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Abstract System reliability optimization problems have
been widely discussed to maximize system reliability with
resource constraints. Birnbaum importance is a well-
known method for evaluating the effect of component
reliability on system reliability. Many importance mea-
sures (IMs) are extended for binary, multistate, and
continuous systems from different aspects based on the
Birnbaum importance. Recently, these IMs have been
applied in allocating limited resources to the component to
maximize system performance. Therefore, the significance
of Birnbaum importance is illustrated from the perspective
of probability principle and gradient geometrical sense.
Furthermore, the equations of various extended IMs are
provided subsequently. The rules for simple optimization
problems are summarized to enhance system reliability by
using ranking or heuristic methods based on IMs. The
importance-based optimization algorithms for complex or
large-scale systems are generalized to obtain remarkable
solutions by using IM-based local search or simplification
methods. Furthermore, a general framework driven by IM
is developed to solve optimization problems. Finally, some
challenges in system reliability optimization that need to be
solved in the future are presented.

Keywords importance measure, system performance,

reliability optimization, optimization rules, optimization
algorithms*

1 Introduction

The concept of reliability emerged after World War I to
compare the operation safety of key weapons; this concept
has been applied to technical systems for more than a
century (Rausand and Høyland, 2003). A detailed history
of reliability theory from the 1950s to 1990s was presented
by summarizing some critical reliability progresses
(Knight, 1991). Reliability is an important discipline
applied in the entire product lifecycle of design, manu-
facturing, operation, maintenance, life extension, and end-
of-life. System reliability optimization problems (ROPs)
are popular topics in reliability engineering and play an
essential part in engineering projects, such as in nuclear
power plants (Čepin, 2019), energy storage systems
(Mohamad and Teh, 2018), automotive systems (Yu
et al., 2018), and traction drive systems of rail transit
(Lin et al., 2018).
Generally, system reliability could be improved by

increasing component reliability, adding parallel redun-
dancy of components, reassigning the positions of
interchangeable components, or combining these methods
(Kuo and Prasad, 2000). System ROPs can be classified
into five types, namely, ROP, redundancy allocation
problem (RAP), reliability-RAP (RRAP), component
assignment problem (CAP), and complex problem (CP).
ROP (Gopal et al., 1980; Kuo et al., 1987; Coit and Smith,
1996; Mettas, 2000; Prasad and Kuo, 2000) is a general
and straightforward system ROP that aims to achieve
optimal reliability allocation to maximize system reliability
considering the cost constraints. RAP (Liang and Smith,
2004; Ramirez-Marquez and Coit, 2004; Onishi et al.,
2007; Kulturel-Konak et al., 2003) aims to achieve the
maximum system reliability by allocating the redundant
components suitably with the cost constraints. RRAP
(Chern, 1992; Tian et al., 2008; Yeh and Hsieh, 2011; Garg
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and Sharma, 2013; Abouei Ardakan and Zeinal Hamadani,
2014) is a type of system ROP for obtaining the optimal
solution with the highest system reliability by adjusting the
component reliability and redundancy with consideration
of the limitations (reliability, cost, weight, and volume).
CAP (Derman et al., 1974; Zhu et al., 2011; Levitin et al.,
2017b) aims to generate optimal assignment with max-
imum system reliability by assigning n available compo-
nents into n positions. CP (Pant et al., 2015; Peng et al.,
2016; Yu et al., 2017; Zhao et al., 2019a) is a type of
difficult system ROP for complex systems with large-scale
or complicated tasks to maximize system performance
with limited resources.
Importance measures (IMs) are used to evaluate the

effect of component reliability on system reliability
(Birnbaum, 1969). IMs are useful tools in reliability
engineering (Compare et al., 2017), risk analysis (Fang
et al., 2017), and system reliability optimization (Fu et al.,
2019a). These measures can help reliability engineers to
find a better solution rapidly because they can identify the
weakest links of the system, which are the premise and
foundation of system design, maintenance, and resource
configurations. During the system design period, compo-
nent importance can help designers determine cost-
effective design ideas with relatively high system relia-
bility and low cost rapidly. The IMs can be applied in the
design of communication systems (Liu et al., 2018),
modern digital systems (Borgonovo et al., 2016), power
industry (Espiritu et al., 2007), embedded systems (Aliee
et al., 2016), and head-up display systems (Dui et al.,
2017b). For the maintenance process, component impor-
tance can find the weakest components to improve its
reliability, such as the integrated IM, considering the repair
and failure rates (Si et al., 2012a; 2012b; 2013; Zhao et al.,
2013; Dui et al., 2019). The IMs can also be found in wind
turbine systems (Wu and Coolen, 2013; Dui et al., 2017c),
electrical networks (Hilber and Bertling, 2004; Vu et al.,
2016), control systems of computerized numerical control
lathes (Xiahou et al., 2018), propeller plane systems (Dui
et al., 2017a), and automobile tire systems (Fu et al.,
2019b). For limited resources, IMs can determine the
components that can generate the greatest system relia-
bility improvement by arranging several resources reason-
ably to reduce system risk. The IMs are used for the bus
test systems (Fang et al., 2016), critical infrastructure (Xu
et al., 2020), navigation systems (Baroud and Barker,
2018), water distribution pipelines (He and Yuan, 2019),
and resilient power systems (Wang et al., 2019).
IMs have been applied successfully in the complex

engineering field to analyze reliability, safety, and risk in
the past 60 years. The development of IMs in system
reliability optimization can be classified into three stages.
(1) The first stage (before the 1990s) is an initial

development of the system ROPs by applying the
Birnbaum importance to solve these problems. The studies

focused on the system reliability optimization for small-
scale systems with series or parallel structures, which
established the mathematical model of optimization
problems and proposed some optimization rules based on
the Birnbaum importance to solve these problems (Tillman
et al., 1977). The extensions of the Birnbaum importance
are used to solve optimization problems because assigning
resources to the component with the highest importance
can improve the system’s performance significantly. In this
stage, some optimization rules are proposed to attain better
solutions for optimization problems considering some IMs,
such as the criticality importance (Barlow and Proschan,
1975), redundant importance (Boland et al., 1988), and Δ-
importance (Xie and Shen, 1989).
(2) The second stage (from 1990 to 2011) is a further

exploration of the system reliability optimization based on
the IMs. The heuristic methods are used to generate
optimal results based on efficient heuristic rules. The IM-
based heuristic rules are proposed to solve system ROPs
(Lin and Kuo, 2002; Yao et al., 2011; Zuo and Kuo, 1990).
These heuristic rules clarify the mechanism of IMs in
solving system ROPs. Moreover, this stage is the solid
foundation of system reliability optimization.
(3) The third stage (after 2011) is an in-depth explora-

tion of IMs for solving system ROPs. The book
Importance Measures in Reliability, Risk, and Optimiza-
tion provided a comprehensive contribution of IMs in
reliability engineering (Kuo and Zhu, 2012). The IMs are
also used to deal with some system ROPs related to the
design, maintenance, and resource allocation. This book
made IM a popular topic in reliability research. The
mathematical models of system reliability optimization
have remarkably changed, including the following ten-
dency: (a) the diversity and multilevel of the objective
functions are considered (Abouei Ardakan and Rezvan,
2018; Bretas et al., 2018), such as system availability and
the remaining useful time of the system; (b) the states of
components obtain multiple levels (Yeh and Chu, 2018;
Jiang et al., 2019; Zaretalab et al., 2020); (c) the system
structure has become complicated (Su et al., 2018; Xiang
and Yang, 2018); and (d) the relationship among the
components becomes complicated (Li et al., 2018; Mi
et al., 2018). Many intelligent algorithms, such as artificial
bee colony algorithm (Ghambari and Rahati, 2018),
directional bat algorithm (Chakri et al., 2018), boundary
swarm optimization method (Yeh, 2019), and butterfly
optimization algorithm (Arora et al., 2018), are introduced
to solve the system ROPs. For the system ROPs of CP,
some IMs are developed to deal with mathematical models,
such as IMs for reconfigurable systems (Si et al., 2014) and
IMs for the consecutive k-out-of-n systems with sparse d
(Shen et al., 2015; Shen and Cui, 2015).
The methods for solving all problems can be divided

into two categories. The first category refers to IM-based
optimization rules, which can obtain the results rapidly
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based on IM analysis using ranking and heuristic methods.
The former can obtain the optimization results directly by
IM ranking, and the latter can obtain the results by using
IM-based rules iteratively. The differences between these
methods are presented as follows: The heuristic methods
require many iterations, but the ranking methods only need
one iteration. In the second category, the IM-based
optimization algorithms are used to solve some CPs or
large-scale problems based on the optimization rules.
According to the purpose of the optimization rules, the IM-
based optimization algorithms are divided into IM-based
local search and simplification methods. IM-based local
search methods are used in the sub-process of intelligent
algorithms to improve the performance of the correspond-
ing algorithms, while simplification methods can abridge
the objectives or screen the critical factors of the
optimization problems. Therefore, IM-based optimization
rules are used to solve simple problems, whereas IM-based
optimization algorithms are introduced to solve CPs.
The remainder of this work is organized as follows.

