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Abstract The finance-based scheduling problem (FBSP)
is about scheduling project activities without exceeding a
credit line financing limit. The FBSP is extended to
consider different execution modes that result in the multi-
mode FBSP (MMFBSP). Unfortunately, researchers have
abandoned the development of exact models to solve the
FBSP and its extensions. Instead, researchers have heavily
relied on the use of heuristics and meta-heuristics, which
do not guarantee solution optimality. No exact models are
available for contractors who look for optimal solutions to
the multi-objective MMFBSP. CPLEX, which is an exact
solver, has witnessed a significant decrease in its
computation time. Moreover, its current version, CPLEX
12.9, solves multi-objective optimization problems. This
study presents a mixed-integer linear programming model
for the multi-objective MMFBSP. Using CPLEX 12.9, we
discuss several techniques that researchers can use to
optimize a multi-objective MMFBSP. We test our model
by solving several problems from the literature. We also
show how to solve multi-objective optimization problems
by using CPLEX 12.9 and how computation time increases
as problem size increases. The small increase in computa-
tion time compared with possible cost savings make exact
models a must for practitioners. Moreover, the linear
programming-relaxation of the model, which takes sec-
onds, can provide an excellent lower bound.

Keywords multi-objective optimization, finance-based
scheduling, multi-mode project scheduling, mixed-integer
linear programming, CPLEX

1 Introduction

The finance-based scheduling problem (FBSP) is intro-
duced by Elazouni and Gab-Allah (2004). The FBSP
captures the problem in which contractors rely on a credit
line (CL) to finance project expenditures if project
expenses exceed sponsor payments. Elazouni and Gab-
Allah (2004) developed an integer programming (IP)
model to minimize the project duration, such that the
amount borrowed does not exceed the CL.
This pioneering work has attracted the attention of

practitioners and researchers alike; consequently, cash-
flow dynamics are modified to capture real-world situa-
tions. For example, expenses related to mobilization,
advanced payments, and fixed costs are not considered by
Elazouni and Gab-Allah (2004), which is important in
practice. However, these costs are modeled by Elazouni
and Metwally (2005). Note that the IP solution of Elazouni
and Gab-Allah (2004) is not extended by Elazouni and
Metwally (2005); to account for these changes, a Genetic
Algorithm (GA) is developed for solving the modified
problem.
Researchers abandoning exact methods and adopting

heuristics and meta-heuristics to solve all FBSP variants is
a norm. Table 1 summarizes the FBSP-related publica-
tions. As shown in column 2 of Table 1, researchers have
modeled a single project or a portfolio of projects, whereas
column 3 presents the targeted objective function. Solution
methodologies used to solve the suggested models are
shown in column 4. Clearly, a discontinuation exists in the
developments of exact IP models because either heuristics
or meta-heuristics techniques are used to solve the FBSP
variants, except for the study of Elazouni and Gab-Allah
(2004) and constraint programming (CP) of Liu and Wang
(2008; 2010).
The CP models of Liu and Wang (2008; 2010) have

ignored mobilization costs and advanced payments, as
Elazouni and Gab-Allah (2004). Moreover, these models
do not account for the case of a positive cash balance for
which paying interests is no longer needed.
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Linear programming (LP) models are used to find the
best financing alternatives for projects (Alavipour and
Arditi, 2018a; 2018b). The LP models have assumed fixed
schedules for which the optimum financing alternative is
found.
Another relevant problem that has attracted many

researchers and has an impact on the project cash-flow is
the time-cost trade-off problem (TCTP) (Siemens, 1971;
Kerzner and Kerzner, 2017). TCTP models allow activities
to have different durations and costs. Thus, activities can
accelerate, crash, and finish projects early (Laptali et al.,
1997; Nkasu and Leung, 1997). TCTP models attempt to
either minimize the project duration given a maximum
project budget, which is also called “budget problem”, or
to minimize the project budget given a maximum project
duration, which is referred to as “deadline problem” (Yang,
2007).
The TCTP that assumes a linear relationship between

time and cost can be solved using LP (Perera, 1980).
However, the relationship between time and cost can be
considered discrete, leading to the discrete TCTP (DTCTP)
or multimodal TCTP (MMTCTP), that is, strongly NP
(non-deterministic polynomial)-hard (De et al., 1995;
1997). Therefore, similar to any other NP-hard optimiza-
tion problem, researchers have attempted to use heuristics
(Vanhoucke and Debels, 2007), meta-heuristics (Sonmez
and Bettemir, 2012), and exact methods (De et al., 1995;
Burns et al., 1996; Moussourakis and Haksever, 2004;
Chassiakos and Sakellaropoulos, 2005) to solve this
problem. For bi- and multi-objective optimization pro-
blems, researchers have depended on meta-heuristics and
heuristics (Zheng et al., 2004; Doerner et al., 2008;

