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Abstract The airline industry is a representative industry
with high cost and low profitability. Therefore, airlines
should carefully plan their schedules to ensure that overall
profit is maximized. We review the literature on airline
planning and scheduling and focus on mathematical
formulations and solution methodologies. Our research
framework is anchored on three major problems in the
airline scheduling, namely, fleet assignment, aircraft
routing, and crew scheduling. General formulation, widely
used solution approaches, and important extensions are
presented for each problem and integrated problems. We
conclude the review by identifying promising areas for
further research.1)

Keywords airline planning, fleet assignment problem,
aircraft routing problem, crew pairing problem, crew
rostering problem, crew scheduling problem, integrated
planning

1 Introduction

The aviation industry has played an integral role for
creating global economic prosperity in the past decades.

This industry has displayed continuous growth and
vibrancy given the rapidly increasing number of airline
passengers, particularly in developing countries. Global
passenger traffic, which is measured in revenue passenger
kilometers (RPK), is predicted to grow at 4.1% annually
from 2015 to 2045 (the International Civil Aviation
Organization (ICAO), 2018). More than 4.5 billion
passengers were transported by commercial airlines in
2018 (Mazareanu, 2019), which was the 9th consecutive
year that RPK grew above the trend (International Air
Transport Association (IATA), 2019). To satisfy additional
demand, aircraft should be flown more intensively than
before, and the number of scheduled flights is predicted to
reach 39.8 million in 2019, which is about 76 aircraft
departures per minute on average (IATA, 2018). That is,
the global flight network becomes increasingly complex.
To accommodate the market and support the expansion

of the flight network, the in-service fleet is expected to
grow at an average annual rate of 3.4%, and new aircraft
delivers are forecasted to top 44000, which are valued at
over $6 trillion (Boeing, 2019a). Consequently, 804000
new pilots and 914000 new cabin crews are needed over
the next 20 years for the aviation industry (Boeing, 2019b).
However, the industry faces a worldwide crew shortage
stemming from a mix of the dwindling number of crews
supplied by the military, retirement of skilled crews, and
lack of available training facilities (AINonline, 2017; Gall,
2018).
The airline industry is a representative industry with

high cost, high revenue, and low profit. Fuel and crew costs
and aircraft depreciation account for the major airline
expenses. Airbus released a price list and indicated that an
aircraft could cost $80–500 million (Airbus, 2018). For
example, Airbus A320 costs $101.1 million each, and the
price of Airbus A380 exceeds $440 million. Airlines also
spend a considerable amount for crew resources. Depend-
ing on the airline, fleet, and experience level, a pilot earns
approximately $70000 to $300000 per year in America
(Phoenix East Aviation (PEA), 2019). In 2019, airline costs
are expected to grow to 7.4%, thereby outpacing the 6.5%

Received December 25, 2019; accepted January 8, 2020

Lei ZHOU, Zhe LIANG (✉)
School of Economics & Management, Tongji University, Shanghai
200092, China
E-mail: liangzhe@tongji.edu.cn

Chun-An CHOU
Mechanical & Industrial Engineering Department, Northeastern Uni-
versity, Boston, MA 02115, USA

Wanpracha Art CHAOVALITWONGSE
Department of Industrial Engineering and Institute for Advanced Data
Analytics, University of Arkansas, Fayetteville, AR 72701, USA

This study is supported by the National Natural Science Foundation of China
under Grant No. 71825001.

Front. Eng. Manag. 2020, 7(1): 1–26
https://doi.org/10.1007/s42524-020-0093-5



anticipated growth in sales (Goldman, 2019). IATA states
that airline margins are squeezed by rising fuel prices and
substantial weakening of world trade in 2019 (Goldman,
2019). In addition, online travel agencies present ticket
prices with transparency to passengers. Thus, airlines
should match the market fares to maintain their share. All
these factors aggravate the airlines’ low profitability.
As mentioned above, the scale of the network is large,

operations involving expensive aircraft and crews are
complex, and profit margins remain low. Therefore, the
mechanism of how profit-maximizing schedules are made
poses a tremendous challenge for airlines (Barnhart and
Cohn, 2004; Belobaba et al., 2009). Fortunately, since the
1960s, operations research (OR) has played a critical role
in the development of the aviation industry because its
techniques and models find natural contexts for application
in the air transport environment (Barnhart et al., 2003a).
More than 2800 professionals are recognized as present
members of the Airline Group of Operational Research
Societies (AGIFORS), and they represent more than 500
airlines, airline manufacturers, universities, and aviation-
related companies and associations (AGIFORS, 2019). In
academia, the Institute for Operations Research and the
Management Sciences (INFORMS) Annual Meeting,
which is the world’s largest OR and analytics conference,
established the Aviation Application Section of INFORMS
to encourage the development and dissemination of
applications and research in areas relating to aviation
(INFORMS, 2019).
An airline’s products are defined by its schedule

