups, and some
special events in particular areas.
To solve the last problem, considerable research has

been devoted to the use of prognostic models for
operational decisions. Condition monitoring can improve
the efficiency of planning and operational decision-
making. For example, using real-time sensor information,
manufacturers can predict the remaining life of a product
and further optimize operational decisions, such as
maintenance and spare-part replacement. Moreover, the
monitored condition provides more flexibility for manu-
facturers and facilitates proactive maintenance activities to
obtain operational and logistical benefits. Now, the
question of how prognostic information can be appro-
priately used naturally arises. Many papers specify
thresholds for determining product failures. With such
thresholds, maintenance actions can be initiated (Wang
et al., 2016; Chehade et al., 2017). In addition to
maintenance, condition monitoring has a wide variety of
applications in inventory management, production plan-
ning, and other contexts of operations management.
Moreover, the potential value of condition monitoring is
also considered, such as advance demand information and
real-time equipment control has been studied in many
works (Zhou et al., 2010; Shi and Zeng, 2016).
In the CBM area, several review papers summarized the

existing research. As for the modeling of deteriorating
systems, Si et al. (2011) focused on statistical-data-driven
methods to predict the remaining useful life of products.
The authors divided the statistical methods based on
whether the state process are directly observed or not and
listed numerous classical models from the literature.
Alaswad and Xiang (2017) presented a review of the
CBM literature with emphasis on mathematical modeling
and optimization criteria, such as inspection frequency and
inspection quality. For maintenance policy, Olde Keizer
et al. (2017a) reviewed different condition-based main-
tenance policies for systems with multiple dependent
components. The authors classified dependence as struc-
tural dependence, stochastic dependence, resource depen-
dence, economic dependence, and so on, and summarized
the model in different dependencies in detail. However,
coordination is still lacking between degradation estima-
tion and operations management, which can lead to
increased inventory costs and production disruptions.
Therefore, in this work, we aim to bridge the gap between

these two topics and verify the efficiency of condition
monitoring on designing the maintenance policy. In
addition, the influence of physical structures on CBM
modeling and different monitoring data processing
methods is considered. The main contributions of this
work are the summarization of the diagnostics methods
based on monitored conditions and the discussion of
several related prognostic models.
We review recent works related to the three challenges

of CBM, with emphasis on efforts on developing
prognostics methods and optimization models. Figure 1
illustrates the structure of this work, and the remainder of
this paper is organized as follows. Sections 2 and 3
respectively present reviews of different system structures
and data types and the modeling efforts to measure product
conditions. Section 4 summarizes some operational
problems pertaining to CBM. Section 5 concludes the
work and highlights directions for further research.

2 Structural analysis and data monitoring

2.1 Structural analysis

Before developing methods for estimating the reliability of
operation systems and complex products, we should
always determine the structure of the systems or complex
products and analyze the correlation among the different
components in the systems. Thus, the first important task is
recognizing and defining the physical structure. Physical
structures always influence the performance of systems
and products, and many works have estimated the
reliability of systems from this perspective. Some research
traditionally established reliability estimation models
based on single-component systems (Byon and Ding,
2010; Kurt and Kharoufeh, 2010). Compared with single-
unit systems, multi-unit systems have different kinds of
structures (Alaswad and Xiang, 2017). According to the
recent literature, we summarize different kinds of typical
structures as follows.
A popular topic in multi-unit systems is the evaluation of

the relationships of different components. For systems with
multiple components that share a pool of spare parts, Lin
et al. (2017) modeled the degradation process as a Markov
chain. Given the replacement policy upon failure, they
studied the effect of condition information on spare parts
supply. Olde Keizer et al. (2017b) jointly optimized the
replacement decision and the ordering quantity and
showed through simulation that the optimal replacement
and ordering policies depend on the entire system’s
condition, such as the state of each component and the
on-hand inventory. Zhang et al. (2020) considered the
maintenance issues for a k-out-of-n deteriorating system
under periodic inspection. The authors believe that the
failure dependence of different components may cause a
momentary and transient shock to the system. For each
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surviving component, the shock will cause a random
degradation magnitude. Meanwhile, in the multi-unit
system literature, the following two typical types of
structures are introduced in detail.
Two-unit systems have received significant attention in