Ammar, 2011).
Considering that crashing activities change project cash

flows with respect to their amounts and timings,
contractors must validate their TCTP solutions concerning
the CL. Therefore, researchers have simultaneously
considered the MMTCTP and FBSP. Moreover, a new
problem is created that we henceforth call it the multi-
mode FBSP (MMFBSP). Table 2 summarizes the literature
related to the MMFBSP, where, again, exact solution
techniques are missing. To the authors’ knowledge, no
exact model captures the multi-objective MMFBSP.
Alavipour and Arditi (2019a; 2019b) consider different
schedules, for which they try to find the best financial
alternatives. The authors use a GA and LP hybrid to solve
their model: The GA schedules the project activities,
whereas the LP algorithm finds the best financing options.
The accuracy of meta-heuristic or heuristic approaches,

against exact methods, is not addressed in the literature on
FBSP. Heuristic approaches are usually used to obtain
quick solutions. Yet, a small deviation in a megaproject
cost can mean millions of dollars. Consequently, spending
extra time to guarantee the solution optimality is not an
option for contractors— it is a must. Moreover, even if an
exact algorithm is not run to optimality, it can still provide
proper bounds, against which can benchmark heuristic and
meta-heuristic solutions. With the new advances of
commercial solvers, such as CPLEX 12.9 (Nodet, 2019),
multi-objective optimization problems can be solved. In
summary, exact models and solutions are needed for two
reasons:
� Finding solutions with certain optimality;
� Finding bounds against which we can check the

Table 1 Summary of FBSP-related publications

Paper Single/Portfolio Objective Solution methodology

Elazouni and Gab-Allah (2004) Single Min. duration IP

Elazouni and Metwally (2005) Single Min. duration GA

Liu and Wang (2008) Single Max. profit CP

Abido and Elazouni (2009) Single Min. duration GA

Elazouni (2009) Portfolio Multiple Heuristic

Afshar and Fathi (2009) Single Multiple GA & Fuzzy Sets

Fathi and Afshar (2010) Single Multiple GA

Liu and Wang (2010) Portfolio Max. profit CP

Abido and Elazouni (2011) Portfolio Multiple Heuristic

Elazouni and Abido (2011) Single Multiple Heuristic

Alghazi et al. (2012) Single Min. duration Frog-leaping Algorithm, GA, Simulated Annealing

Alghazi et al. (2013) Single Min. duration GA

Elazouni et al. (2015) Single Min. duration Frog-leaping Algorithm, GA, Simulated Annealing

Gajpal and Elazouni (2015) Single Min. duration Heuristic

Al-Shihabi and AlDurgam (2017) Single Min. duration Max-Min Ant System

Alavipour and Arditi (2018a) Single Min. cost LP

Alavipour and Arditi (2018b) Single Min. cost LP
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quality of solutions obtained using meta-heuristic methods.
Heuristics are informed search techniques that system-

atically explore state space according to Pearl (1984),
whereas meta-heuristics, such as GA, are high-level
strategies for guiding searches, as discussed by Glover
(1986). GA, which is the most used meta-heuristic to solve
FBSP and MMFBSP, needs infinite time to converge to
global optimum solutions, as proven by Rudolph (1994).
In all the publications that are listed in Tables 1 and 2, a
small number of instances are solved. Furthermore,
according to the famous Free Lunch Theorem (Wolpert
and Macready, 1997), concluding the accuracy of heuristic
or meta-heuristic algorithms by using small sets of
problems is dangerous.
In this study, we introduce an exact multi-objective

model for the MMFBSP. We also demonstrate how a state-
of-the-art exact solver similar to CPLEX 12.9 can be used
to solve multi-objective optimization problems.
The mathematical model that captures the MMFBSP is a

mixed integer linear program (MILP). The model attempts
to minimize project duration, and we solve this model by
using CPLEX 12.9, embedding standard branch and
bound, and cutting plane algorithms. To avoid the
development of a nonlinear model, we adopt an iterative
solution technique that is presented by Elazouni and Gab-
Allah (2004).
As stated by Nodet (2019), “with CPLEX 12.9, you can

define multiple objectives for a single problem and
combine them as a hierarchy, through blending, or with
combinations of both.” Thus, CPLEX 12.9 can directly
solve multi-objective optimization problems. If two or
more objectives use the same measure, then these measures
can be blended; otherwise, users can specify a hierarchy
that shows the importance of the objectives. For
contractors who have vague ideas about which objectives
are more important than the other, CPLEX 12.9 can find
alternative solutions using the populate( ) method.
This work has several contributions. The multi-objective

MILP model fills the gap left by researchers concerning the
modeling and solving of the FBSP and MMFBSP by using
the exact methods. We also show how CPLEX can be used
to solve multi-objective optimization problems. Unlike
previous models that only consider either execution or

bidding stages of contracts, our model relates bidding to
executing.
This study is organized as follows: Section 2 describes

the business model of the MMFBSP, whereas Section 3
translates the business model to an MILP model. Section 4
demonstrates how CPLEX 12.9 can be used to solve multi-
objective optimization problems. Section 5 presents
several experiments to validate our model, show how to
solve multi-objective problems by using CPLEX 12.9, and
study the time complexity of problems. Section 6 discusses
conclusions and future studies.

2 Business model

We divide the project life into two stages. The first stage is
the bidding stage, and we show how a contractor calculates
the bidding price (BP). The second stage is the executing
stage, and we demonstrate how the contractor executes the
project, given the contract and bank agreements.

2.1 Bidding

To find BP, the contractor must calculate activity and
project duration costs. Each activity iÎN can be executed
based on mode jÎMi, where Mi is the set of execution
modes of activity i, and the contractor should choose only
one of these modes to execute an activity. The execution
modes are different in terms of time and cost. The
execution time and cost of activity i, based on mode j is
denoted by Ti,j and Ci,j, respectively. In the following
description, we use week to measure time. However, all the
derivations can be adjusted to other time units. The time
index used to denote the time units is k.
To find BP, the contractor selects one execution mode

for each activity and finds the sum of costs of theses
modes, DCsum, as shown in Eq. (1). Note that jbid represents
the selected mode in calculating BP. From this cost, the
contractor calculates the total variable costs (VCsum), as
presented in Eq. (2), where OV is the overhead multiplier.