Section 2 briefly illustrates the details of IMs, including
their significance and extensions, based on Birnbaum
importance. Section 3 summarizes the IM-based optimiza-
tion rules for system ROPs. Section 4 investigates the IM-
based optimization algorithms for system ROPs. Section 5
provides a general optimization framework driven by IMs
for the system ROPs. Finally, Section 6 proposes the
challenges in system reliability optimization in future
research.

2 IMs for system ROPs

The Birnbaum importance of component i for binary
systems was first proposed in 1969 to measure the impact
of component reliability on the system reliability of binary
state systems (Birnbaum, 1969). The Birnbaum impor-
tance of component i, which is denoted as IBMðiÞ, can be
evaluated by:

IBMðiÞ ¼ ∂RfðPÞ
∂Pi1

¼ PrfΦðXÞ ¼ 1jX i ¼ 1g – PrfΦðXÞ ¼ 1jX i ¼ 0g,

ði ¼ 1,:::, nÞ, (1)

where n is the number of components in the system; Pi1 is
the probability of component i at state 1, which is the
reliability of component i in the binary state systems;
RfðPÞ is the function of system reliability, in which P =
(P11,..., Pi1,..., Pn1); Xi is the state of component i, where
Xi = 1 indicates that component i is working, and Xi = 0
indicates that this component is failed in this binary state

system; and F(X) is the system structure-function, in
whichX = {X1,..., Xi,..., Xn}, whereF(X) = 1 illustrates that
the system is functioning, and F(X) = 0 indicates that the
system is failed.

2.1 Significance of IMs

Birnbaum importance can be demonstrated from two
points of view (e.g., probability principle and the gradient
geometrical meaning) to understand its significance better.

2.1.1 Probability principle of Birnbaum importance

We use random experiments to introduce the significance
of the component importance for the IMs. A random
experiment E has n basic events ω = (ω1,..., ωi,..., ωn), and
each basic event may or may not occur. The probability
that event j will occur is represented by PrðEjÞ ¼
f jðPrðω1Þ, Prðω2Þ,:::, PrðωnÞÞ (j = 1,..., 2n). The random
variable x(Ej) represents the price of the event Ej, in which
x(Ej) = 1 when Ej occurs and x(Ej) = 0 if Ej does not occur.
According to the set value x(Ej), x represents the average
price of the random experiment E that consists of a set
event fE1, E2,:::, E2ng. Then, x can be calculated by:

x ¼
X2n

j¼1
xðEjÞ$PrðEjÞ

¼
X2n

j¼1
xðEjÞ$f jðPrðω1Þ, Prðω2Þ,:::, PrðωnÞÞ: (2)

The effect of the basic event ωi on the random

experiment E can be represented by
∂x

∂PrðωiÞ
, which

represents the price change of the random experiment E
with the probability change in the basic event ωi. Thus,

∂x
∂PrðωiÞ

can also be used to represent the probability

principle of Birnbaum importance.

2.1.2 Gradient geometrical meaning of Birnbaum
importance

The gradient is a vector that represents the fastest
directions of function change at a known point. In a
rectangular coordinate system, the gradient of the function
f ðy1,:::, yi,:::, ynÞ refers to the partial derivative of f with
respect to yi (Dui et al., 2013):

Ñf ¼ gradf ¼ ∂f
∂y1

y1 þ :::þ ∂f
∂yi

yi þ :::þ ∂f
∂yn

yn, (3)

where yi (i = 1, 2,..., n) is the orthogonal unit vector that
points in the coordinate direction as yi changes.
PrfΦðXÞ ¼ 1g ¼ f ðP11, P21,:::, Pn1Þ can be considered

a function of parameters P11, P21,..., Pn1 in Eq. (1). The
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gradient of f ðP11, P21,:::, Pn1Þ is presented as follows (Dui
et al., 2013):

Ñf ¼ ∂PrfΦðXÞ ¼ 1g
∂P11

P11 þ
∂PrfΦðXÞ ¼ 1g

∂P21
P21 þ :::

þ ∂PrfΦðXÞ ¼ 1g
∂Pn1

Pn1

¼ IBMð1ÞP11 þ IBMð2ÞP21 þ :::þ IBMðnÞPn1, (4)

where gradient is the sum of the product of the Birnbaum
importance and the corresponding component reliability.
The gradient at one point (P11, P21,..., Pn1) shows the
direction of improving the system reliability most rapidly,
and the magnitude refers to the improvement of the system
reliability in this direction.

2.2 Extensions of IMs for system ROPs

The Birnbaum importance was extended into many
different forms to solve various engineering problems.
All the extensions can be classified into three categories
according to the system states: IMs for (1) binary state
systems, (2) multistate systems, and (3) continuous
systems.

2.2.1 IMs for binary state systems

Birnbaum structure importance is a structure importance
that can be calculated by Birnbaum importance when all
the reliability of components is equal to 0.5. Birnbaum
structure importance is an extension of Birnbaum impor-
tance when all the component reliability is the same. The
expression of Birnbaum structure importance IBMS can be
obtained by:

IBMS ðiÞ ¼
X

X
ðPrfΦðXÞ ¼ 1jX i ¼ 1g – PrfΦðXÞ ¼ 1jX i ¼ 0gÞ

2n
: (5)

The criticality importance (Barlow and Proschan, 1975),
considering system failure, refers to the ratio of the
decrease in system reliability when component i fails to the
probability of system failure. The criticality importance of
component i, ICðiÞ, can be calculated as follows:

ICðiÞ ¼ PrfΦð1i, XÞ –Φð0i, XÞ ¼ 1, X i ¼ 0jΦðXÞ ¼ 0g

¼ 1 –Pi1

1 –RðPÞ$I
BMðiÞ, (6)

where 1i and 0i are the reliability vector of all components
when the reliability of component i is one and zero,
respectively.
The Birnbaum importance of component i for CAP

IBMCAPðiÞ is provided to determine the impact degree of the
component on system reliability (Papastavridis, 1987).
IBMCAPðiÞ is the extension of Birnbaum importance in CAP,
which has been derived from Eq. (1):

IBMCAPðiÞ ¼
∂RðnÞ
∂Pi1

¼ RðnjX i ¼ 1Þ –RðnjX i ¼ 0Þ

¼ Rði – 1ÞR0ðn – iÞ –RðnÞ
1 –Pi1

, (7)

where R(j) is the reliability of the consecutive-k-out-of-j: F
subsystem in consecutive-k-out-of-n: F system, which has
components from position 1 to position j; and R0ðjÞ is the
reliability of the consecutive-k-out-of-j: F subsystem, in
which the components are from position (n – j + 1) to
position n.
Δ-importance is proposed to represent the improvement

of the system reliability when the reliability of component i

changes from Pi1 to Píi1 because the Birnbaum importance
of component i is independent with the reliability of
component i (Xie and Shen, 1989). The Δ-importance of
component i, IΔðiÞ, can be evaluated by:

IΔðiÞ ¼ PrfΦðXÞ ¼ 1jPíi1g – PrfΦðXÞ ¼ 1g

¼ ðPíi1 –Pi1Þ$IBMðiÞ: (8)

The parallel redundant importance of component i,
IPRðiÞ, refers to the increase in system reliability by adding
the parallel redundancy of component i (Shen and Xie,
1990), which can be calculated by:

IPRðiÞ ¼ RðP11,:::, Pi1 þ ð1 –Pi1ÞP*
i1,:::, Pn1Þ

–RðP11,:::, Pi1,:::, Pn1Þ

¼ P*
i1ð1 –Pi1ÞIBMðiÞ, (9)

where P*
i1 is the reliability of the redundant component for

component i.
For binary systems, the potential improvement impor-

tance of component i, I IPðiÞ, is the improvement of system
reliability when component i is working, which can be
calculated by (Aven and Jensen, 2000):

I IPðiÞ ¼ PrfΦðXÞ ¼ 1jX i ¼ 1g –PrfΦðXÞ ¼ 1g

¼ ð1 –Pi1Þ$IBMðiÞ, (10)

where the maximum potential improvement is the product
of the maximum reliability improvement and the Birnbaum
importance of this component.
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The risk achievement worth of component i, IRAWði, tÞ,
is the ratio of the risk when component i is at the failed
state to the nominal value of the risk (Zio and Podofillini,
2003a), indicating the relative increase in the risk because
of the failure of component i, which can be calculated by:

IRAWði, tÞ ¼ Fþ
i ðtÞ
FðtÞ , (11)

where F(t) is the nominal value of the risk at time t, and
Fþ
i ðtÞ is the risk when component i fails.
The risk reduction worth of component i, IRRWði, tÞ, is

the ratio of the nominal value of the risk to the risk when
component i is at the working state (Zio and Podofillini,
2003a) to evaluate the potential of component i in reducing
the risk, which can be calculated by:

IRRWði, tÞ ¼ FðtÞ
F –
i ðtÞ

, (12)

where F –
i ðtÞ is the risk when component i is working.