recent research. Fitouhi et al. (2017) proposed a two-
machine continuous flow manufacturer system with a finite
capacity buffer. They divided the state of each machine
into discrete states and characterized the performance
parameters. They discussed the trade-off between pre-
ventive maintenance and buffer. Similarly, Do et al. (2019)
designed a model for a two-unit system to incorporate the
stochastic and economic dependencies of these two
components. In their model, the degradation variation of
component i is defined as ΔX i

t ¼ ΔX ii
t þ ΔX ji

t , where ΔX
ii
t

is the degradation level itself, and ΔX ji
t is the influence of

the other component j on i. Ma et al. (2020) investigated
the reliability analysis and maintenance optimization
approaches of a two-unit warm standby cooling equip-
ment. These two components have a significant influence
on temperature, and at least one is working normally. The
system is in the normal state; otherwise, the system’s
temperature rises sharply. The reliability function of the
system is formulated based on this setting, and a condition-
based maintenance policy is developed based on the
temperature monitoring information.
Another kind of system is series-parallel systems. Olde

Keizer et al. (2018) considered the trade-off between
redundancy and maintenance for a parallel system and
obtained the optimal policy that minimizes the long-run
average cost. Yahyatabar and Najafi (2018) proposed a
maintenance policy for series-parallel systems using a
proportional hazards model and a novel hybrid meta-

heuristic algorithm constructed using the parallel generic
algorithm.

2.2 Data monitoring

Signal data contain abundant information about system
conditions. Therefore, signal monitoring is critical in
reliability estimation and prediction. Our work considers
different criteria of data classification. In terms of data
sources, we have two types of data, namely, direct and
indirect data. In terms of whether or not to receive data as a
continuous flow, we have real-time and offline data
(Aizpurua et al., 2017). In terms of data integrity, we
have incomplete (Gössinger et al., 2017) and finite sample
data (Cipollini et al., 2018).

2.2.1 Data sources

According to Wang and Christer (2000), direct data refer to
signals that can directly reflect the reliability of products or
systems. For example, wear and crack size data are
considered direct data (Zhang et al., 2017). With this type
of data, we can forecast the remaining useful life,
degradation level, and health index of products or systems.
In practice, direct data are difficult to observe or monitor,

and only indirect data could be used most times. However,
indirect data can only partially indicate the reliability of
systems. For a more reliable estimation, indirect data are
often analyzed with additional information about the
products and systems. According to Si et al. (2011),
vibration- and oil-based monitoring are considered exam-
ples of indirect data.

Fig. 1 Framework of CBM research.

Yanrong LI et al. A review of condition-based maintenance: Its prognostic and operational aspects 325



2.2.2 Data timeliness

Maintenance decisions should be made based on the
prognostic information of the system. According to
Aizpurua et al. (2017), offline models provide a basis for
online models, with the latter focusing more on regularly
updating the model with data related to the prognostic
results and criticality evaluation of assets.

2.2.3 Data integrity

In reality, complete information is nearly impossible to
obtain. Hence, manufacturers must fuse finite data. Song
and Liu (2018) designed a statistical degradation model by
combining extracted features and sensor signals. They
constructed a health index for estimating the degradation
process. Similarly, Kim et al. (2019) proposed a model for
collecting multiple sensor signals and derived the optimal
weight for each selected sensor. Song et al. (2019)
proposed a generic framework of a multi-sensor degrada-
tion model, which can be transformed into a supervised
classification problem.
Limited data sample is another problem in reliability

prediction. When few labeled samples are available, we
can use supervised and unsupervised learning techniques
for CBM that require few data to achieve satisfactory
performance. Cipollini et al. (2018) made a supervised data
analysis of a vessel system with limited diesel-electric and
gas propulsion plant data. To simplify data collection, the

authors focused on methods allowing minimal feedback
from naval specialists.
While researchers have developed many models to fit

real data and ensure the convergence of the estimated
coefficient to its true valve, the main difficulty in data
processing is to find appropriate methods to deal with data
from different sources and structures, especially data
fusion. Because noise always exists, finding the optimal
methods or functions to screen out non-informative sensor
signals is always necessary.