DCsum ¼
X

i2N
Ci,jbid , (1)

Table 2 Summary of MMFBSP-related publications

Paper Single/Portfolio Objective Solution methodology

Elazouni and Metwally (2007) Single Min. duration Max. profit GA

Ali and Elazouni (2009) Portfolio Min. duration Max. profit GA

Elazouni and Abido (2014) Single Multi-objective Heuristic

El-Abbasy et al. (2016) Portfolio Multi-objective GA

El-Abbasy et al. (2017) Portfolio Multi-objective GA

Alavipour and Arditi (2019b) Single Max. profit GA & LP

Alavipour and Arditi (2019a) Single Max. profit GA & LP
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VCsum ¼ OV � DCsum: (2)

Unlike the activities’ direct and overhead costs, the
contractor must pay a weekly fixed overhead fee,OF, while
executing the project. We use Wbid to denote the bidding
duration; thus, the sum of the fixed overhead fees (FCsum)
can be found, as shown in Eq. (3). Wbid is usually found
using the critical path method (CPM) (Horowitz, 1967).
The contractor should also pay the mobilization cost
(MOB) at the start of the project to move to the project
location.

FCsum ¼ OF �W bid: (3)

The contractor usually looks for a profitability percen-
tage, OP, with respect to the above-discussed costs. To find
the profit value (PV), the contractor multiplies OP by all
previously mentioned costs, as shown in Eq. (4) (Clough
et al., 2015).

PV ¼ OP � ðDCsum þ VCsum þ FCsum þMOBÞ: (4)

The contractor must pay a bonding cost, BC, as a form of
guarantee to the sponsor if the contractor fails to fulfil the
project clauses. This cost is usually 1%–2% of the sum of
PV and all costs. The bonding cost multiplier is denoted by
OB, and the bonding value is as shown in Eq. (5). BP is the
sum of all previous costs and profit value, as presented in
Eq. (6).

BC ¼ OB � ðPV þ DCsum þ VCsum þ FCsum þMOBÞ,
(5)

BP ¼ BC þ PV þ DCsum þ VCsum þ FCsum þMOB:
(6)

2.2 Executing

If the contractor wins the bid, then BP becomes the
contract price (CP), and Wbid becomes Wexecute. To finance
the project, the contractor considers two financing sources:
Payments from the sponsor and loans from a line of credit
(LOC) account. We start this section by describing
contractor expenses, followed by a description of sponsor
payments. We then show how withdrawals from an LOC
are used to finance the contractor’s financial deficit.

2.2.1 Expenses

Before the start of the project, the sponsor should pay the
mobilization and bonding costs, as shown in case 1 of
Eq. (7). Expenses due to activity i in week k≥ 1 if

executed according to mode j is
Ci,j

Ti,j
. The total expenditure

due to all activities for k≥ 1, TEk, is shown in case 2 of
Eq. (7). TEk for k≥ 1 includes activities’ direct and
indirect costs and the weekly fixed cost. All these costs are

related to the project. As we discuss later, we also have
financing costs, which are the interests that must be paid to
the bank.

TEk ¼

MOBþ BC ðk ¼ 0Þ,

ð1þ OVÞ �
X

i2N

Ci,j

Ti,j
þ OF

ðk ¼ 1, 2,:::, W executeÞ:

8>>>>><
>>>>>:

(7)

2.2.2 Sponsor payments

The contractor and sponsor calculate a mark-up multiplier
(MU), which relates CP to DCsum, as shown in Eq. (8).MU
is used by the contractor and sponsor to value the
conducted work. Note that DCsum depends on the selected
modes during the bidding stage. However, these modes
may change when executing the project, as discussed later.

MU ¼ CP

DCsum : (8)

A reimbursement period (R), which is also called the
project period, is part of the contract clauses. The
contractor is only allowed to invoice the sponsor at

weeks corresponding to R, 2R,:::,  �W execute

R
  �R, where

Wexecute is the project execution duration. The invoices
cover the project earned value (EV) during R.
To find EV due to activity iÎN if part of it is executed in

week k (EVi,k), the contractor must map the completed
work direct cost to the bidding cost, as presented in Eq. (9).
Such an equation shows that the bidding cost is equally
divided by the execution mode duration. The sum of all
costs during R, due to all activities, represents the project
period earned value (PEV), which the contractor uses to
invoice the sponsor, as shown in Eq. (10). Equation (10)
finds the sum of the EV of all the activities from the start of
the period at R + 1 weeks earlier than the invoice date to
the invoice date.

EVi,k ¼
Ci,jbid

Ti,j
k ¼ 1, 2,:::,  �W execute

R
  �� �

, (9)

PEVk ¼

Xk

t¼k –Rþ1

X
i2N

EVi,k

k ¼ R, 2R,:::,  �W execute

R
  �R� �

,

0, otherwise:

8>>>>><
>>>>>:

(10)

To invoice the sponsor in week k, Ik, the contractor
marks up PEV, as presented in Eq. (11). The sponsor does
not immediately pay the contractor; rather, the sponsor
delays the payment (Pk) for LP weeks, as shown in case 2
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of Eq. (12), where RP is the retainage percentage, i.e.,
amount kept by the sponsor to be paid at the end of the
project. The second term of case 2 of Eq. (12) shows the
deduction value of the advanced payment (AP), which the
sponsor pays to the contractor at the start of the project, as
presented in case 1 of Eq. (12). After the last invoice
payment by LR weeks, the contractor receives the retained
amounts from the invoices, as shown in case 3 of Eq. (12).