Considering the lifetime distribution of components, the
Birnbaum importance can be represented by the condi-
tional probability that difference exists between the
conditional probability that system lifetime is larger than
t when the component lifetime is larger than t and when
component lifetime is not larger than t (da Costa Bueno,
2005). The Birnbaum importance of component i that
considers lifetime at time t, IBMT ði, tÞ, is calculated by:

IBMT ði, tÞ ¼ Prðτ > tjSi > tÞ – Prðτ > tjSi£tÞ, (13)

where τ is the lifetime of the system, and Si is the lifetime
of component i.
The Bayesian importance of component i, IBayðiÞ, is the

conditional probability that component i fails with the
system (Singpurwalla, 2006):

IBayðiÞ ¼ PrfX i ¼ 0jΦðXÞ ¼ 0g: (14)

When a system fails, identifying which components
have caused the failure, as well as the influence degree of
components on the system failure, is important.
The availability importance of component i is the effect

of the availability of component i on the availability of the
entire system (Barabady and Kumar, 2007). Availability is
a function related to the failure or repair rate. Therefore, the
failure rate-based availability importance of component i,
IAl ðiÞ, is given by:

IAl ðiÞ ¼
∂AðnÞ
∂Ai

∂Ai

∂li
, (15)

where A(n) is the system availability, Ai is the availability
of component i, and li is the failure rate of component i.
Similarly, the repair rate-based availability importance

of component i, IA� ðiÞ, is given by:

IA� ðiÞ ¼
∂AðnÞ
∂Ai

∂Ai

∂�i
, (16)

where μi is the repair rate of component i.
The cost-effective IM ICEIMðiÞ is proposed by combin-

ing the Birnbaum importance with the total cost of failure
(Gupta et al., 2013):

ICEIMðiÞ ¼ ΔgiðPíi1Þ
gðPÞ =

Xn

i¼1
EðCiÞ

EðCiÞ
, (17)

where ΔgiðPíi1Þ is the change in the probability of system
failure when the component reliability of component i
changes from Pi1 to Píi1, g(P) is the probability of system
failure without the improvement of component reliability,
and E(Ci) is the expected cost when component i fails.
For reconfigurable systems, such as consecutive k-out-

of-n systems, the approximation of the reconfigurable
importance for component i, IoptðiÞ, can be calculated by
(Si et al., 2014; Dui et al., 2018):

IoptðiÞ ¼ lim
Δ↕ ↓0

RoptðPi1 þ Δ, PÞ –RoptðPi1, PÞ
Δ

, (18)

where D is the change in component reliability; and Ropt

ðPi1, PÞ and RoptðPi1 þ Δ, PÞ are system reliabilities of
the optimal configurations before and after improving the
reliability of component i by D, respectively, P = (P11,...,
Pi1,..., Pn1).
The Birnbaum importance of component i in mission k,

IPMk ði, tÞ, is an extension of Birnbaum importance for the
phased-mission systems (Li et al., 2015):

IPMk ði, tÞ ¼ ∂RkðtÞ
∂Rk,iðtÞ

, (19)

where Rk,i(t) is the component reliability of component i in
mission k at time t; and Rk(t) is the mission reliability for
mission k at time t, represented by the reliabilities of com-
ponents when RkðtÞ ¼ f ðRk,1ðtÞ,:::, Rk,iðtÞ,:::, Rk,mk

ðtÞÞ, in
which mk represents the number of components in the
mission k.
The component maintenance priority IMjjiðtÞ is proposed

to evaluate the importance of component j once component
i fails (Wu et al., 2016):

IMjjiðtÞ ¼ Hjji
∂Rfðli, Pi1ðtÞÞ

∂Pj1ðtÞ
, (20)

where

Hjji ¼
1 if Φð11,:::,1i – 1,0i,1iþ1,:::,1nÞ ¼ 0

Φð0i, 0j, 1ijÞ if Φð11,:::,1i – 1,0i,1iþ1,:::,1nÞ ¼ 1

(
,

(0i, 0j, 1ij) represents the states of the system when
components i and j fail but other components are working;
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li ¼ χðΦð11,:::, 1i – 1, 0i, 1iþ1,:::, 1nÞ ¼ 0Þ, where χð$Þ is
an indicator function; and Pi1ðtÞ represents the reliability
of component i at time t in the binary system.
The cost-based parallel redundancy importance IPRC ðiÞ is

introduced by combining the cost function with Birnbaum
importance (Wu and Wu, 2017):

IPRC ðiÞ ¼ IBMðiÞ$maxðCðri, niÞÞ=Cðri, niÞ, (21)

where C(ri, ni) is the cost of adding redundancy for
component i, ri is the reliability of component i and its
redundant components, and ni is the redundant number of
component i.
The global component importance of component i,

IGCðiÞ, depends not only on the tasks of each phase but also
on the components’ nominal mean time between failure
(MTBF) and their uncertain levels (Wu et al., 2018):

IGCðiÞ ¼ EðDðRðM jx�iÞÞÞ
DðRðMÞÞ

¼ DðRðMÞÞ –DðEðRðM jx�iÞÞÞ
DðRðMÞÞ , (22)

where M is the nominal MTBF vector of all components;
~i represents nearly all components, except for component
i; EðDðRðM jx�iÞÞÞ is the total effects caused by compo-
nent i and its interaction effect with other components;
DðEðRðM jx�iÞÞÞ is the average decrement in the variance
of the mission success probability without considering
component i, depending on all the components themselves
and the interaction among them except for component i;
and DðRðMÞÞ is the variance of mission success
probability.
The interval-valued Birnbaum importance of component

i, IBM½%� ðiÞ is similar to that of Birnbaum importance, which

uses the interval-valued reliability to calculate the
Birnbaum importance (Qiu et al., 2018):

IBM½%� ðiÞ ¼ ½RðnjX i ¼ 1Þ� – ½RðnjX i ¼ 0Þ�

¼ ½RðnjX i ¼ 1Þ –RðnjX i ¼ 0Þ,

RðnjX i ¼ 1Þ –RðnjX i ¼ 0Þ  �, (23)

where ½RðnjX i ¼ 1Þ� is the interval-valued system relia-
bility when component i is working; ½RðnjX i ¼ 0Þ� is the
interval-valued system reliability when component i fails;
Rð$Þ is the lower boundary of system reliability; and Rð$Þ
is the upper boundary of system reliability.
The importance I c – IMði, tÞ based on the cut set,

including edge i, is developed for the network with n
edges when the edge failures follow a counting process
fNðtÞ, t³0g (Du et al., 2019). I c – IMði, tÞ is the condi-
tional probability that a cut, including edge i, fails when the
network fails, which is shown by:

Ic – IMði, tÞ ¼ Prfa cut C2Ci is down at tg
Prfthe network is down at tg

¼
Xn

k¼0
PrðNðtÞ ¼ kÞFðk, 0iÞXn

k¼0
PrðNðtÞ ¼ kÞFðkÞ , (24)

where F(k) is the destruction spectrum (D-spectrum) of the
network, which is the probability that the network fails
when exactly k randomly selected edges fail; F(k, 0i) is the
D-spectrum of edge i, which is equal to the probability that
the network fails when randomly selected k edges fail,
including edge i; and PrðNðtÞ ¼ kÞ is the probability that k
edges fail at time t.
The importance based on the path set of edge i,

Ip – IMði, tÞ, is the conditional probability that a path
including edge i works when the network works at time
t, which is shown by:

Ip – IMði, tÞ ¼ Prfa path P2Pi is up at tg
Prfthe network is up at tg

¼
Xn

k¼0
PrðNðtÞ ¼ kÞF 0ðn – k, 1iÞXn

k¼0
PrðNðtÞ ¼ kÞF 0ðn – kÞ , (25)

where F 0ðkÞ is the probability that the network works
if randomly selected k edges work; F 0ðn – k, 1iÞ (or
F 0ðn – k, 0iÞ) is the probability that the network works
(fails) if randomly selected n – k edges, including edge i,
work (fail); and F 0ðn – kÞ is equal to F 0ðn – k, 0iÞþ
F 0ðn – k, 1iÞ.
The component reliability boundary, manufacturing

difficulty, and feasibility are considered for improving
the component reliability. A generalized Birnbaum IM
(GBIM) IGBðiÞ is proposed by considering the cost-
reliability relation function to evaluate the contribution of
individual components to improve the system reliability
(Si et al., 2019):

IGBðiÞ ¼ ∂Rs

∂ci
¼ ∂Rs

∂Pi1

∂Pi1

∂ci
, (26)

where Rs is the system reliability; and ci is the cost of the
component related to component reliability range, manu-
facturing complexity, and technology feasibility.