planning (Barnhart and Smith, 2012). Airline scheduling
is an enormous and complex challenge that involves
thousands of flights per day, hundreds of aircraft, complex
regulations related to crew fatigue control, and air traffic
control, among others (Barnhart and Cohn, 2004; Cadarso
and de Celis, 2017). This problem is generally divided into
sequential sub-problems, namely, schedule design problem
(SDP), fleet assignment problem (FAP), aircraft routing
problem (ARP), and crew scheduling problem (CSP)
(Rushmeier and Kontogiorgis, 1997; Stojković and
Soumis, 2001; Belobaba et al., 2009; Sherali et al., 2010;
Shao et al., 2017). CSP could be further divided into crew
pairing problem (CPP) and crew rostering problem (CRP).
SDP develops the timetable of flights that contains the
origin and destination airports along with the departure and
arrival time of each flight. FAP subsequently assigns an
aircraft type (i.e., fleet) for each flight to maximize the
expected airline profit. After the flight schedule is
developed and fleets are assigned to every flight, ARP
assigns an aircraft for each flight while satisfying the
maintenance requirements. Afterward, CSP allocates the
crew to flights without violating the related crew regula-
tions. To the best of our knowledge, SDP is generally
determined by the airline marketing department based on
empirical and the market considerations. The flight
schedule decision is affected by the long-term goal of the

airline and the growth of the regional and global economy.
Although numerous researchers tackle SDP from different
perspectives, no universally well-recognized model is
available. Hence, we focus on the latter three problems,
namely, FAP, ARP, and CSP. In particular, we present the
motivations, mathematical formulations, and solution
approaches for these problems and summarize the
literature by comparing the different methods and provid-
ing scientific and industrial insights.
Deveci and Demirel (2015), Kasirzadeh et al. (2017),

and Eltoukhy et al. (2017) recently conducted reviews and
focused on one or more of the aforementioned problems.
Deveci and Demirel (2015) and Kasirzadeh et al. (2017)
reviewed CSP. Deveci and Demirel (2015) focused on CPP
by emphasizing recent studies and solution methodologies.
Kasirzadeh et al. (2017) presented a comprehensive
problem definition of CSP and reviewed existing problem
formulations and solution methodologies. Eltoukhy et al.
(2017) reviewed the literature on the four sub-problems of
airline planning. Different from the existing reviews, we
focus more on the mathematical modeling of different
problems and extensions.
The remainder of the paper is organized as follows.

Section 2 illustrates the basic model, important model
extensions, and solution methods for FAP. Section 3
describes the ARP in detail. Section 4 presents the CSP
that consists of the CPP and CRP. Section 5 describes the
integration of two or more scheduling problems. More-
over, Section 6 briefly summarizes and presents several
potential future research directions.

2 Fleet assignment problem

The FAP aims to determine the fleet (i.e., type of aircraft)
for each flight (Hane et al., 1995; Bélanger et al., 2006a;
Salazar-González, 2014) in a given flight schedule.
Generally, an airline operates heterogeneous fleets. Aircraft
of the same fleet constantly have similar requirements on
aircraft maintenance and crew qualification and similar
capacity (depending on the specific interior layout). A
typical FAP covers the scheduled flights with limited
aircraft resources to maximize the profit. Given that aircraft
seats are considered the perishable product with high
operating costs, the FAP should provide the “right
number” of seats to passengers (Sherali et al., 2006).
In this section, we introduce two basic models based on

different network structures. We also discuss the enhanced
models with various operational and industrial considera-
tions and subsequently present the solution approaches.

2.1 Basic fleet assignment model

The FAP is typically formulated as a mixed integer
programming problem under the daily-schedule assump-
tion (i.e., every flight repeats daily). There are two classical
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methods to construct the flight network, namely the
connection network and the time–space network. The
fleet assignment model (FAM) is presented based on
connection and time–space networks in this section.