Ik ¼
MU � PEVk k ¼ R, 2R,:::,  �W execute

R
  �R� �

,

0, otherwise,

8>><
>>:

(11)

Pk ¼

AP ðk ¼ 0Þ,

ð1 –RPÞ � Ik – LP –
AP  �W execute

R
  �

k ¼ Rþ LP, 2Rþ LP,:::,  �W execute

R
  �Rþ LP

� �
,

RP � CP k ¼  �W execute

R
  �Rþ LP þ LR

� �
,

0, otherwise:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(12)

Due to LP, the contractor’s cumulative expenses are
usually higher than his cumulative income as described by
Peterson (2009) and shown in Fig. 1. The contractor
depends on an LOC account to finance the project
expenses.

2.2.3 LOC

LOC is an arrangement between a financial institution,

usually a bank, and a customer who establishes the
maximum loan amount the customer can borrow. The
borrower can access funds from the LOC any time as long
as the borrower does not exceed the maximum amount (or
credit limit) set in the agreement and meet any other
requirements, such as making timely minimum payments.
The contractor negotiates with the bank about how loans
are compounded and when interests are paid. Assuming
that interests are compounded weekly, we denote the
weekly interest as rW. We also assume that interests are
paid every V weeks. The bank withdrawals depend on the
bank account balance, weekly expenses, and payments.
The bank account balance (Bk) can be found in Eq. (13).
Before the start of the project, the balance is simply the
difference between AP and TE0, as shown in case 1 of
Eq. (13). Starting from week one, k = 1, until the last

invoice payment in week  �W execute

R
  �Rþ Lp, the bank

balance is shown in case 2 of Eq. (13). This case shows that
the balance in week k is equal to that in the previous week
plus any payment received at the end of the previous week
minus the current week expenses and current week interest
payments (IBk) to the bank if it is due. The balance at the
end of the project, once the retained invoice payments are
returned to the contractor, is shown in case 3 of Eq. (13).
An LOC means that Bk should not exceed CL, as presented
in Eq. (14).

Bk ¼

AP – TE0 ðk ¼ 0Þ,
Bk – 1 þ Pk – 1 – TEk – IBk

k ¼ 1, 2,:::,  �W execute

R
  �Rþ LP

� �
,

B lW execute

R
 mRþLP

þ RP � CP

k ¼  �W execute

R
  �Rþ LP þ LR

� �
,

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(13)

Bk³ –CL ðk ¼ 1, 2,:::, W executeÞ: (14)

To find interest payments in week k, IBk, we must
consider the following three cases:
� Bk-1≥TEk. For this case, the cash balance left from

the previous week can cover the current week expendi-
tures.
� Bk-1£ 0. For this case, the cash balance left from the

previous week cannot cover any of the current week
expenditures.
� 0 £Bk-1£TEk. For this case, the cash balance from

the previous week is positive but fails to cover all the
current week expenses. Consequently, the contractor must
withdraw TEk –Bk – 1 for the LOC.
We assume that the contractor pays all the current week

expenses at the beginning of the week. Thus, interests due

Fig. 1 Cumulative expenses versus income profile.
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on week k ¼ V , 2V ,:::,  �W execute

V
  �V are calculated, as

shown in Eq. (15).

IBk ¼

Xk

t¼k –Vþ1
–minf0, Bk – 1 – TEkg � rW

k ¼ V , 2V ,:::,  �W execute

V
  �V� �

,

0, otherwise:

8>>>>><
>>>>>:

(15)

3 Optimization model

The MILP model checks the feasibility of finishing the
project in Wexecute weeks. We assume a value for project
duration to avoid the formulation of a mixed-integer
nonlinear programming (MINLP) model, as discussed later
in this section.

3.1 Formulation

The objective function of this formulation is the mini-
mization of the project duration. In Eq. (16), π is a
milestone event, which has zero duration that signals the
end of the project. The basic decision variable of the model
is xi,j,k, which is a binary decision variable that has a value
of 1 if activity iÎN starts in week k and is executed
according to mode jÎMi, 0 otherwise. Only one xi,j,k is
equal to 1 per activity, as shown in Eq. (17). That is, an
activity must be executed on the basis of one mode and
start in one week.
The project ends once all activities finish, as shown in

Eq. (18). We also impose that activities without successors
finish in Wexecute weeks, as presented in Eq. (19), where Qi

is the set of successor activities to activity i. This condition
is needed to determine the number of invoices or
payments, from which we calculate the deduction values
that should be subtracted from sponsor payments, as
shown in case 2 of Eq. (12) of the business model and case
2 of Eq. (25) of the MILP model. If this condition is not
added to the MILP formulation, then the model becomes

MINLP due to the
AP  �W
R
  � term. For the FBSP, researchers

have ignored AP in their formulations (Elazouni and Gab-
Allah, 2004; Elazouni et al., 2015). Precedence relation-
ships are shown in Eq. (20).
The two cases of total expenditures that are discussed in