2.2.2 IMs for multistate systems

For the multistate systems, the concept of system
performance is defined based on the expected utility U
(Griffith, 1980), which can be calculated by:

U ¼
XM

j¼1
ajPrðΦðXÞ ¼ jÞ, (27)

where 0 ¼ a0£a1£:::£aM represents the performance
levels of the system at different states, which corresponds
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to the system state vector {0, 1,...,M}; a0 ¼ 0 is the state of
the system with the lowest performance level.
The Griffith importance IGmðiÞ is the generalization of

Birnbaum importance for evaluating the impact of
component i on the system performance (Griffith, 1980):

IGmðiÞ ¼
XM

j¼1
ðaj – aj – 1Þ

� ½PrðΦðmi, XÞ³jÞ – PrðΦððm – 1Þi, XÞ³jÞ�,
(28)

where Φðmi, XÞ is the system state when the component i
is at state m. IGm ðiÞ evaluates the importance of component i
at state m in multistate systems; it indicates the change in
the system performance when the component i degrades
from state m to state m – 1.
The Birnbaum sensitivity measure for the generalized

phased-mission systems IBSðiÞ is proposed to consider the
effect of the failure of component i on the unreliability of
the system (Xing and Dugan, 2002):

IBSðiÞ ¼ ∂QðqÞ
∂qi

¼ ∂ Q$Pu þ Pu

� �
∂qi

¼ –Q$
∂ðPuÞ
∂qi

þ Pu
∂ðQÞ
∂qi

, (29)

where qi is the probability when component i fails; Q(q) is
the failure function of the corresponding perfect coverage
model system, in which q = {q1,..., qi,..., qn}; Q is the
probability that the system fails, and Q ¼ 1 –Q; and Pu is
the probability that no single-point failure occurs, and
Pu ¼ 1 –Pu.
The binary Birnbaum importance is generalized to the

multistate, where the system or component works (or fails)
when ΦðXÞ³k0 (or ΦðXÞ < k0) (Zio and Podofillini,
2003b), where k0 is the required performance level. The
multistate Birnbaum importance of component i in this
system IBMk0

ðiÞ is shown by:

IBMk0 ðiÞ ¼ PrfΦðXÞ³k0jX i³k0g – PrfΦðXÞ³k0jX i < k0g:
(30)

Griffith importance only measures the effect of a
particular component on the system performance. How-
ever, it does not determine the ranks of the components or
states based on the important levels. Therefore, Wu
importance of component i at state m, IWu

m ðiÞ, is proposed
to overcome the deficiency of Griffith importance by
considering the performance utility (Wu and Chan, 2003):

IWu
m ðiÞ ¼ Pim

XM

j¼0
ajPrðΦðmi, XÞ ¼ jÞ, (31)

where IWu
m ðiÞ illustrates the contribution of component i at

state m to the system performance U, which is the sum of

IWu
m ðiÞ (m = 0, 1,..., Mi), given that U ¼

XMi

m¼0
IWu
m ðiÞ.

The multistate redundancy importance of component i,
IMRIðiÞ, is an IM based on the improvement of the system
reliability (Ramirez-Marquez et al., 2006):

IMRIðiÞ ¼ PrfΦðxþi , XÞ³dg – PrfΦðXÞ³dg, (32)

where d represents the constant demand of system; and xþi
represents the addition of the same components for
component i during the system design. IMRIðiÞ is an
estimation of the profit earned by adding redundancy or
leveling up the state.
The risk reduction worth of component i in the

multistate system is extended by considering the required
component condition α (Zio et al., 2007), called the
generalized performance achievement worth measure,
IPAWα ðiÞ, which is shown by:

IPAWα ðiÞ ¼ L

L>αi
, (33)

where L is the nominal loss of the system; α is the
determined and known required component condition, and
the system operates better when the component condition
is more than α; and L>αi is the expected loss of the entire
system when the condition of component i remains above
level α.
The mean absolute deviation (MAD) importance

IMADðiÞ is proposed to measure the expected absolute
deviation of reliability for the multistate systems with
multistate components caused by the various performance
levels and corresponding probabilities of a specified
component (Ramirez-Marquez and Coit, 2007), which
emphasizes the probabilities of the operation state of the
system and the failure state of a component:

IMADðiÞ ¼
X

l
PrðliÞjPrðΦðli, XÞ³dÞ – PrðΦðXÞ³dÞj,

(34)

where li represents the state of component i.
Griffith importance studies the situation that a compo-

nent degrades from the state m to the state m – 1. However,
it does not consider the case that a component degrades
from the state m to any other lower states {m – 1, m – 2,...,
0}. For that reason, the integrated IM of component states
I IIMm,l ðiÞ is introduced to extend the Griffith importance by
considering the transition rates among different component
states (Si et al., 2012c):

I IIMm,l ðiÞ ¼ Pim$l
i
m,l

XM

j¼1
ðaj – aj – 1Þ

� ½PrðΦðmi, XÞ³jÞ –PrðΦðli, XÞ³jÞ�

¼ Pim$l
i
m,l

XM

j¼1
aj

�½PrðΦðmi, XÞ ¼ jÞ – PrðΦðli, XÞ ¼ jÞ�, ðm > lÞ, (35)
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where lim,l is the failure rate of component i transferring

from state m to state l. I IIMm,l ðiÞ is the expected change in the
system performance when component i degrades from
state m to state l.
The multistate component performance importance for

component i at state j, IMCP
j ðiÞ, can be calculated by

(Roychowdhury and Bhattacharya, 2019):

IMCP
j ðiÞ ¼ ∂hðPÞ

∂Pij
¼ ∂hðP1$,:::, Pi$,:::, Pn$Þ

∂Pij
, (36)

where h(P) is the system performance function; Pi∙ is the
probability set of all states for component i; and Pij

represents the probability of component i at state j.

2.2.3 IMs for continuous systems

The continuum structure system is introduced by con-
sidering that the system or component states are any value
in a segment [0, 1] (Baxter, 1984; 1986). The structure
function Φ : ½0, 1�n↕ ↓½0, 1� of a continuous system is non-
decreasing in each argument, satisfyingΦ (01, 02,..., 0n) = 0
and Φ (11, 12,..., 1n) = 1.
For continuous systems, [0, β) represents the failure

states of the system and [β, 1] represents the working
states. The Birnbaum importance of component i at a level
β 2 ð0, 1�, ICSβ ði, tÞ, is evaluated by (Kim and Baxter,
1987):

ICSβ ði, tÞ ¼ PrðΦðXðtÞ³βjX iðtÞ³δβi ÞÞ

– PrðΦðXðtÞ³βjX iðtÞ < δβi ÞÞ, (37)

where δβi denotes the key element of component i, and

0 < δβi < 1 for all β 2 ð0, 1�.
The lower variance of the importance for all components

can obtain a balance system, which can eliminate bottle-
necks or overly reliable components (Zio and Podofillini,
2007). The balanced IM IB can be calculated by:

IB ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2 – I 02

p ,

I 2 ¼ 1

n

Xn

i¼1
I2i , I 0 ¼ 1

n

Xn

i¼1
I i, (38)

where Ii is the importance of component i. IB can be used in
binary, multistate, or continuous systems.
The maintenance-based IM for the continuous system is

the system performance improvement by maintaining the
component i for the unit maintenance time (Cai et al.,
2018). Therefore, the maintenance-based importance of
component i, IUði, tÞ, can be expressed as follows:

IUði, tÞ ¼ dΔUiðtÞ
dt

¼ !
1

mi¼0
pðmiÞ!

1

li>mi

�mi,liðtÞ

!
1

u¼0
aðuÞ½pliðuÞ – pmi

ðuÞ�dudlidmi, (39)

where ΔUiðtÞ is the performance improvement of system
when considering time t to maintain the component i;
pðmiÞ represents the probability when the component i is at
state m; �mi,liðtÞ is the density function when the state of
component i transits fromm to l at maintenance time t; aðuÞ
is the utility function of the system when its state is at u;
and pliðuÞ and pmi

ðuÞ represent the probability of the
system at state u when component i is at state li and mi,
respectively.
The extended importance indexes have a relatively close

relationship with the Birnbaum importance. Most IMs for
binary systems can be derived by the Birnbaum importance
directly, such as the IBMS ðiÞ, ICðiÞ, IBMCAPðiÞ, IΔðiÞ, IPRðiÞ,
I IPðiÞ, IoptðiÞ, IPMk ði, tÞ, IMjji ðtÞ, and IBM½%� ðiÞ. Some cost-
related IMs can also be derived by Birnbaum importance
by introducing the change in system performance for unit
cost, such as IAl ðiÞ, IA� ðiÞ, ICEIMðiÞ, IPRC ðiÞ, IGCðiÞ, and
IGBðiÞ. Birnbaum importance considers the relationships
between the system performance when component i is
perfect, the system performance when component i fails,
and the current system performance. However, some
importance indexes consider these factors to analyze the
importance level of component i, such as IRAWði, tÞ,
IRRWði, tÞ, IBMT ði, tÞ, IBayðiÞ, I c – IMði, tÞ, and Ip – IMði, tÞ.
Griffith importance has extended the Birnbaum importance
into multistate systems considering the system perfor-
mance. Almost all IMs for multistate systems and
continuous systems are derived by the Griffith importance.
The development of IMs extended by the Birnbaum

importance can be summarized in Fig. 1. The selected IMs
are used to optimize system ROPs and can be divided into
three categories based on the system states as binary
systems, multistate systems, and continuous systems.