2.1.1 FAM based on the connection network

The connection network was introduced by Abara (1989)
(Fig. 1). In the connection network, each airport has two
timelines, namely, departure and arrival. Nodes represent
the time points of the departure and arrival of legs. The
connection network uses three types of arcs, which are leg
arcs, connection arcs, and original/terminal arcs. The leg
arcs represent different flights between airports. The
connection arcs signify the possible aircraft connection
between an arrival flight and a departure flight. The
original arcs represent aircraft departing from the airport at
the beginning of the day, and the terminal arcs represent
aircraft arriving and remaining at the airport for the rest of
the day.
The basic idea of the fleet assignment model is to assign

a sub-network for each fleet, and thus, the flights in each
fleet sub-network can be flown by aircraft in that fleet. All
the fleet sub-networks are bundled by the set of the cover
constraints, which ensure that every flight is assigned in
one of the fleet sub-networks.
With the following notation, the basic mathematical

formulation of connection-based FAM is given in
Eqs. (2.1)–(2.6).

In this model, the objective function in (2.1) consists of
two parts. The first part is the profit obtained by all legs and
connections, and the second part is the cost of the number
of aircraft used. Here,

X
j2Lx0jk counts the total number of

used aircraft for fleet k. The cover constraints (2.2) require
each leg to be covered exactly once. The equipment
continuity constraints (2.3) require that the two connec-
tions that begin or end at the same leg should be covered by
the same fleet. Thus, the network flow balance is
maintained. The schedule balance constraints (2.4) ensure
that the number of aircraft originating from a station at the
beginning of a day equals to the number of aircraft
terminating at the end of the same day. Thus, the schedule
can be repeated daily. The aircraft count constraints (2.5)
ensure that the number of aircraft used does not exceed the
total number of available aircraft for each fleet.
The equipment continuity constraints (2.3) and the

schedule balance constraints (2.4) can be merged into flow
balance constraints by introducing dummy source/sink
nodes and dummy arcs for each airport (see Fig. 2). Given
an airport, the dummy source node is the start-day node
that connects all legs departing from the airport. Similarly,
the dummy sink node is the end-day node that connects all
legs arriving at the airport. The dummy arc, which is called
wrap-around arc, starts from the dummy sink node and
ends at the dummy source node. This arc represents the
aircraft at the airport overnight. Equations (2.3) and (2.4)
can be rewritten as Eq. (2.7) with additional notation as
follows.

2.1.2 FAM based on the time–space network

The time–space network was first proposed by Hane et al.
(1995) (Fig. 3). Three types of arcs are constructed,
namely, leg arcs, ground arcs, and wrap-around arcs. Leg
arcs represent flights between airports. Ground arcs
represent aircraft staying on the ground. Wrap-around
arcs link the last events of an airport to the first events of
the same airport, which represent aircraft overnight at that

Sets

K set of fleets, indexed by k

L set of legs, indexed by l, i, or j

L+ = L[ {0}. The index i = 0 denotes the original arc, and index j
= 0 denotes the terminal arc. Given a leg connection i ! j, i,
jÎ L+, if i = 0, then j is the first leg of a daily aircraft route; if j
= 0, then i is the last leg of a daily aircraft route.

S set of stations, indexed by s

LAs set of legs arriving at station s

LDs set of legs departing from station s

Constants

Mk number of available aircraft of fleet k

Parameters

ck cost of each aircraft in fleet k

pjk benefit of operating leg j by fleet k

Variables

xijk Î {0, 1}. xijk = 1, if fleet k covers the connection i ! j, i,
jÎ L+; and xijk = 0, otherwise.

Model 2.1 Basic FAM based on the connection network

Max
X

i2Lþ

X

j2L

X

k2K
pjkxijk –

X

j2L

X

k2K
ckx0jk (2.1)

s.t.
X

i2Lþ

X

k2K
xijk ¼ 1 8j 2 L (2.2)

X

i2Lþ
xilk –

X

j2Lþ
xljk ¼ 0 8l 2 L, 8k 2 K (2.3)

X

l2LDs
x0lk –

X

l2LAs
xl0k ¼ 0 8s 2 S, 8k 2 K (2.4)

X

l2L
x0lk£Mk

8k 2 K (2.5)

xijk 2 f0, 1g 8i, j 2 Lþ, 8k 2 K (2.6)

Sets

LDM set of dummy arcs

L* = L [ LDM

X

i2L*
xilk –

X

j2L*
xljk ¼ 0 8l 2 L, 8k 2 K (2.7)
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Fig. 1 Connection network proposed by Abara (1989).

Fig. 2 Connection network with dummy source/sink nodes and wrap-around arcs.