3 Condition modeling

The conditions considered in the prediction of system
reliability fall into three categories. Figure 2 presents a
framework of the specific methods in each category.

3.1 Degradation-based condition

To measure the reliability of products or systems, one of
the most popular methods is considering the residual
lifetime up to failure given the failure time. For example,
Kim et al. (2019) and Song et al. (2019) proposed the
reliability analysis of an aircraft gas turbine engine using
the residual lifetime because the exact failure time is
known. Otherwise, a comprehensive index is proposed to
represent the lifetime state of products or systems. Bae
et al. (2019) proposed the temperatures in inlet steam as the

Fig. 2 Framework of CBM models summarized in this work.
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pivotal monitoring condition to represent the degradation
process of turbine generators. Jahani et al. (2020)
used battery resistance as the index to measure
the degradation level of lead-acid batteries. According
to the work of Lee and Whitmore (2006), we can
find the relationship between the remaining lifetime
T and the degradation process X(t) as follows: T ¼
infft : X ðtÞ³Xf jX ð0Þ < Xf g, where X(t) is the degrada-
tion level at time t, and Xf is the threshold. Therefore, both
cases can be transformed into each other.
In many studies, product usage is considered a stochastic

degradation process because of some uncertain covariates
and random factors. In this work, we divide the
degradation process into two categories because the
change in reliability states could be continuous or discrete
over time.
The continuous-state model defines reliability degrada-

tion as a continuous stochastic process. In the literature, the
most widely used processes are the Wiener, gamma, and
inverse Gaussian processes.
The Wiener process is a stochastic process with

continuous-time parameters and state spaces. According
to Elwany and Gebraeel (2008) and Peng and Tseng
(2009), the Wiener process is defined as X ðtÞ ¼
X ð0Þ þ vt þ �BðtÞ, where X(0) is the degradation level at
time 0, and ν and σ are the draft and diffusion parameters,
respectively. However, draft is more likely to appear
with nonlinear forms over time in practice. Some
papers define degradation level as X ðtÞ ¼ X ð0Þþ
α!

t

0
uðτ; βÞdτ þ �BðtÞ, where α!t

0
uðτ; βÞdτ is the average

accumulated degradation level. In addition to the linear and
nonlinear models, Zhang et al. (2018) summarized the
multi-source variability, covariates, and multivariate in the
Wiener process.
The gamma process is a stochastic process with density

function fX ðtÞðxÞ ¼ GaðxjαðtÞ, βÞ, where α(t) is the shape
parameter, and the derivative of α(t) reflects the average
degradation rate at time t, which also describes the
relationship between the degradation level and the system
age (Ellingwood and Mori, 1993). The parameters in this
function are solved by moment estimation (Cinlar et al.,
1977) and maximum likelihood estimation. The gamma
process is also used to describe the diffusion process
(Cheng et al., 2018) of the production system. Huynh et al.
(2017) proposed a homogeneous gamma process to
estimate the stress corrosion cracking in the propagation
phase of systems.
Inverse Gaussian is a common stochastic process related

to the Wiener process. According to the analysis of Ye and
Chen (2014), given threshold L and a linear Wiener
degradation process, the first time to achieve the threshold
L follows inverse Gaussian processes, which are useful for
predicting the remaining life. Wang and Xu (2010) used

the Expectation-Maximization (EM) algorithm to obtain
the maximum likelihood estimators of the parameters in
the model and the bootstrap to assess their variability. Xu
and Wang (2013) used the Bayes method to establish the
adaptive inverse Gaussian model and the evidential
reasoning method of data fusion to estimate the parameters
more precisely.
Many other cases are considered in the CBM area, such