3 IM-based optimization rules for system
reliability optimization

Some scholars have proposed the IM-based optimization
rules to solve the system ROPs, in which its validity is
proven mathematically or through numerical experiment
results. Optimization rules can be classified into two
categories, namely, optimization rules by IM-based
ranking and heuristic methods. The references for system
reliability optimization can be analyzed in Table 1 by
considering the problems, system states, IMs, and
optimization rules.
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3.1 Optimization rules for ROP

The availability allocation problems are solved to
determine the optimal solution related to reliability and
maintainability; the constraints of these problems are the
cost for maximizing system availability. For repairable
systems, the availability IMs (IAl and IA� ) of component i
based on failure and repair rates are the partial derivative of
system availability with respect to the component avail-

ability and failure and repair rates (Barabady and Kumar,
2007). The strategy indicates that the component with the
largest available IM can have the greatest effect on system
availability. The research indicates that the proposed
strategy can be applied in the availability allocation
problems based on the ranking of IM, wherein perfor-
mance is demonstrated through numerical examples.
The multistate railway network is modeled, in which

each rail section can remain at different states as a
component, and the speed depends on the degradation

Fig. 1 Extensions and classifications of Birnbaum importance for system reliability optimization.

Table 1 Reference analysis of optimization rules based on IMs

References Problems Systems IMs Rules

Barabady and Kumar (2007) ROP Binary IAl or IA� Ranking

Zio et al. (2007) ROP Multistate IPAWα Ranking

Gupta et al. (2013) ROP Binary ICEIM Ranking

Wu et al. (2016) ROP Binary IMjji Ranking

Roychowdhury and Bhattacharya (2019) ROP Multistate IMCP
j Ranking

Boland et al. (1988) RAP Binary IPR Ranking

Shen and Xie (1990) RAP Binary IPR Ranking

da Costa Bueno (2005) RAP Binary IBMT Ranking

Ramirez-Marquez and Coit (2007) RAP Multistate IMAD Ranking

Bhattacharya and Roychowdhury (2014) RAP Binary IBMS or IBM Ranking

Bhattacharya and Roychowdhury (2016) RAP Binary IBay Ranking

Zuo and Kuo (1990) CAP Binary IBMCAP Heuristic

Lin and Kuo (2002) CAP Binary IBMCAP Heuristic

Yao et al. (2011) CAP Binary IBMCAP Heuristic

Zhu et al. (2017) CAP Binary IBMCAP Heuristic

Qiu et al. (2018) CAP Binary IBM½⋅� Heuristic
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tracks and traffic conditions (Zio et al., 2007). The
generalized performance achievement worth can be
represented by the delay decrement when the traveling
speed in the rail section is higher than the determined level.
The results of different cases indicate that relaxing the
speed requirements on the sections with high importance
can result in a large decrement of the overall delay.
Therefore, the order of relaxing sections should be
determined by the ranking of IPAWα .
Maintenance cost plays a critical role in improving

system performance, and the IM that combines reliability
with cost is useful in determining which components can
generate the highest improvement in the system perfor-
mance using the same cost constraints. ICEIM can be used
to rank the primary events based on the cost-effective
approach for inspection, replacement of components, and
maintenance in the engineering systems (Gupta et al.,
2013). If the system performance needs to be improved
with limited budget, then the component with high ICEIM

must be prioritized.
Performing preventive maintenance (PM) frequently

may require a great deal of time and can reduce system
availability because of the increase in downtime. There-
fore, engineers perform PM on several components
simultaneously. A component maintenance priority IMjji is
a typical IM for selecting components in PM (Wu et al.,
2016). The maintenance policy is introduced by selecting
some components with higher IMjji , and the proposed policy

can determine the optimal number of components to
minimize the expected cost with a given time based on the
ranking of IMjji .
A multistate component performance importance is

presented to evaluate the effect of the probability of a
component at one state on the system performance
(Roychowdhury and Bhattacharya, 2019). IMCP

j is proven
useful for improving system performance. The multistate
component performance importance can maximize the
system performance at the design stage by improving the
component performance with the largest importance
repeatedly. The proposed method is based on the ranking
of IMCP

j , and its effectiveness is demonstrated by numerical
experiments.
By analyzing the references of the optimization rules for

ROP, most of the optimization rules are based on
importance ranking, and heuristic-based optimization
rules are seldom used to solve the ROP. As such, the
procedures of ranking-based optimization rules for ROP
are summarized in Fig. 2. For ROP, the proper IM should
be selected first by analyzing the optimization model.
Second, the IM is calculated, and the components are
ranked in decreasing order of IM values. Third, the
reliability improvement of the component with the largest
importance is determined. Then, the remaining resource is
checked. If no resource remains, the final solution is
outputted; otherwise, the second step is repeated until all
resources are exhausted.

Fig. 2 Procedures of ranking-based optimization rules for ROP.
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3.2 Optimization rules for RAP

The redundancy importance that considers active redun-
dancy is introduced into coherent systems to evaluate the
changes in system reliability by adding one redundant
component (Boland et al., 1988). The parallel redundancy
importance IPR is used to identify the priority of
components in improving system reliability. The redundant
component should be assigned to the component with the
largest IPR. The proposed rule is based on the rank of
component reliability. Its effectiveness is verified by
mathematical derivation and numerical experiments for
the series-parallel systems and parallel-series systems.
To obtain the largest improvement of system reliability,

parallel redundancy should be added to the components
that generate the largest improvement in terms of system
reliability, especially when the cost, space, and weight are
limited. When the cost of each redundant component is
equal, the component, which can generate the largest
system reliability increment, results in parallel redundancy
(Shen and Xie, 1990). Ranking the components based on
IPR to identify the most profitable component is a
reasonable approach.
The system lifetime optimization problem allocates a

redundant component for maximizing the system lifetime.
The problem in allocating a spare part into a k-out-of-n: F
system with dependent components is investigated because
adding the redundancy to different components can result
in additional lifetimes (da Costa Bueno, 2005). The main
contribution of this work is that, for a series (parallel)
system, performing a minimal standby (active) redundancy
operation and allocating it to the weakest component with
the largest IBMT is stochastically recommended.
For coherent systems, the optimal solution with

maximum reliability improvement is generated by allocat-
ing a redundant component to the appropriate components
based on the IMs (Bhattacharya and Roychowdhury,
2014). The proposed optimal method of iteratively adding
one redundant component is extended to solve the problem
with unknown information about the components’ reli-
abilities. For situation 1, in which we do not know the
component reliabilities, the redundant component with the
same reliability should be assigned to the component with
the highest Birnbaum structure importance IBMS . For
situation 2, in which the reliabilities of all components
are the same, the redundant component should be allocated
to the component with the highest Birnbaum importance
IBM. For situation 3, supposing that all component
reliabilities are different, the redundant component should
be added to component with the largest ð1 –Pi1ÞIBMðiÞ.
For situation 4, in which the reliabilities of redundant
components may be not the same but the reliabilities of
components are known, a redundant component should be
added to the component with the highest Píi1ð1 –Pi1Þ
IBMðiÞ.

Bayesian importance is introduced to assign redundant
components to maximize system reliability (Bhattacharya
and Roychowdhury, 2016). Some rules are applied to
optimize RAP, as follows: (1) For series systems, system
reliability can be maximized by allocating redundancy to
the component with the highest IBay; (2) For any coherent
systems with non-overlapping subsystems, in which
components’ reliabilities in the same subsystem are the
same, adding redundancy to the subsystem with high IBay

can improve system reliability.
By analyzing the optimization rules that are based on the

ranking of importance, the procedures of ranking-based
optimization rules for RAP can be summarized in Fig. 3.
For RAP, the proper IM should be selected first by
analyzing the optimization model. Second, we calculate
and rank the IM in decreasing order according to the
importance of components. Third, we determine the
redundancy allocation of the component with the largest
importance. Then, we check the remaining resource. If no
resources remain, the final solution is outputted; otherwise,
we return to the second step until all resources are
exhausted.
Some heuristic-based optimization rules are used to

maximize system performance. A heuristic approach based
on MAD is developed to maximize the reliability of
multistate systems with multistate components (Ramirez-
Marquez and Coit, 2007). The RAP for multistate systems
with multistate components is to the consideration of the
allocation of redundant components with a limited budget
to maximize system reliability with the given demand. The
procedures of MAD-based heuristics are summarized in
Table 2. The results of numerical experiments with
different system complexities illustrate that the MAD-
based heuristic can solve this type of optimization problem
effectively by using the optimization rules based on
heuristic methods.