Fig. 3 Example of the time–space network.
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airport. The nodes in the time–space network represent leg
departure and arrival events. The time of arrival node is
equal to the actual arrival time of the leg plus the minimum
turn time for an aircraft. The minimum turn time is the
shortest time for an aircraft to make a connection.
Given the time–space network above, the FAM can be

formulated by Eqs. (2.8)–(2.13) with the following
additional notation.

The total profit in this model is maximized in (2.8).
Constraints (2.9) reflect the cover constraints. The flow
balance constraints (2.10) guarantee the balance of aircraft
flow at each node. Constraints (2.11) are aircraft count
constraints. On the left,

X
l2LPxlk counts the number of

aircraft in the air and
X

n2NP
k
ynþ counts the number of

aircraft on the ground at the counting time point. Thus, the
total number of used aircraft does not exceed the size of
fleet k.
Table 1 reveals that the essential difference between the

connection and time–space networks lies within a trade-off
between the model size and the information obtained from
the model. Given that the number of possible leg
connections is larger than the number of legs, the model
size of the connection network will grow faster than that of
the time–space network as the number of legs increase.
However, the solution to the FAM based on the time–space

network fails to provide detailed information about the leg
connections.
The majority of the constraints from the connection and

time–space networks are flow balance constraints, which
are considered as easy constraints and can be handled
easily by commercial solvers. The connection- and time–
space-based models can presently solve the largest real-life
daily problem efficiently.

2.2 Enhanced models with additional considerations

In the airline industry, numerous real-life considerations
can be captured by modifying the basic FAM. We discuss
several important extensions to the basic FAM in the
following sections.

2.2.1 Weekly fleet assignment model

Daily schedule is a widely adopted assumption in the
airline literature (Rexing et al., 2000; Lohatepanont and
Barnhart, 2004; Gao et al., 2009; Salazar-González, 2014;
Shao et al., 2017). However, flight schedules may vary
over the days in practice, for example, several legs are
flown every other day. Furthermore, the demand and price
at different days of a week might considerably fluctuate.
Hence, weekly FAP should be considered.
Ioachim et al. (1999) focused on the schedule synchro-

nization constraint, which requires the legs sharing the
same flight number to depart simultaneously on different
days of a week. A synchronized schedule produces highly
reliable aircraft schedules that generate savings and
requires low modification in operation. They propose a
solution approach based on Dantzig–Wolfe decomposi-
tion. Their computational experiments on Lufthansa Air-
lines showed that the test case with 106 legs could be
solved in 79.1 s. Apart from the time synchronization, fleet
homogeneity is another concern of airlines and passengers.
Fleet homogeneity requires the same fleet to fly the legs
with the same flight number on different days in a week.
Homogeneity makes the planning of ground service
convenient and improves customer satisfaction. Bélanger
et al. (2006b) incorporated fleet homogeneity into the
weekly FAM. Their model aims to maximize the total

Sets (cont.)

Nk set of nodes in the network for fleet k, indexed by n

Lnþ set of legs inbound to node n

Ln – set of legs outbound from node n

LP set of legs crossing the aircraft count time. The count time can
be any time point of a day.

NP
k set of nodes in the network for fleet k, and the ground arcs into

these nodes cross the aircraft count time

Variables (cont.)

xlk Î {0, 1}. xlk = 1, if fleet k covers the leg l; xlk = 0, otherwise.

ynþ number of aircraft on the ground arc into node n, where
nÎNk, kÎK

yn – number of aircraft on the ground arc out node n, where nÎNk,
kÎK

Model 2.2 Basic FAM based on the time–space network

Max
X

l2L

X

k2K
plkxlk (2.8)

s.t.
X

k2K
xlk ¼ 1 8l 2 L (2.9)

X

l2Lnþ
xlk þ ynþ –

X

l2Ln –
xlk – yn – ¼ 0 8n 2 Nk , 8k 2 K (2.10)

X

l2LP
xlk þ

X

n2NP
k

ynþ£Mk
8k 2 K (2.11)

xlk 2 f0, 1g 8l 2 L, 8k 2 K (2.12)

ynþ , yn – ³0 8n 2 Nk , 8k 2 K (2.13)

Table 1 Comparison of the connection and time–space networks

Connection network Time–space network

Cost assignment cost+ connection cost assignment cost

#Nodes O(|L|) O(|L|)

#Arcs O(|L|2) O(|L|)

#Variables O(|L|2|K|) O(|L||K|)

#Constraints O(|L||K|) O(|L||K|)

Connection
information

Known Unknown
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profit and promote homogeneity by penalizing the fleet
difference in the weekly FAM. A heuristic approach is
developed for their problem. Their findings reveal that high
level of homogeneity can be achieved at the expense of a
little profitability.