as nonlinear drifting (Lee and Whitmore, 2006), change
point detection (Wang, 2007), jump (Tang et al., 2014;
Zhang et al., 2017), and diffuse volatility (Ghamlouch
et al., 2017).
The continuous-time Markov chain (CTMC) and the

discrete-time Markov chain (DTMC) are also appropriate
for modeling the age-based condition. Discrete-state
spaces and transition matrices are defined first. Then,
Markov chain theories are used to approximate the real
degradation process. Zhang and Revie (2017) presented a
semi-Markov decision process for machine maintenance.
Wang and Xu (2010) proposed a degradation model,
focusing on incorporating the proportional hazards model
into the CTMC. As for the DTMC, de Jonge (2019)
presented an approach to discretizing the stationary
continuous time and state for degradation processes.
From this work, we know that discrete-time and state
models have a better analytical performance when
combined with a continuous model. The author also
proposed a gamma process as a special case to be
discretized and transferred into the DTMC.

3.2 Usage-based condition

In large-scale systems, usage-based conditions are com-
monly used in practice. Given that usage-based conditions
consider time and usage rate, high-dimensional data must
be processed. However, analyzing high-dimensional usage
data is a significant challenge due to the degrees of
correlation between different variables. The methods in the
literature for overcoming this challenge can be grouped
into parametric and nonparametric models.
Parametric models for quality estimation and control,

such as the Weibull failure model (Attardi et al., 2005) and
the accelerated failure time model (Ye and Murthy, 2016),
are among the most popular topics in recent years. Other
methods for reducing data dimension include the applica-
tion of domain knowledge in finding an intermediate
variable to replace original variables (such as failure time
and failure usage) (Huang et al., 2017). Statisticians also
use copulas appropriately to deal with multivariate
distributions (Wu, 2014).
Nonparametric methods generally rely on big data

analytics and machine learning, such as support vector
regression (Wu et al., 2009) and logistic regression
(Skordilis and Moghaddass, 2017). For example, Kontar
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et al. (2018) proposed a nonparametric method for
predicting the condition-based remaining useful life.

3.3 Event-based condition

Many internal or external factors can influence the
reliability of production systems or products, especially
in industrial companies. Here, we present a brief summary
of the events that influence the degradation process or the
remaining lifetime.
The most common events include internal jumps and

external shocks. Ghamlouch et al. (2017) proposed a
degradation model that describes the internal jump factor
as �JdNðtÞ, where �J is the amplitude, and N(t) is the
standard Poisson process of the jump. For external shocks,
Wei et al. (2019) considered a binary-state deteriorating
system under zoned shock effects, and the random shocks
are adopted by a homogeneous Poisson process {N(t),
t≥0}, where N(t) is the total number of shocks during
(0, t].
Periodic backup is another kind of event that is related to

system reliability. Levitin et al. (2017) considered an
integrated model, which considers the effects of periodic
backups, and used the model to monitor the first failure
time and find an optimal maintenance strategy. Liu et al.
(2017a) analyzed the signals of the degradation from
monitored periodic inspections and proposed a method for
finding the optimal maintenance policy to minimize the
long-run cost.
Moreover, other events are also considered in the

literature. Pivotal events not only have a significant impact
on industrial companies but also influence the quality of
products. Li et al. (2014) established an event-based
method of finding optimal production improvement
opportunities using online production information. Li
et al. (2017) proposed a systematic method of predicting
the negative impact of CBM stoppage events on produc-
tion in a multistage manufacturing system. In addition to
pivotal events, general and frequent events can also be
regarded as signals in condition monitoring. Wan et al.
(2018) proposed a maintenance model to discuss whether
maintenance is needed when monitoring the time between
failure occurrences with a control chart of time among
events.
Most of the above research consider only a single factor

or event, and few has discussed condition monitoring with
more than one factors simultaneously. In practice, the
interactions between different factors need more attentions.
For example, internal jumps and external shocks may
occur at the same time. Ghamlouch et al. (2017) and Wei
et al. (2019) developed models for deteriorating systems
considering internal jumps and external shocks, respec-
tively. The interactions between the two events can be
analyzed in the future.