Eq. (7) of the business model are captured by Eq. (21) of
the MILP model. To find expenditures in week k, we must
consider the possibilities that the activity start in week k or
earlier. For example, assume that activity A has two
modes, 1 and 2, having a duration of TA,1 = 4 and TA,2 = 5,
respectively. If we want to calculate the expenditures due

to this activity in week 4, then we must consider all the
possibilities to start this activity between k = 1 and k = 4

based on modes 1 and 2. The summation
Xk

t¼maxð1, k – Ti,jÞ
captures these possible starts. Note that if k – Ti,j£ 0, then
the summation starts at k = 1.
Equation (22) shows how to calculate EVi,k in terms of

decision variables xi,j,k. The earned value, according to
Eq. (22), is estimated in terms of the Ci,jbid of the activities.
To invoice the sponsor, PEVk, where k ¼ R, 2R,:::,  �W execute

R
  �R, is found using Eq. (23). The invoice values

are shown in Eq. (24), the payments from the sponsor are
presented in Eq. (25), and bank balance is shown in
Eq. (26).
In the business model, interests are paid if Bk – 1 – TEk

< 0, as exhibited in Eq. (15). The first step in calculating
interests is to check if the cash balance of the previous
week minus the current week expenditures is positive or
negative. For this reason, we define binary indicator
variable αk, such that this variable is equal to 1 if the cash
balance of the previous week minus the current week
expenditures is negative, 0 otherwise. The value of αk is
found using Eqs. (27) and (28). We use auxiliary variable
ILk to obtain a value of 0 if Bk – 1 – TEk> 0, otherwise ILk =
Bk – 1 – TEk, as shown in Eqs. (29–32).M is a large number
in Eqs. (27) and (28), in addition to Eqs. (30–32). The
value of IBk, which is the interest due to the bank, is found
using Eq. (33). Equation (34) enforces Bk not to exceed CL,
similar to Eq. (14) in the business model.

Min π (16)

s.t. XW

k¼1

X
j2Mi

xi,j,k ¼ 1 ð8i 2 NÞ, (17)

XW

k¼1

X
j2Mi

ðk þ Ti,jÞ � xi,j,k£π ð8i 2 NÞ, (18)

XW

k¼1

X
i2N

X
j2Mi

ðk þ Ti,jÞ � xi,j,k³1

ð8fi 2 N jQi ¼ f and k þ Ti,j ¼ W executegÞ, (19)

XW

k¼1

X
j2Mi

ðk þ Ti,jÞ � xi,j,k£
XW

k¼1

X
j2Mq

k � xq,j,k

ð8fi, q 2 N jq 2 QigÞ, (20)

TEk ¼

MOBþ BC ðk ¼ 0Þ,
X

i2N

X
j2Mi

Xk

t¼maxð1,k – Ti,jÞ
Ci,j

Ti,j
� xi,j,t

ð8i 2 N and k ¼ 1, 2,:::, W executeÞ,

8>>>>><
>>>>>:

(21)

228 Front. Eng. Manag. 2020, 7(2): 223–237



EVi,k ¼
Xk

t¼maxð1,k – Ti,jÞ
X

j2Mi

Ci,jbid

Ti,j
� xi,j,t

k ¼ 1, 2,:::,  �W execute

R
  �� �

, (22)

PEVk ¼

Xk

t¼k –Rþ1

X
i2N

EVi,k

k ¼ R, 2R,:::,  �W execute

R
  �R� �

,

0, otherwise,

8>>>>><
>>>>>:

(23)

Ik ¼
MU � PEVk k ¼ R, 2R,:::,  �W execute

R
  �R� �

,

0, otherwise,

8>><
>>:

(24)

Pk ¼

AP ðk ¼ 0Þ,

ð1 –RPÞ � Ik – LP –
AP  �W execute

R
  �

k ¼ Rþ LP, 2Rþ LP,:::,  �W execute

R
  �Rþ LP

� �
,

RP � CP k ¼  �W execute

R
  �Rþ LP þ LR

� �
,

0, otherwise,

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

(25)

Bk ¼

AP – TE0 ðk ¼ 0Þ,

Bk – 1 þ Pk – 1 – TEk – IBk

k ¼ 1, 2,:::,  �W execute

R
  �Rþ LP

� �
,

B lW execute

R
 mRþLP

þ RP � CP

k ¼  �W execute

R
  �Rþ LP þ LR

� �
,

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(26)

Bk – 1 – TEk£ð1 – αkÞ �M ðk ¼ 1, 2,:::, W executeÞ, (27)

Bk – 1 – TEk³ – αk �M ðk ¼ 1, 2,:::, W executeÞ, (28)

ILk³0 ðk ¼ 1, 2,:::, W executeÞ, (29)

ILk³ – ðBk – 1 – TEkÞ þ ðαk – 1Þ �M

ðk ¼ 1, 2,:::, W executeÞ, (30)

ILk£ – ðBk – 1 – TEkÞ þ ð1 – αkÞ �M

ðk ¼ 1, 2,:::, W executeÞ, (31)

ILk£αk �M ðk ¼ 1, 2,:::, W executeÞ, (32)

IBk ¼

Xk

t¼maxð1,k –Vþ1ÞILt � rW

k ¼ V , 2V ,:::,  �W execute

V
  �V� �

,

0, otherwise,

8>>>>><
>>>>>:

(33)

Bk³ –CL ðk ¼ 1, 2,:::, W executeÞ, (34)

αk 2 f0, 1g: (35)