3.3 Optimization rules for CAP

The optimal invariant design of consecutive k-out-of-n
systems aims to determine the optimal assignment once the
ranking of components’ reliabilities is known. On the one
hand, the optimal invariant design can identify the optimal
invariant assignment of some typical consecutive-k-out-of-
n systems; on the other hand, the non-existence of optimal
invariant assignment in other consecutive k-out-of-n
systems should also be proven (Zuo and Kuo, 1990).
Systems without optimal invariant assignments can
generate at least suboptimal designs based on heuristic
methods, and the key idea is to assign the component with
high reliability to the position with large IM. For CAP in
linear consecutive-k-out-of-n systems, the reliability pat-
tern should match the IM pattern. The initial assignments
of the two heuristics should be generated randomly.
Heuristic 1 (ZKA) assigns the components with low
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reliability to the position with low IM. Heuristic 2 (ZKB)
assigns the components with high reliability to the position
with high IM. If the component reliability pattern does not
match with the IM pattern, the component should
exchange with other components, thereby making these
two patterns consistent and improving the system
reliability after the exchange. The ZKA heuristic process
is summarized in Table 3.
A greedy heuristic method called LKA heuristic is

developed to search for an ideal assignment according to

reliability importance (Lin and Kuo, 2002). If an optimal
invariant design is present, the optimal assignment can be
determined by the ranking of the component reliability, and
the optimal assignment generated by the LKA heuristic is
the same with the optimal assignment. LKA heuristic
arranges the components with the lowest reliability to all
positions as the initialization. Then, it assigns the available
components with the highest reliability to the unassigned
positions with the largest IM iteratively. The LKA heuristic
process is shown in Table 4.

Fig. 3 Procedures of ranking-based optimization rules for RAP.

Table 2 Process of the MAD-based heuristic

Steps Description

I Evaluate the IMAD of each component by simulation with the max-flow min-cut algorithm

II (a) Determine the number of redundant components based on the cost per unit increase in the value of IMAD

(b) Update each binary minimal cut vector

III Judge the stopping rules, if the rules are not satisfied, the process goes to Step I; otherwise, stop this heuristic

Table 3 Process of the ZKA heuristic

Steps Description

I Generate an initial arrangement randomly, π ¼ ðπ1, π2,:::, πi,:::, πnÞ
II Calculate IBMCAPðiÞ for all positions from position 1 to position n by Eq. (7)

III For k = 1 to n – 1, do the loop
(a) Find positions m and r such that πm ¼ k and πr ¼ k þ 1

(b) If IBMCAPðmÞ>IBMCAPðrÞ and RðP, πÞ>RðP, πðm, rÞÞ, exchange the assignments of components πm and πr

IV If there is no exchange in Step III, output the final assignment; otherwise, go to Step II
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The Birnbaum importance is used to design heuristics
for solving CAP. The ZKA and ZKB heuristics start
pairwise exchanges from the least reliable component,
while the ZKC and ZKD heuristics start pairwise
exchanges from the most reliable component with the
revised Alternatives 1 and 2, respectively (Yao et al.,
2011). The new Alternative 1 in ZKC heuristic compares
the component πm = k with the component πr = k – 1, and
the new Alternative 2 in ZKD heuristic compares
component πm = k with the component with the largest
Birnbaum importance among the positions whose reliabil-
ities are lower than Pi1. The differences between ZK-type
heuristics are listed in Table 5.
Three new LK-type heuristics are proposed by modify-

ing the initialization and/or the assignment rule of the LKA
heuristic (Yao et al., 2011). The LKB heuristic assigns the
component according to the increasing order of component
reliability and initializes the components with the lowest
reliability in all positions. The LKC heuristic has the same
initialization as the LKA heuristic but uses a different
assignment rule. That is, the assignment of position with
the smallest Birnbaum importance is retained, and the least
reliable unassigned component is allocated to all other
positions. The LKD heuristic uses the same assignment
rule as the LKC heuristic, but it iterates from the
component with high reliability to the component with

the lowest reliability. The differences between LK-type
heuristics are listed in Table 6.
The Birnbaum importance-based two-stage (BIT)

approach is proposed by integrating the simulation results
of ZK- and LK-type heuristics for solving the CAP (Yao
et al., 2011). First, we generate two initial assignments by
using both LKA and LKB heuristics. Second, we select the
ZKB heuristic if all the reliabilities of components are less
than 0.2; otherwise, we select the ZKD heuristic. Finally,
we select the better one as the final solution. The
procedures of the BIT heuristic are summarized in Table 7.
A single type of component is used in CAP, and this

problem is extended to a multi-type CAP by dividing the
components into different types of components that should
be assigned to the corresponding type of position (Zhu
et al., 2017). The BIT method for the multi-type CAP
(BITSM) is developed after the simulation based on the
extended ZK- and LK-type heuristics. BITSM can be
summarized as follows. In the first stage, we generate two
initial assignments based on the parallel iterative assign-
ment. In the second stage, we perform the parallel pair-
wise exchange separately on these two assignments. In the
third stage, we should improve the solution.
Uncertainties are inevitable in many real engineering

projects because of insufficient data and complex relation-
ships. The extension of the LKA heuristic using the

Table 4 Process of LKA heuristic

Steps Description

I Assign component 1 to all positions that are set Pi1 ¼ P11 and πi ¼ 1 for i ¼ 1, 2,:::, n

II Let S ¼ f1, 2:::, ng, which is the set of available positions that could receive other components

III For k = n to 2, do the loop

(a) Calculate IBMCAPðiÞ for all i 2 S by Eq. (7)

(b) Find the position m 2 S, which meets that IBMCAPðmÞ ¼ maxi2SIBMCAPðiÞ
(c) Let S ¼ S=fmg, assign component k to position m

IV If there are no components in S, output the final assignment; otherwise, go to Step II

Table 5 Differences between ZK-type heuristics

Heuristics Step III Step III(a) Step III(b)

ZKA 1 to n - 1 πr ¼ k þ 1 IBMCAPðmÞ > IBMCAPðrÞ
ZKB 1 to n - 1 IBMCAPðrÞ ¼ mini:Pi1>Pm1

IBMCAPðiÞ IBMCAPðmÞ > IBMCAPðrÞ
ZKC n to 2 πr ¼ k – 1 IBMCAPðmÞ < IBMCAPðrÞ
ZKD n to 2 IBMCAPðrÞ ¼ maxi:Pi1<Pm1

IBMCAPðiÞ IBMCAPðmÞ < IBMCAPðrÞ

Table 6 Differences between LK-type heuristics

Heuristics Step I Step III Step III(b) Step III(d)

LKA Component 1 to all positions n to 2 IBMCAPðmÞ ¼ maxi2SIBMCAPðiÞ Component k to position m

LKB Component n to all positions 1 to n - 1 IBMCAPðmÞ ¼ mini2SIBMCAPðiÞ Component k to position m

LKC Component 1 to all positions 2 to n IBMCAPðmÞ ¼ mini2SIBMCAPðiÞ Component k to positions in S

LKD Component n to all positions n - 1 to 1 IBMCAPðmÞ ¼ maxi2SIBMCAPðiÞ Component k to positions in S
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evidential network and interval-valued IM solves CAP
under uncertain parameters and models (Qiu et al., 2018).
The procedures of the proposed heuristic method are
similar to those of the original LKA heuristic, but the
relations of interval order are introduced to compare the
bounded system reliability and the interval-valued Birn-
baum importance. The system reliability and the Birnbaum
importance are interval-valued when the parameter is
uncertain, and the interval order should be conducted in
Steps III(a) and III(b) in the LKA heuristic process.

3.4 Summary of the optimization rules

(1) Optimization rules by IM-based ranking methods
By analyzing the optimization rules of ROPs, RAPs, and

CAPs, all the ROPs and almost all the RAPs are solved by
the IM-based ranking methods, but none of the CAPs are
solved using the IM-based ranking methods. The general
procedures of the IM-based ranking methods for ROPs are
similar to those of RAPs. We choose the proper IMs to
analyze the optimization model at first. Subsequently, we
rank the components in decreasing order according to IM
values. Then, we improve the reliability or redundancy of
the component with the largest importance. Finally, we
check the remaining resource. If no resources remain, we
output the final solution; otherwise, we return to the
previous step to rank the components.
(2) Optimization rules by IM-based heuristic methods
Some RAPs and all the CAPs are solved by the IM-

based heuristic methods with the consideration of the
complexity of the corresponding problems by analyzing
the optimization rules of ROPs, RAPs, and CAPs. For
RAPs, redundancy should be assigned to the component
with the highest IM, whereas the highest (lowest) reliable
component should be assigned to the position with the
highest (lowest) IM. The general procedures of IM-based
heuristic methods can be summarized as follows. First, we
generate an initial solution. Second, we assign the
resources to the components with the highest IM. Third,
we update the results. Finally, we check the remaining
resources and stop the IM-based heuristic methods.

4 IM-based optimization algorithms for
system reliability optimization

System optimization problems consistently minimize the
cost subject to the requirement of system reliability or

maximize the system reliability under resource constraints.
Considering the complexity of the system ROPs, many
scholars have proved that the system ROPs are NP (non-
deterministic polynomial)-hard (Lin and Chen, 1997).
Many problems are complicated. Thus, obtaining the
optimal solution by using the enumeration method is
difficult. However, IM-based optimization algorithms can
generate an effective solution. On the one hand, IM-based
rules are combined with evolutionary algorithms to
improve the performance of the proposed algorithms. On
the other hand, the IMs are used to screen the critical
factors to simplify the optimization problems. Both
approaches are IM-based optimization algorithms, and
they are known as the IM-based local search and
simplification methods. The references for optimization
algorithms based on IMs are summarized in Table 8 by
considering the problems, system states, IMs, and algo-
rithms.