4 Operational decision-making

4.1 Production planning

Production decisions affect the deterioration rate of a
production system. Thus, manufacturers must determine
the production lot size, adjust the production rate, and
schedule the production of multiple types of products to
optimize maintenance costs and production revenues. The
recent development of sensor technology allows the
remote monitoring of a system’s condition and real-time
decision-making on maintenance. Maintenance actions are
taken based on condition information to increase equip-
ment availability and hence production efficiency. Some
works concerning the interaction between production and
CBM have been conducted and are reviewed in the
following.
Manufacturers usually carry out an inspection at the end

of each production run to gather condition information.
Different equipment conditions correspond to different
production and maintenance plans. Jafari and Makis
(2015) used the proportional hazards model to optimize
the production lot sizing and the failure rate level for
replacement. The authors (Jafari and Makis, 2016) further
considered a setting where condition monitoring can
provide partial information about the hidden state of a
production system. Peng and van Houtum (2016) incorpo-
rated CBM into lot sizing decisions using renewal theory.
In their model, predictive maintenance is performed
according to a control limit policy, and corrective
maintenance requires a random repair time. Jafari and
Makis (2019) considered a stochastic Poisson demand
arrival process in the joint optimization of CBM and
manufacturing quantity. Cheng et al. (2018) analyzed the
implications of condition information on preventive
maintenance and overhauls for a system with both
reliability and quality degradations. uit het Broek et al.
(2019) developed a production planning model in which
the deterioration of a single-unit system is production-
dependent. The manufacturer can dynamically adjust the
production rate of the system and control equipment usage
to maximize production revenues. For a production system
with stochastic reliability, Khatab et al. (2019) found the
optimal threshold level and inspection cycle based on
economic manufacturing theory.
In a multi-product, single-equipment production system,

equipment condition affects the yield of each product.
Sloan and Shanthikumar (2000) decided whether to
suspend production to clean equipment and, if not, which
product to manufacture. Kazaz and Sloan (2008) modeled
multiple products that have different profits, processing
times, and deterioration probabilities. They introduced the
concept of critical ratio to obtain the optimal production
choice in each machine state. Batun and Maillart (2012)
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reconsidered this problem and presented a revised first-
come-and-first-serve approach. The literature on produc-
tion planning also considers resource constraints (Liu
et al., 2019), quality control (He et al., 2017; Bahria et al.,
2019), and demand forecasts (Wang et al., 2019).
More complex and realistic settings considered in the

maintenance literature should be incorporated in produc-
tion planning, such as stochastic deterioration processes,
multi-unit systems, imperfect CBM, periodic inspections,
and various structures of repair costs. Moreover, more
efforts could be made toward the integration of statistical
quality control/CBM and production planning to address
how condition monitoring leads to quality improvement in
production systems.

4.2 Spare parts management

To guarantee quick response to unexpected machine
failures, manufacturers must store spare parts in ware-
houses. Inventory decisions for spare parts must be
carefully made to balance the costs of holding inventory
(due to parts deterioration) and shortages. Real-time
condition monitoring offers vast opportunities to deal
with this issue. Sensors continuously monitor the condition
of a functioning device. We can predict the remaining
useful life of a device and initiate maintenance jobs when
the predicted remaining life reaches a certain threshold
based on sensor readings. Then, the demand for spare
parts, as an input to inventory models, is derived based on
maintenance schedules. The ultimate aim is to build a just-
in-time inventory system.
Harris (1990) addressed traditional economic manufac-

turing quality theory in inventory optimization. Some
researchers have used Bayesian approaches to update
uncertain parameters of the distribution of the time to
failure because the common practice is to periodically
record condition signals. Aronis et al. (2004) determined
the optimal parameter S of an (S - 1, S) ordering policy to
meet the desired service level during the lead time. Elwany
and Gebraeel (2008) proposed a sense-and-respond
architecture to improve logistical decisions. In the sensing
stage, they first used signal values to update the random
parameters of the linear and exponential degradation
models and then predicted the remaining life distribution
of individual components. In the response stage, following
Armstrong and Atkins (1996), they optimized the replace-
ment and spare parts ordering times to minimize the total
cost rate per renewal cycle.
Li and Ryan (2011) proposed a framework to capture the

relationship between machinery fault diagnosis and spare
parts management. They modeled machine degradation as
a Wiener process with either known or unknown drift
parameters. Then, they derived the demand distribution for
spare parts in a Bayesian manner and proposed a base-
stock inventory control policy that depends on some
subsets of the observed condition monitoring information.