3.2 Algorithm

Given that the model assumes a value for Wexecute, the
MILP model must be solved several times by starting with
Wexecute = Wmin. If the model fails to find a feasible solution
for this project duration value, then we increment Wexecute

by one week to becomeWexecute =Wmin + 1 and try again to
determine if the model finds a feasible solution. This
process is repeated until a feasible solution is found. The
contractor can specify a bound for the possible project
duration extension, which we denote as J, as shown in
Fig. 2. If the algorithm fails to find a feasible solution in
Wexecute + J weeks, then the problem is considered
infeasible.
This iterative solution algorithm is first suggested by

Elazouni and Gab-Allah (2004). Their starting solution is
the CPM solution of the problem, assuming that no credit
limit constraint exists. Following the same steps of
Elazouni and Gab-Allah (2004), we find that the number
of iterations increases for tight CL, and the time taken to
check infeasible solutions drastically increases for large
instances. To minimize time, we also start with the CPM
solution; however, we use the LP-relaxation of the
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problem, which considers CL, and iteratively solve the
problem until we have a feasible solution of the LP-
relaxation problem, as shown by the first loop of Fig. 2.
Starting with this solution, we switch to the MILP model,
as presented by the second loop of Fig. 2.
For the value of J, heuristic or meta-heuristics can

provide good upper bound forWexecute; for example, the GA
of El-Abbasy et al. (2016; 2017).

3.3 Interest calculation

The interest calculations of Elazouni and Gab-Allah (2004)
use R = LP = V. Having R = LP = V can make the cash
balance monotonically decreasing, except for weeks when
the sponsor pays an invoice, that is, every R weeks.
Figure 3 illustrates a hypothetical situation in which R = LP
= V = 4. According to Elazouni and Gab-Allah (2004),
interests that should be paid to the bank in week k ¼
V , 2V ,:::,  �W

V
  �V are due to the negative cash balance of

the previous interest payment period, IBprev
k , and the

compounded interests due to weekly loans, IBweek
k , as

shown in Eq. (36). Region I in Fig. 3 represents IBprev
k ,

whereas regions II, III, IV, and V represent IBweek
k , for

weeks k = 1, 2, 3, 4, respectively.

IBk ¼ IBprev
k þ IBweek

k k ¼ V , 2V ,:::,  �W
V
  �V� �

: (36)

Based on Elazouni and Gab-Allah (2004)’s model,

IBprev
k and IBweek

k are calculated according to Eqs. (37) and
(38), respectively. The interest calculations of our model
do not have any restriction regarding the values of R, LP,
and V. For instance, our model can handle the case of R≠
LP, as shown in the hypothetical case illustrated in Fig. 4.

IBprev
k ¼

Bk –V �
�
ð1þ rWÞV – 1

�

k ¼ V , 2V ,:::,  �W
V
  �V� �

,

0, otherwise,

8>>>>><
>>>>>:

(37)

IBweek
k ¼

Xk

t¼k –Vþ1
maxfTEk –minfBk – 1 – TEkgg

� ð1þ rWÞðk – tþ1Þ – 1

ðk ¼ V , 2V ,:::, W Þ: (38)

4 Multi-objective optimization

In addition to project duration, contractors may also
consider other objectives, such as minimum CL, maximum
profit, or minimum interest cost. In this section, we discuss
two approaches to use CPLEX 12.9 in solving multi-
objective optimization problems. The first approach is to
use the new multi-objective optimization features of
CPLEX 12.9 (Nodet, 2019). The second approach is to

Fig. 2 Iterative algorithm to minimize project duration.
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use the populate( ) function from CPLEX to generate
several solutions and choose the solution that maximizes or
minimizes other objectives.

4.1 Multi-objective optimization using CPLEX 12.9

The newest version of CPLEX, CPLEX 12.9, can deal with
multi-objective optimization. To use this module, the user
must define two parameters.
� Priorities that define the order in which objectives are

sequenced;
� Tolerances that define the range over which objective

function value may be degraded to accommodate for
improved optimal values of low-priority objectives.
For example, a contractor can have duration as the main

priority, followed by CL, then interest cost. The priorities
of these three objectives can be entered as 0, – 1 and – 2.
Moreover, if the contractor allows a two-week delay in
executing the project to have low CL and interest cost, then
the duration tolerance is two weeks.

4.2 Multi-objective optimization using populate( )

Contractors may not have a clear idea about which
combination of objectives is good for them and what is
the priority of these objectives. For this reason, contractors
may look for a set of Pareto optimal solutions (Censor,
1977) that can be found using the populate( ) method of
CPLEX 12.9. This method finds alternative solutions
having the same objective value. Users can specify how
many solutions they want CPLEX 12.9 to find.
Figure 5 summarizes how to solve the MMFBSP by

using CPLEX 12.9 and how to look for alternative
solutions with the same duration but different values of
profitability or financing needs. The algorithm extends the
one presented in Fig. 2, which only looks for a solution to
the project time minimization. As illustrated in Fig. 5, once
we find a feasible solution to the project duration problem,
the populate( ) method is employed to find alternative
solutions having different characteristics. The populate( )
method is left for the user to compare the different
solutions and select the best. After identifying the feasible
solution with the shortest duration, the populate( ) method
can be used with different W values to generate solutions
having different durations. Users of the populate( ) method
must specify the number of needed solutions.

5 Experiments

Three sets of experiments are conducted. In the first set, we
use our MMFBSP to solve two problems that are
previously solved using GA. In the second set, we show
the capabilities of CPLEX 12.9 in solving multi-objective
optimization problems. In the last experiment, we study
how computation time increases as problem size increases.
The processor used to conduct all experiments in our study
is the 2.5 GHz Core(TM) i5-3210M.