2.2.2 FAM with consideration of itinerary-based demand

In the aforementioned FAMs, profit plk is estimated based
on the forecasted leg demand and price. While some
passenger itineraries consist of multiple legs, especially in
the hub-and-spoke networks. An itinerary is a sequence of
one or more legs linking the origin and destination of
passengers. The demand for multiple-leg itineraries arises
because the airlines fail to operate corresponding nonstop
flights or provide multiple-stop flight (i.e., connecting
flight) tickets with low prices. The fare of a connecting
flight is typically less than the sum of all involved legs.
Hence, the cost and demand of multiple-leg itineraries
cannot be modeled by the leg-based model.
To capture the effects of flight leg interdependencies

(i.e., network effect), Farkas (1996) incorporated itinerary-
based demand in the time–space FAM (Eqs. (2.9)–(2.16)).

In this model, the total profit is maximized in (2.14).
Aircraft capacity constraints (2.15) link the basic FAM and
the itinerary-based demand. Given a leg, aircraft capacity
constraints (2.15) require that the total accepted demand on
itineraries containing the leg must not exceed the aircraft
capacity of the fleet assigned to that leg. Demand
constraints (2.16) ensure that the accepted demand is not
larger than the existing demand. In Farkas (1996), two
approaches are presented to solve the model, i.e., a column

generation approach and a heuristic approach that parti-
tions the fight legs into sub-networks.
Furthermore, if an aircraft is fully booked, the spilled

demand of an itinerary could transfer to other itineraries
that consist of different legs. These recapture effects of
spilled demand cannot be formulated by the traditional leg-
based model. Therefore, Barnhart et al. (2002) proposed an
itinerary-based FAM (IFAM) to address this problem. The
IFAM can be formulated as Eqs. (2.9)–(2.13) and (2.17)–
(2.20) with additional notation below.

Equation (2.17) computes the summation of operational
cost and the loss of profit.

X
i2I
X

j2I ðpi – bijpjÞzij can be

rewritten as ð
X

i2I
X

j2I pizij –
X

i2I
X

j2I pjbijzijÞ, if

i ≠ j. The first part
X

i2I
X

j2I pizij computes the

maximum profit that can be achieved. The second partX
i2I
X

j2I pjbijzij computes the actual profit captured.

Therefore, the term
X

i2I
X

j2I ðpi – bijpjÞzij computes the

loss–profit cost. Constraints (2.18) indicate the aircraft
capacity constraints. Given leg l,

X
i2Il

X
j2I zij represents

the passengers spilled from itineraries containing l andX
j2I
X

i2Il bjizji represents the passengers recaptured by

itineraries containing l. Hence, constraints (2.18) require
that the capacity assigned to any leg must not be less than
the total number of passengers accepted by the leg.
Demand constraints (2.19) ensure the total number of
spilled and non-spilled passengers is equal to or less than
the existing demand for the itinerary. Barnhart et al. (2002)
developed a heuristic approach based on column and row
generation to solve IFAM. Computational results showed

Sets (cont.)

I set of itineraries, indexed by i

Il set of itineraries which include leg l

Parameters (cont.)

CAPk capacity of fleet k

DMDi demand on itinerary i

pi fare of itinerary i

clk cost of assigning fleet k to leg l

Variables (cont.)

zi number of accepted passengers on itinerary i

Model 2.3 FAM with consideration of itinerary-based demand

Max
X

i2I
pizi –

X

l2L

X

k2K
clkxlk (2.14)

s.t. (2.9)–(2.13)
X

k2K
CAPkxlk –

X

i2Il
zi³0 8l 2 L (2.15)

0£zi£DMDi 8i 2 I (2.16)

Parameters (cont.)

bij recapture rate, i.e., fraction of passengers spilled from
itinerary i and recaptured by itinerary j successfully. Note
that bij = 1 if j = i.

Variables (cont.)

zij number of passengers spilled from itinerary i and redirected to
itinerary j. Note that bijzij is the number of passengers
transferred from itinerary i to itinerary j, and zii represents the
number of not spilled passengers of itinerary i.