Louit et al. (2011) determined the optimal ordering time for
a single spare part so that the interval between the
identification of a potential failure and the occurrence of
failure is larger than the random lead time. Under this
policy, stocking a spare is unnecessary. Given imperfect
demand information due to imperfect predictions, Topan
et al. (2018) allowed the return of inventory to the supplier
and partially characterized the structures of the optimal
ordering and return policy. Zhu et al. (2020) incorporated
an on-condition maintenance task as advance demand
information for spare parts.
Zhang and Zeng (2017) jointly optimized the replace-

ment decision and ordering quantity for a multi-unit
system. Given preventive and opportunistic maintenance
thresholds, they incorporated opportunistic maintenance at
periodic inspection times and ordered spare parts to meet
the safety inventory level for the next inspection. Yan et al.
(2020) considered imperfect maintenance for a multi-unit
system. Kian et al. (2019) described a mathematical
programming model of the spare part management
problem for a vessel engine.
Note that monitored signals are multi-dimensional in

many applications. How to incorporate predictions of
statistical models into inventory models would be an
interesting direction for future research. Also, different
policies of CBM imply different demand distributions of
spare parts and in turn lead to different inventory policies.
Although we conjecture that the base-stock policy and its
variants would still be optimal in most cases, a further
potential avenue of research would be to design novel
ordering policies of spare parts in the setting of CBM.
Finally, more works can be done with respect to inventory
networks. For example, the risk pooling of spare parts
among warehouses or companies has not been studied yet.
Such practices are common in the airline industry.

4.3 Reliability improvement

CBM helps improve system reliability and reduce operat-
ing costs. Based on the real-time information obtained
from condition monitoring, researchers have developed
inference-based approaches or stylized models to capture
the degradation process of a system. Various CBM policies
have also been proposed in the literature. For example,
under a threshold-based CBM policy, maintenance actions
are recommended when the degradation level exceeds a
certain maintenance threshold. The literature on CBM is
rich, and readers are referred to Alaswad and Xiang (2017)
and de Jonge and Scarf (2020) for recent overviews.
Three operational actions are usually involved in

managing a degrading system: Replacement, preventive
maintenance, and doing nothing. Wang and Christer
(2000) established a preventive maintenance and replace-
ment model where system conditions cannot be obtained
directly. Makis and Jiang (2003) derived an optimal
preventive replacement strategy for a system with
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unobservable operational states. Information that is
stochastically related to the system state is obtained
through condition monitoring at equidistant inspection
times. Zhou et al. (2007) considered imperfect main-
tenance and optimized the reliability threshold using a
hybrid hazard rate function. Liu et al. (2013) optimized the
maintenance threshold level for a degrading system with
multiple failure modes. Liu et al. (2017b) showed that a
monotone control-limit policy is optimal for a repair-
replacement model with an age- and state-dependent
operating cost. Si et al. (2018) proposed a framework for
degradation modeling and used maximum likelihood
estimation to determine the optimal replacement time of
a system.
Under a high sampling cost of condition information,

Kim and Makis (2013) determined when such information
should be collected and characterized the optimal sampling
and maintenance policy using a control chart with three
critical thresholds. Lam and Banjevic (2015) considered an
inspection scheduling problem and obtained the myopic
optimal time for the next inspection via the proportional
hazards model. Some recent works have included two-unit
systems (Berrade et al., 2018), partial repairs (Huynh,
2020), and hybrid policies (Poppe et al., 2018).
Degradation signals are often used to determine whether

a product has failed or when the replacement of a product
should be triggered. Therefore, under a threshold policy,
only the action of replacement is performed when the
threshold is reached, that is, a product is restored to its
original condition. This is appropriate for non-repairable
products. However, for repairable products, a better choice
is to conduct imperfect maintenance actions. A direction
for future research would be to optimize the degradation
level after CBM.