5.1 Comparisons

In this experiment, we validate our MMFBSP model by
solving FBSP and MMTCTP examples from the literature
that are solved using GA. Intuitively and logically, meta-
heuristic solutions are validated by comparing their results
against exact models. However, and given that researchers
have preferred meta-heuristic solutions and ignored the
exact ones, we assume that meta-heuristic solutions against
which we compare our results are optimal.

5.1.1 MMTCTP validation

This example is first presented by Moussourakis and
Haksever (2004), where a mixed-integer programming
(MIP) model is presented, and a single objective function
is minimized. Ammar (2011) also used the same example

Fig. 3 Hypothetical cash balance for R = LP = V = 4.

Fig. 4 Hypothetical cash balance for R ≠ LP.
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to solve a multi-objective optimization problem by using
GA. Through this example, we show that our model can
solve MMTCTP problems and how to use CPLEX 12.9 for
solving multi-objective optimization problems easily. We
attempt to replicate the results presented by Ammar (2011),
where optimum time and cost combinations are found.
The example has seven activities, and each activity has

different execution modes, as shown in Table 3. For
instance, activity D can be executed in two modes: A
discrete one in five weeks and based on a linear function
between 12 and 18 weeks. Thus, activity D can be
completed in 5, 12, 13, 14, 15, 16, 17, and 18 weeks,
resulting in eight modes. The project network is repre-
sented in Fig. 6.
Ammar (2011) shows the optimal costs that correspond

to different project durations. Execution times are not
reported. For this example, Wmin = 60. The range of
durations reported is between 60 and 76. Given that CL =
1 and B = 1, we can find a feasible solution for each
duration.
In Table 4, we show the optimum solutions obtained

using our model. Such solutions are the same as the ones
reported by Ammar (2011). We also present the number of
alternative solutions found for each project minimum
duration and cost by using the populate( ) method in

column 3. The reason behind this number is due to the
activities’ slack times. According to Ammar (2011), the
GA, or any other heuristic or meta-heuristic algorithm,
cannot recognize all these alternative solutions.

5.1.2 FBSP validation

One of the examples that has been cited by many
researchers (Alghazi et al., 2012; 2013) is the 30-activity
model shown in Fig. 7. The project illustrated in the same
figure consists of six main activities: A, B, C, D, E, and F.
We obtain as many copies of these activities as shown in
Fig. 7, where we have five copies of each activity. The
precedence relationships are also illustrated in Fig. 7. The
costs of activities A, B, C, D, E, and F are $1700, $1500,
$1800, $1900, $1600, and $2000, respectively. Alghazi
et al. (2013) solved this problem by assuming the data
shown in Table 5, where APR is the annual percentage rate.
In describing their example, the authors did not add
variable overheads to each activity. Instead, they calculated
the value of the total overheads and equally distributed that
value over the project duration. Moreover, they paid taxes
that are equally distributed over the project duration.
Hence, in replicating the authors’ model, we assume that
OV = 0 and use OF = $789.3.

Fig. 5 Finding alternative solutions using the populate( ) method.
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After replicating the model, we can generate several
solutions that have a slight difference in terms of the
final profitability. The single solution presented by Alghazi
et al. (2012; 2013) has a profitability of $28013.4.
However, we obtain several solutions that have resulted
in different profitability ranging from $27885.6 to
$28036.8. The difference between these values is due to
the interest costs.

5.2 Multi-object optimization approaches

In this experiment, we demonstrate how to use the
previously discussed two multi-objective optimization
techniques. We use the 30-activity model used in the
FBSP experiment, but we change the input parameters of
this experiment. Table 6 shows the bidding, contracting,
and financing parameters of this experiment, respectively,
where rD is the effective daily interest rate.

5.2.1 Unknown priorities

We use the populate( ) method to find 1000 solutions for

Table 3 Contractor cost parameters of the MMTCTP example

Activity Option Duration (week) Cost ($) Time-cost function Number of modes

Upper Lower Lower Limit

A 1 28 22 100 130 Piecewise linear 15

2 22 18 140 210

3 28 22 100 130

B 1 20 14 50 80 Linear with gaps 10

2 10 8 120 300

C 1 15 15 75 75 Discrete points 3

2 8 8 240 240

2 4 4 500 500

D 1 18 12 70 220 Linear and discrete points 8

2 5 5 360 360

E 1 26 18 40 80 Piecewise linear 22

2 18 14 200 240

3 14 6 240 260

F 1 25 15 120 300 Linear 11

G 1 7 7 0 0 Discrete points 11

Fig. 6 Network representing the precedence relationships of the MMTCTP example.

Table 4 Solutions of the MMTCTP example

Duration (week) Budget ($) Number of alternatives

76 911.0 22

75 910.0 22

74 909.0 23

73 908.0 25

72 907.0 25

71 906.0 906

70 905.0 21

69 904.0 21

68 903.0 21

67 902.0 21

66 901.0 21

65 900.0 20

64 917.0 21

63 933.0 21

62 944.5 22

61 956.0 23

60 973.0 24
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different project durations. ForW = 34 weeks, Fig. 8 shows
the different solutions with respect to their CL and profit.
Contractors can use this graph to define their optimal front,
and then execute the project on the basis of their own
criteria. This experiment is repeated for different project
durations and is summarized in Table 7.