Model 2.4 IFAM

Min
X

l2L

X

k2K
clkxlk þ

X

i2I

X

j2I
ðpi – bijpjÞzij (2.17)

s.t. (2.9)–(2.13)
X

i2Il
DMDi –

X

i2Il

X

j2I
zij þ

X

j2I

X

i2Il
bjizji

£
X

k2K
CAPkxlk 8l 2 L (2.18)

X

j2I
zij£DMDi

8i 2 I (2.19)

zij³0 8i, j 2 I (2.20)
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that the IFAM could realize an annual revenue improve-
ment of up to $153.2 million for a major US airline.
The IFAM adopts a fixed passenger transfer rate that can

hardly be measured in real life because the transfer rate is
affected by the set of available itinerary candidates. If
itinerary candidates are less than expected, then the transfer
rate will be high. By contrast, if itinerary candidates are
more than expected, then the transfer rate will be low. To
address this issue, Lohatepanont and Barnhart (2004)
considered the effect of flight frequencies and departure
times on spilled passenger transfer preferences. They
solved their model through a similar heuristic approach for
the IFAM and reported that an increase in the daily
contribution of $561776 is achieved by such model
compared with the planners’ schedules.
Barnhart et al. (2009) handled more comprehensive and

realistic revenue functions compared with the IFAM to
capture the spill and transfer demand in FAM. They solved
the problem by decomposing the entire network into small
sub-networks, in which the revenue of each sub-network
can be accurately computed and can reflect the original
revenue function. Their model provided tighter linear
programming relaxations than the IFAM and outperformed
the FAM and the IFAM in terms of profit and solution time.

2.2.3 Robust fleet assignment model

Numerous researchers focus on profit maximization and/or
cost minimization in FAM, but the robustness in the
schedule should also be considered. Flights may fail to
consistently depart or arrive as planned when unpredicted
disruptions happen (e.g., adverse weather, air traffic
control, and resource shortage). Robust scheduling is one
of the major schemes to mitigate the large financial effect
caused by disruptions. Rosenberger et al. (2004) proposed
a robust FAM with short cycles (i.e., a sequence of legs
with the same departure and arrival airport), because the
schedule with short cycles can provide more cancelation
opportunities. Smith and Johnson (2006) addressed
another measurement, namely, station purity, to promote
schedule robustness. Station purity represents the number
of fleet types serving a given airport. By limiting the
number of fleets on each airport, additional opportunities
are open for aircraft and/or crews to swap, thereby
improving schedule robustness.
Table 2 summarizes the FAP reviewed above and

indicates additional studies that are not mentioned in the
text.

3 Aircraft routing problem

When the schedule design and fleet assignment are
determined, the flight network is decomposed into sub-
networks to each fleet. Given the sub-network of a fleet,
ARP aims to construct the specific route (also called

rotation) flown by each aircraft (Clarke et al., 1997). A
valid route should satisfy aircraft maintenance require-
ments based on typical metrics, e.g., accumulated flight
hours (FH), number of takeoffs/landings (cycles), and
elapsed time since last check (Barnhart and Smith, 2012).
Therefore, ARP is also called aircraft maintenance routing
problem (AMRP).

3.1 Common maintenance checks

To remain airworthy, aircraft should undergo various
regularly scheduled maintenance tasks. The tasks are
grouped into work packages named blocks to minimize the
time that aircraft out of service and maximize the
utilization of maintenance resources. Daily check is the
lowest scheduled check and merely inspects general items,
such as fluid levels, emergency equipment, and deck
cleaning, among others. Type A check is the next higher
level maintenance, which is performed at approximately
every 400–600 FH. A typical A check on B737 needs
about 6–24 h, and the daily check could be included. Type
B check is performed every 6–8 months or 400–900 FH,
and needs about 120–150 staff hours. Type C check has a
thorough visual inspection of specified components and
systems, which occurs at approximately every two years
and keeps the aircraft unavailable for a week. For several
fleets, the B check could be distributed between the A and
C checks, so to reduce aircraft downtime and improve
manpower usage. Type D check dismantles the aircraft,
checks all the components, and reinstalls back the parts.
The D check requires three weeks or more time to finish. A
and B checks are considered as light checks, which do not
involve detailed disassembly. C and D checks are known
as heavy checks, which are carried out in hangars at
maintenance airports. The higher-level check can cover the
checks with lower levels. Table 3 summarizes additional
details (Hessburg, 2000; AEINFO, 2016; Qantas, 2016;
Aviation Enthusiasts, 2019a; 2019b). All aforementioned
data are estimated value, while the exact numbers in
practice vary according to fleet, age, cycle count,
accumulated FH, and elapsed hours since the last check
of the aircraft. Furthermore, some components like the
engines undergo maintenance according to their log files.
Nowadays, the flight schedule becomes much tighter. To

decrease the time of aircraft on the ground and increase the
feasibility of maintenance schedule, a variation of block
maintenance or the phased-A check is proposed (Seiden-
man and Spanovich, 2018). The proposed check breaks a
typical A check into small packages. The Director for
Maintenance Planning and Technical Operations of Jet-
Blue Airways, Boris Rogoff, stated that the phased-A
check achieves better operational flexibility. On the other
hand, Jonathan Berger, the Managing Director of Alton
Aviation Consultancy, reported that it looks good on paper
but has poor on-time performance, because the phased-A
check is done more frequently, and components or labor