4.4 Prognostics and health management

Considerable research on prognostics and health manage-
ment (PHM) exists. According to the review by Lee et al.
(2014), the term “prognostics” comes from the medical
area and has become popular in the industrial field. For a
systematic PHM design, the authors proposed an intro-
ductory summary of different components in a production
system and presented several methods for identifying
critical components. Vogl et al. (2016) proposed a review
of prognostic capabilities for manufacturing. They empha-
sized the importance of PHM in reducing costs and
summarized the challenges, needs, methods, and best
practices of PHM in a manufacturing system.
In recent research, PHM has been considered a way to

estimate reliability in the presence of regularly updated
information. Kim et al. (2018) developed new algorithms
based on PHM theory. Data-driven methods, such as data
fusion (Song and Liu, 2018) and parameter estimation
(Hanachi et al., 2018), have also been integrated into PHM.
PHM is particularly suitable for complex high-end

equipment. Feng et al. (2017) established PHM models
under the CBM of aircraft fleets from both competitive and
cooperative perspectives. Lin et al. (2018) proposed a fleet
maintenance model based on fatigue structures. In addition
to aircraft applications, Bae et al. (2019) used PHM and
control charts in the setting of steam turbine generators.

5 Conclusions

CBM has received special attention from the industry and
the academia because it is more cost-effective than
traditional time-based maintenance. We present a review
of the recent development of CBM, with emphasis on the
modeling of product conditions and the operational
applications of CBM models. Specifically, we consider
different types of products’ physical structures and signal
data. We summarize common statistical or stochastic
models for three kinds of degradations, namely,
deteriorating process, usage, and specific events. Related
operational decisions can be made based on such
conditioning information to maximize profits or minimize
costs. Through this framework, we aim to combine the
fields of reliability and operations management and build a
chain that extends from past work to future directions.
Although the literature on CBM models is rich, the

following research areas could be further investigated.
First, degradation is usually dependent on environmental
variables, not just on age and usage. Few reports on failure
characteristics in other dimensions have been published.
Thus, variable selection models are needed for reliability
prediction. Methods for obtaining good estimations of
model parameters, especially those that change over time,
are also needed. For event-based conditions, the existing
research has addressed the single jump and the external
shock separately, while few papers have considered these
two factors together.
Second, data fusion is an interesting topic in sensor

networks. Data from different sources may be correlated.
For example, a faulty sensor may affect the functioning of
other sensors in the network, or measurement errors
produced by one sensor may result in noisy data from
many others. Sifting valuable information from noise is
still a key issue in sensor data analysis. Therefore,
developing improved methods for filtering signal is
another appealing research direction.
Third, although some studies have considered the

difference between various failure modes, extended
analysis can help investigate the impact of customer
behavior on them. Customer behavior is essential in
understanding the failure modes of a product. The
abundance of information regarding product use allows
us to consider the human factor in reliability design.
However, improving methods for updating the analysis as
new customer data become available is challenging.
Further efforts might be better directed to the online
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learning of failure characteristics to apply CBM in various
modes in the system.
Finally, under a threshold policy, manufacturers often

replace a product when its degradation level reaches a
certain threshold. The concept of impulse control can be
used to incorporate imperfect CBM into the policy.
Moreover, many products undergoing CBM are covered
by warranties. Limited research has been conducted with
respect to their interplay. The relationship between CBM
and warranty policies must be investigated. Given that
CBM is scheduled for an individual product, a warranty
must also be customized. This is an interesting avenue for
future research.
In essence, optimization models of reliability and

operations management often share similar structures.
Methodologies underlying studies from these two fields
can be borrowed from each other to solve new problems.
Of course, necessary revisions are needed in order to
incorporate their own features. In this process, new
contributions can be made to the existing models and
techniques.
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