5.2.2 Known priorities

In this experiment, we assume that the contractor has
preferences with respect to the objective functions. Using

W = 34 weeks, we first solve the problem, assuming that
profitability is more important than CL. Then, we shift
priorities by minimizing CL first, and then maximizing the
profit. For the first case, the maximum profit is $92405,
whereas the minimum CL is $29856. For the second case,
the minimum CL is $29481, whereas the maximum profit
for this CL is $91615. Figure 8 does not show these two
solutions.

5.3 Computation time

In this experiment, we study the time needed to find
feasible solutions for a set of instances having different
sizes. As a test set, we extend the model used in the
previous example by having many copies of each activity,
as explained by Alghazi et al. (2012; 2013). For example,
to create a 60-activity project, we generate 10 copies of
each main activity. We generate four project networks
having 30, 60, 120, and 240 activities. We also use the
same bidding, contracting, and financing parameters
shown in Table 6.
Approaches and times to find solutions are presented in

Table 8. Column 1 of Table 8 shows the instance size,
whereas column 2 presents the CPM solutions if the fastest
execution modes are used. The time to find a CPM solution
is 0 s for all the instances. Starting with the CPM solution,

Table 5 Contract and loan parameters of the FBSP example

Contract parameters Loan parameters

Data type Value Data type Value

BC $1958 APR 58.4%

MOB $7618 CL $4000

AP $19779 Comp daily

LP 1 week V weekly

LR 0 week rW 0.8%

MU 1.492

R 1 week

RP 5%

Fig. 7 Network representing the FBSP example.

Table 6 Default bidding, contracting, and financing parameters of the experimental study

Bidding parameters Contracting parameters Financing parameters

Data type Value Data type Value Data type Value

OF $100/day AP 1.1 � (MOB+ BC) CL $20000

MOB $10000 LP 4 weeks Comp daily

OB 2% LR 0 week rD 1%

OP 50% MU calculated V weekly

OV 10% R 4 weeks

RP 20%
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we apply the solution algorithm as illustrated in Fig. 2, but
use the LP-relaxation of the problem. Columns 3 and 4
show the feasible LP-relaxation solutions and the time
needed to find these solutions, respectively. The time to
find the first feasible LP-relaxation solution is negligible,
except for the 240-activity instance that takes 157 s, which
is less than 3 min.
Starting with the LP-relaxation solution, we again apply

our algorithm but use the MILP model. Columns 5 and 6 of
Table 8 show the MILP solution and the time to find this
solution, respectively. The computation time is less than
2 min for all the instances, except for the 240-activity
instance, which takes nearly 41 min. In total, solving the
240-activity takes less than 45 min. Note that CPLEX 12.9
can do parallel computing to reduce the computation time.
Finally, the LP-relaxation has provided a good lower

bound for the problem. Optimal MILP solutions take one
week more than the optimal LP-relaxation solutions.

Contractors can use the LP-relaxation to check solutions
found by heuristics and meta-heuristics.

6 Conclusions and future research

This study presents an MILP model to solve the multi-
objective MMFBSP. Using the bidding parameters, the
model shows the best project execution schedule. To avoid
having a nonlinear model, the MILP is embedded in an
iterative algorithm that attempts to find a feasible project
duration by iteratively increasing the project executing
time. Given that project duration may not be the only
criteria considered in scheduling the project, we demon-
strate how CPLEX 12.9 can be used to solve multi-
objective optimization problems. Unlike heuristic and
meta-heuristic solutions, our model guarantees solution
optimality.
Users who are not interested in solving several

optimization models having different objectives can use
two features of CPLEX 12.9. Users who are certain about
what objectives they are targeting and the importance of
these objectives can directly use this information in
CPLEX 12.9. Users who have a vague idea about what
objectives they are looking for or the importance of such
objectives can find several alternative solutions using the
populate( ) method.
We validate our model by solving the MMTCTP and

FBSP examples from the literature. Then, we show how
the populate( ) method can help in finding alternative
solutions from which the user can select the best. Last, we

Fig. 8 Solutions having different CL and profits for the 30-activity problem.

Table 7 Experiment results of the 30-activity project example

Duration (week) Min. CL ($) Max. Profit ($) Min. Interest ($)

34 29377 92610 636

35 28907 92930 618

36 26930 93543 577

37 27125 92250 556

38 26173 92375 548

39 24104 93659 516

40 24624 93425 489

Table 8 Computation time experiment results for different project size

Instance size CPM solution (week) LP-relaxation solution (week) LP-relaxation time (s) MILP solution (week) MILP solution time (s)

30 29 33 0 34 2

60 49 55 0 56 102

120 89 92 10 93 110

240 169 171 157 172 2433
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study how computation time increases as problem size
increases. The time needed to solve a problem having three
solution alternatives is less than 45 min, without benefit-
ting from the parallel computing capabilities of CPLEX
12.9. Moreover, the LP-relaxation of the problem provides
an excellent lower bound against which results of heuristic
and meta-heuristic solutions can be compared. LP-
relaxation time is almost negligible.
An improved model that maintains linearity but avoids

the iterative solution technique is needed. Researchers
have previously abandoned exact methods and adopted
heuristic and meta-heuristics to solve the FBSP and its
extension. Thus, additional exact models are also needed to
capture all FBSP extensions, such as considering more
than one financing option or portfolio of projects. Meta-
heuristic solutions must be tested against large, real project
instances to check their accuracy. Doing so is significant
for contractors to judge if spending extra time for an
optimal solution is a good investment.
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