4.1 Optimization algorithms for ROP

To solve the ROP, Birnbaum importance and Δ-importance
are introduced into the genetic algorithm to obtain the
optimal solution with constraints on cost (Wang et al.,
2018). The optimization algorithm combines the local
search method with the advantages of IM. The mechanism
of IMs is that the components with larger IM should focus
on improving its reliability. Genetic algorithms based on
Birnbaum importance or Δ-importance are proposed to
illustrate the effectiveness of IBM and IΔ for solving the
ROP. The performance of the genetic algorithm based on
Δ-importance is better than that based on Birnbaum
importance via the comparison of the generations of
convergence and system reliability.
Considering the limited design resources, increasing the

reliability of some components can maximize system
reliability. IGB can evaluate the contribution of component
reliability to system reliability considering the boundary of
component reliability and the difficulty of increasing
component reliability (Si et al., 2019). The GBIM-based
genetic algorithm is presented to solve the ROP by
increasing the reliability of the component with the highest
IGB during local search. The GBIM-based genetic algo-
rithm could find a better near-global solution with a faster
convergence speed compared with genetic algorithms that
are based on Birnbaum importance and Δ-importance, and
the effectiveness of the proposed algorithm is illustrated by
a mixed system with 17 components.

Table 7 Process of the BIT heuristic

Steps Description

I Generate two initial arrangements by both LKA and LKB heuristics

II (a) Select the ZKB heuristic if all the components have low reliability; otherwise, select ZKD heuristic
(b) Stop by giving the final arrangement with higher system reliability
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The performance improvement of multistate systems
with multistate components is a CP because system
performance depends on the combinations of components’
performance levels and is related to the component
performance and their positions. Balanced IM IB is
considered an objective in the mathematical model for
the multi-objective ROP (Zio and Podofillini, 2007), which
can simplify the model because maximizing the balanced
IMs can make the system fully balanced to avoid
bottlenecks or overly reliable components.
Continuous systems can describe component situations

more accurately than discrete-state systems. However,
solving optimization problems with continuous systems
using conventional optimization algorithms is compli-
cated. The performance improvement problem for a
continuous system is to arrange the resources optimally
to maximize system performance after the maintenance,
which can be solved by the performance improvement-
based genetic algorithm (Cai et al., 2018). The local search
method based on IU is proposed to rearrange the
maintenance time of components. When the maintenance
information of other components is known and identical,
the components with the largest IU should provide the
optimal value, and the maintenance time of other
components is balanced based on the proportion of
previous maintenance time.

4.2 Optimization algorithms for RAP

Many scholars have investigated the optimization algo-
rithms for RAP because some extended RAPs are
developed by establishing complicated mathematical
models. The RAPs are extended by considering the
abnormal external failures when designing a system that
maximizes the system reliability considering the uncertain
abnormal external failures under normal and worst cases
(Xiong et al., 2017). A multicomponent IM can identify the
amounts of abnormal external failures for the worst case
when the system configuration is provided. As proven, the
effect of component failures on the system can be
simplified by considering the effect of component failures
on the subsystems, which can determine the system
reliability under worst cases with different amounts of
the abnormal external failures and simplify the complexity
of calculating the objective. This extended RAP is a multi-
objective optimization problem that maximizes system
reliability under normal and abnormal external failures and
minimizes cost. IPRW can be used to qualify the importance
of component combinations with arbitrary amounts based
on the effect of their failures on system reliability.
Therefore, IPRW can solve the optimization model of
RAPs.
This multi-objective nonlinear RRAP maximizes system

Table 8 Reference analysis of optimization algorithms based on IMs

References Problems Systems IMs Algorithms

Wang et al. (2018) ROP Binary IBM and IΔ Local search

Si et al. (2019) ROP Binary IGB Local search

Zio and Podofillini (2007) ROP Any states IB Simplification

Cai et al. (2018) ROP Continuous IU Local search

Xiong et al. (2017) RAP Binary IPRW Simplification

Shojaei and Mahani (2019) RAP Binary IBM Simplification

Zhao et al. (2019c) RAP Binary IBM Local search

Yao et al. (2014) CAP Binary IBM Local search

Cai et al. (2016) CAP Binary IBM Local search

Zhang et al. (2019) CAP Binary IBM Local search

Dui et al. (2018) CAP Binary Iopt Simplification

Zhao et al. (2019b) CAP Binary IBM Simplification

Nguyen et al. (2017) CP Binary IBMS Simplification

Du et al. (2019) CP Binary Ic�IM and Ip�IM Simplification

Xing and Dugan (2002) CP Multistate IBS Simplification

Li et al. (2015) CP Binary IPMk Local search

Wu and Wu (2017) CP Binary IPRC Local search

Wu et al. (2018) CP Binary IGC Simplification
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reliability and minimizes the variance of IMs (Shojaei and
Mahani, 2019). The variance of IMs in the latter objective
can evaluate the dependent degree of the system. The
system is more dependable when the variance of IMs for
subsystems decreases, indicating that the IMs of each
component is very close. The variance of IMs is used to
simplify the objective functions of the RRAP.
A multi-objective particle swarm optimization algorithm

that combines IM and harmony search is developed to deal
with multi-objective RRAP for serial parallel-series
systems considering system reliability and design cost
(Zhao et al., 2019c). Two interesting IM-based local
searches are developed on the basis of two reliability
adjustment strategies, namely, increasing component
reliability after the redundancy decrement and decreasing
component reliability after the redundancy increment.
Birnbaum importance can evaluate the improvement of
system reliability. The IM-based local search method can
improve the effectiveness of solving the multi-objective
RRAP, and the procedures are summarized in Table 9.

4.3 Optimization algorithms for CAP

A Birnbaum importance-based genetic local search
(BIGLS) algorithm is proposed to solve the CAP by
combining an IM-based local search method with the
genetic algorithm (Yao et al., 2014). The idea of the
Birnbaum importance-based three-way exchange is to
adjust the position of three components to make their
component reliability consistent with their importance. If
the exchange is not beneficial for increasing system
reliability, then the assignment does not change. The
effectiveness of the BIGLS algorithm is compared with
those of BIT and the general genetic algorithm.
Linear consecutive-k-out-of-n systems are a type of

typical system of CAP. A Birnbaum importance-based
genetic algorithm (BIGA), which combines a genetic
algorithm with BIT-based local search method, is proposed
to obtain the near-global optimal solution of CAP (Cai
et al., 2016). The BIGA is applied to deal with the system
reliability optimization of the circular consecutive-k-out-
of-n systems (Zhang et al., 2017). Birnbaum importance-
based quantum genetic algorithm (BIQGA) is developed
by combining the quantum genetic algorithm with the
Birnbaum importance-based local search method to solve
the CAP efficiently and accurately based on the advantages
of quantum computing and IMs (Zhang et al., 2019).

The changes in the optimal assignment for linear
consecutive-k-out-of-n systems are analyzed by consider-
ing the changes in component reliability and IM of
components during the system’s lifetime (Dui et al., 2018).
These results show the relationships between the changes
in component reliability and IM with the changes in the
optimal assignment. The importance of a specific compo-
nent represents the improvement of the largest system
reliability when the component reliability changes. The
proposed importance can simplify the optimization process
by considering the relationship between the optimal
arrangement and the changes in component reliability.
An integrated method that combines the rearrangement

method with the replacement method, is proposed to
maximize the reliability of the reconfigurable system and
minimize the cost during the reconfiguration (Zhao et al.,
2019b). The BIT heuristic is used to generate the current
optimal assignment, which is essential in measuring the
optimal system reliability and the reconfiguration cost.
Therefore, the BIT heuristic can be used to evaluate the
system reliability when the reconfigurable cost is the
largest to simplify the calculation of the fitness value.

4.4 Optimization algorithms for CP

Advanced technology in optimization theory can solve the
system ROPs for complex systems in different fields (Coit
and Zio, 2019). Network designs are used to determine the
redundant configurations and select different available
components to form the system structure. For fixed
network topology, the reliability of a network system is
improved by allocating redundancy or adjusting the links’
reliability between node pairs with the constraints on a
budget (Marseguerra et al., 2005). Sometimes, obtaining
the optimal configuration directly in case the network
structure is complex is difficult. Multiple phases are widely
used in many practical applications, and many practical
systems are phased-mission systems (PMS), which are
multiple, consecutive, non-overlapping phases (Levitin
et al., 2012). The PMSs need to accomplish some specified
tasks during each phase. The features of system perfor-
mance and the component degradation may change from
phase to phase, in which the relationships between
components in different phases are complicated. There-
fore, the systems of the CP can be classified into two
categories: Systems with complex structures, such as
network systems (Compare et al., 2019; Xiao et al., 2018);

Table 9 Procedures of the IM-based local search method

Procedures Description

I Select the component modules with the highest IBMðiÞ
II Perform the reliability adjustment strategy 1 or 2 randomly

(1) Strategy 1: Increasing component reliability after decreasing the component redundancy
(2) Strategy 2: Decreasing component reliability after increasing the component redundancy