Lei ZHOU et al. Airline planning and scheduling: Models and solution methodologies 7



are not constantly available. Therefore, choosing between
traditional and phased-A check is a trade-off between
flexibility and reliability.
The light checks, particularly Type A check with daily

check embedded, are performed more frequently than other
check types. Thus, the A check is typically incorporated
into the ARP in various studies. In literature (Feo and Bard,
1989; Gopalan and Talluri, 1998; Haouari et al., 2013), the

Table 2 Summary of the literature on FAP

Literature Network1 Time horizon2 Solution method3 Features4

Abara (1989) CN D – –

Berge and Hopperstad (1993) TSN W heuristic –

Subramanian et al. (1994) TSN D cutting-edge algorithms maintenance arcs

Hane et al. (1995) TSN D interior-point algorithm; B&B –

Clarke et al. (1996) TSN D LP-based B&B maintenance+ crew considerations

Rushmeier and Kontogiorgis (1997) CN D CPLEX flight connection possibilities

Barnhart et al. (1998) CN D B&P string-based; through revenues

Ioachim et al. (1999) CN W DW; CG time synchronization

Rexing et al. (2000) TSN D iterative solution technique departure time window

Barnhart et al. (2002) TSN D heuristic approach based on C&RG itinerary-based demand

Yan and Tseng (2002) TSN D Lagrangian relaxation; sub-gradient method decide O&D pairs by model

Lohatepanont and Barnhart (2004) TSN D heuristic approach based on C&RG itinerary-based demand

Rosenberger et al. (2004) CN D ILOG string-based; short cycles

Bélanger et al. (2006a) TSN D B&P departure time window

Bélanger et al. (2006b) TSN W two-phase heuristic fleet homogeneity

Smith and Johnson (2006) TSN D/W CG station purity

Jacobs et al. (2008) TSN D iterative algorithm O&D network effects

Pilla et al. (2008) TSN D statistical experiments approach demand driven dispatch

Barnhart et al. (2009) TSN D heuristic realistic revenue functions

Gao et al. (2009) TSN D CPLEX station purity; crewbase purity

Haouari et al. (2009) CN D/W two-phase network flow-based heuristic –

Sherali et al. (2010) TSN – BD itinerary-based demand

Pilla et al. (2012) TSN W L-shaped method stochastic demand

Liang and Chaovalitwongse (2013) TSN W CPLEX weekly rotation-tour network

Sherali et al. (2013a) CN D BD itinerary-based demand; flight retiming

Sherali et al. (2013b) TSN D BD itinerary-based demand; flight retiming

Salazar-González (2014) TSN D heuristic FAP+ ARP+ CSP

Shao et al. (2017) CN D BD FAP+ ARP+ CPP

Notes: 1. CN: the connection network, TSN: the time–space network; 2. D: daily, W: weekly; 3. B&B: branch and bound, LP: linear programming, B&P: branch and
price, DW: Dantzig–Wolfe decomposition, CG: column and generation, C&RG: column and row generation, BD: Benders’ decomposition; 4. O&D: originating &
departure.

Table 3 Maintenance types

Type Interval Staff hour Off work Location Example

Daily 24–60 FH – – gate fluid levels, general security, deck cleaning, emergency equipment

A 400–600 FH/200–300 C 20–60 6 H gate oxygen system, emergency lights, nose gear retract actuator, parking brake

B 6–8 M/400–900 FH 120–150 1–3 D hangar torque tests and flight control tests

C 18–24 M 6000 1–2 W hangar flight compartment escape ropes, entry door seals, flap asymmetry system

D 6–12 Y 50000 3–6 W hangar stabilizer attach bolts, floor beams, wing box structure