III Identify the solution after the adjustment
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and systems with a complicated relationship, such as PMS
(Levitin et al., 2017a; 2017c).
A joint PM and inventory strategy of systems with

complex structures can minimize the cost rate (Nguyen
et al., 2017). The Birnbaum structure importance of
components is evaluated on the basis of predictive
reliability, which is used in deciding the ordering of
spare parts and PM at a regular time. The structure
importance decreased the number of decision parameters
to three, regardless of the number of components.
When the component failure follows the counting

process, two IMs are proposed to evaluate the effect of
one edge on network failure or working (Du et al., 2019).
These IMs depend on the structure of the network and the
failure distribution of edges instead of the probabilistic
information of the individual edge. The ranking of the
proposed IMs can be potentially used to arrange resources
of networks during the design stage and maintenance
process.
An analysis method for a generalized PMS is proposed

to calculate the probability of mission success with high
computation efficiency (Xing and Dugan, 2002). The
Birnbaum sensitivity measure IBS can be used to estimate
the effect of parameter-change on the result without
considering a full model-solution as all parameters change.
IBS over the entire phased mission is a weighted sum of
sensitivity in each phase. The more unreliable a phase is,
the more sensitive the component in the phase should be.
The proposed sensitivity measure can upgrade suitable
candidates who can improve the system performance
effectively to simplify the objective of the optimization
problem.
For multi-mission networked avionics, a mission

reliability allocation method is proposed to maximize
avionic mission reliability (Li et al., 2015). The proposed
allocation principles are summarized as follows: (1)
adjusting the complex component with low reliability
and (2) assigning the important component with high
reliability. The IM-based heuristic algorithm is regarded as
the local search method combined with the algorithm
provided by the Advisory Group on the Reliability of

Electronic Equipment (AGREE) to solve the problem with
the network structure.
A hybrid algorithm that combines IM-based heuristic

with the genetic algorithm is presented to solve the RRAP
in PMS (Wu and Wu, 2017). The cost-based parallel
redundancy importance is proposed by combining the
Birnbaum importance with the cost function. The IM-
based heuristic method increases the reliability of
components with higher IPRC and decreases the reliability
of components with lower IPRC , thereby possibly reducing
the total system cost. The hybrid algorithm takes advantage
of the higher global search ability of the genetic algorithm
and the local search ability of the proposed heuristic.
Considering the uncertainty of components’ parameters

caused by the changing environments in each phase and
the insufficient information, a reliability allocation model
is introduced to incorporate component uncertainty during
the reliability allocation process (Wu et al., 2018). The
global component importance IGC can evaluate the
importance level of a component for mission reliability
because components’ reliabilities vary randomly. The
improved procedure based on global importance is that
decreasing the MTBF of the component with the highest
cost and setting the new MTBF based on the global
importance value. IGC is an effective way to generate the
initial feasible solution, which can simplify optimization.

4.5 Summary of the optimization algorithms

(1) Optimization algorithms by IM-based local search
methods
The IM-based optimization algorithms vary because the

optimization rules of the local search methods are
proposed on the basis of the ranking of IM or the IM-
based heuristic algorithms. Therefore, the optimization
algorithms based on the local search methods are analyzed
in Table 10 to illustrate the differences among different
optimization algorithms.
The general procedures of optimization algorithms by

IM-based local search methods based on the analysis of the
procedures of the previous research are proposed in Fig. 4.

Table 10 Reference analysis of the optimization algorithms by IM-based local search methods

References Problems Systems Algorithms Optimization rules

Wang et al. (2018) ROP Binary Genetic algorithm Ranking

Si et al. (2019) ROP Binary Genetic algorithm Ranking

Cai et al. (2018) ROP Continuous Genetic algorithm Ranking

Zhao et al. (2019c) RAP Binary Particle swarm algorithm Heuristic

Yao et al. (2014) CAP Binary Genetic algorithm Heuristic

Cai et al. (2016) CAP Binary Genetic algorithm Heuristic

Zhang et al. (2019) CAP Binary Genetic algorithm Ranking

Li et al. (2015) CP Binary AGREE method Heuristic

Wu and Wu (2017) CP Binary Genetic algorithm Heuristic
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The termination conditions are used to stop the optimiza-
tion algorithms, which are optimization algorithm para-
meters used to determine whether the algorithms should be
terminated. Thus, the conditions can be the maximum
generations, the running time, or the convergence condi-
tions, and they depend on the optimization algorithms, the
requirements of the practical engineering, and the accuracy
of the solution.
(2) Optimization algorithms by IM-based simplification
methods
The optimization algorithms by the IM-based simplifi-

cation method mainly use IM in the mathematical models
or the optimization process to simplify the objectives or
screening the critical factors to simplify the optimization
problems. The analysis of the simplification method

focuses on the sub-process to illustrate where the IM can
be used to simplify the optimization models. Therefore, we
summarized the usage of IMs during simplification in
Table 11, and the general procedures of optimization
algorithms using IM-based simplification method is
proposed in Fig. 5.

5 Optimization framework driven by IMs

Various IMs clarify the effect of one component’s
performance on the overall system performance from
different perspectives to distinguish the weak link of the
systems. If the weak link is found, then giving additional
resources to the weakest component can improve the

Fig. 4 General procedures of optimization algorithms by IM-based local search method.

Table 11 Reference analysis of optimization algorithms by IM-based simplification methods

References Problems Systems Sub-processes Strategies

Zio and Podofillini (2007) ROP Any states Objective Use importance as the objective

Xiong et al. (2017) RAP Binary Objective Simplify the solving method

Shojaei and Mahani (2019) RAP Binary Objective Use importance as the objective

Dui et al. (2018) CAP Binary Decision variable Obtain the solution effectively

Zhao et al. (2019b) CAP Binary Fitness Simplify the complexity of the objective calculation

Nguyen et al. (2017) CP Binary Decision parameters Use the importance ranking to screen critical factors

Du et al. (2019) CP Binary Decision variable Obtain the solution effectively

Xing and Dugan (2002) CP Multistate Objective Evaluate the objective effectively

Wu et al. (2018) CP Binary Initialization Obtain the initial feasible solution
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system performance significantly. Sometimes, this
approach is a shortcut for improving system performance
through IM ranking. Thus, the merits of IMs are to find the
weakest parts in the system, possibly improving system
performance cost-effectively.
The previous solutions of the ROPs focused on the

mathematical methods or algorithms of the operation
research, but the contributions of IMs are ignored. The
weakest link in the system is the premise and basis of the
optimization problems; improving the component perfor-
mance based on IM is an effective method to improve the
system performance. The IM-based methods can summar-
ize some optimization rules easily to solve the optimization
problems effectively. This simplification is the benefit of
practical engineering. Moreover, many future research
topics are related to IMs. We will discuss these methods in
Section 6.
According to the state-of-the-art about the system

reliability optimization based on the IMs in Sections 3
and 4, the general optimization framework driven by IMs
is summarized in Fig. 6. Clearly, the selection of solving
methods mainly depends on the optimization problems and
the characteristics of IMs.
For the mentioned optimization problems (ROP, RAP or

RRAP, CAP, and CP), the IMs can maximize the system
performance by arranging resources for the components

with higher IM. The solving method should be proposed
by analyzing the complexity of problems, choosing the
proper IM, and checking the effectiveness of the IM
rankings. After the analysis of the system ROP and IMs, if
the IM rankings are useful in solving the problem, then the
IM-based rules should be selected to deal with the system
optimization problem; otherwise, the IM-based algorithm
is selected.
The solving methods based on IMs include the IM-based

optimization rules and the IM-based optimization algo-
rithms. The IM-based rules are proposed on the basis of the
following principles: (1) improving the component
performance with the highest importance by the IM-
based ranking methods to maximize the system perfor-
mance with the constraints on the limited resources and (2)
assigning the resources to the components by the IM-based
heuristic methods for maximizing system performance.
The IM-based optimization algorithms are introduced to
generate an improved solution for CPs with a large-scale
system or complicated tasks in the system. The IM-based
optimization algorithms consistently combine the IM-
based optimization rules with the evolution algorithms.
Sometimes, IM-based optimization algorithms also use the
IM-based rules to simplify the mathematical model by
using the IMs to replace the objectives or screen the critical
factors.

Fig. 5 General procedures of optimization algorithms by IM-based simplification methods.
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6 Future research directions

Some challenges on the system reliability optimization
driven by IMs remain for contemporary researchers.
Therefore, the following problems should be a focus in
the future.
(1) How can the mechanism of IMs in system ROPs be

summarized? The mechanism of IMs can be used for
solving system ROPs effectively.
(2) How be the IMs defined with the consideration of the

relationship between different objectives and constraints in
the optimization model? The proper definition of IMs is the
basis of a suitable heuristic method for solving the system
ROPs.
(3) How can the matching degree between an IM and a

specific optimization problem be evaluated? Such a
matching degree could be valuable for engineers to deal
with the system ROPs driven by IMs.

(4) How can the IMs of nodes in the complex networks
be evaluated? This problem is one of the most complicated
problems in many practical engineering projects for
considering the transition mechanism and the structure
feature comprehensively. The results would simplify the
networks’ control, deposition, and defense by identifying
some critical nodes during optimization.
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