Notes: C: cycle, M: month, Y: year, H: hour, D: day, W: week.
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A check is referred as a daily check, which occurs at every
65 FH (not 400 FH in Table 3) and must be done at night
by default. Few studies considered Type B (Clarke et al.,
1996; 1997; Sriram and Haghani, 2003). For Type C or D
check, the interval between consecutive adjacent checks is
long, so the heavy checks are not typically considered in
the ARP. However, they can be modeled via a reduction in
the available aircraft number.
Modeling the maintenance requirement in ARP can be

done in two typical methods. Numerous works assumed
that maintenance should be performed within a fixed
duration based on calendar days (Feo and Bard, 1989;
Clarke et al., 1996; Liang et al., 2011; Maher et al., 2018).
Another method imposes limitations on the accumulated
FH (or cycles) (Sarac et al., 2006; Keysan et al., 2010;
Başdere and Bilge, 2014). The two methods above show
different advantages and difficulties in modeling, which
are discussed below.

3.2 Three optimization models for the ARP

In this section, we discuss three typical aircraft routing
models (ARMs), i.e., string-based model, connection-
based model, and the time–space-based model.

3.2.1 String-based ARM

The string-based ARM was introduced by Barnhart et al.
(1998). A string is a sequence of connected legs that begins
and ends at maintenance airports. A string is extended with
additional time for maintenance at the end of the last flight
to guarantee aircraft maintenance requirements. The string-
based ARM is presented in Eqs. (3.1)–(3.7) with additional
notation below.

The total cost is minimized in the objective function
(3.1). Constraints (3.2) are cover constraints. Constraints
(3.3) and (3.4) enforce the aircraft flow balance at the first
and the last legs of strings, respectively. Consequently, in a
given airport, the number of aircraft arriving at the airport
equals the number of aircraft departing from the airport.
Aircraft count constraints (3.5) assure that the number of
aircraft in the air and on the ground at any time point does
not exceed the total number of available aircraft. As the
number of possible strings grows exponentially with the
number of flights, all the flight strings cannot be explicitly
enumerated in the model. To overcome this difficulty, a
column generation algorithm is proposed to solve the
linear programming (LP) relaxation of the model, and a
branch-and-price algorithm is proposed to solve the integer
programming problem.
Notice that Barnhart et al. (1998) does not distinguish

individual aircraft of the same fleet. In practice, airline
routes have specific equipment requirements. For example,
intercontinental long-haul routes often involve the
extended overwater operations, and emergency equipment
like liferafts must be installed (which are not mandatory for
all aircraft) (Federal Aviation Administration, 2019). For
plateau routes, there are some enhanced requirements for
oxygen supply and engine performance. The aforemen-
tioned requirements can be achieved by adding aircraft
index a to each string variable and modifying the objective
function and constraints correspondingly.
In the string-based ARM, maintenance feasibility is

checked during string generation. That is, maintenance-
related considerations are implied in the string variables.
Therefore, complex regulations and operational rules of
strings can be easily incorporated into the string-based
ARM.

Sets (cont.)

G set of ground arcs in the network, indexed by g, also indexed
by ðe –l,a, el,aÞ, ðel,a, eþl,aÞ, ðe –l,d , el,dÞ, and ðel,d , eþl,dÞ. el,a
indexes the arrival node of leg l, and el,d indexes the departure
node of leg l. The “-” (“+”) represents the previous
(succeeding) event. Thus, ðe –l,a, el,aÞ indexes the ground arc

into the arrival node of leg l, ðel,a, eþl,aÞ indexes the ground arc
out the arrival node of leg l, ðe –l,d , el,dÞ indexes the ground arc
into the departure node of leg l, and ðel,d , eþl,dÞ indexes the

ground arc out the departure node of leg l.

GP set of ground arcs in the network cross the count time

R set of strings, indexed by r

Rl set of strings that include leg l

Rlþ set of strings beginning with leg l

Rl – set of strings ending with leg l

Parameters (cont.)

cr cost of string r

gr number of times that string r crosses the count time

M total number of available aircraft

Variables (cont.)

xr Î {0, 1}. xr = 1, if the string r is selected; xr = 0, otherwise.

yg number of aircraft on the ground arc g

Model 3.1 String-based ARM

Min
X

r2R
crxr (3.1)

s.t.
X

r2Rl

xr ¼ 1 8l 2 L (3.2)

X

r2Rlþ

xr – yðe –l,d , el,d Þ þ yðel,d , eþl,dÞ ¼ 0 8l 2 L (3.3)

–
X

r2Rl –

xr – yðe –l,a , el,aÞ þ yðel,a , eþl,aÞ ¼ 0 8l 2 L (3.4)

X

r2R
grxr þ

X

g2GP

yg£M (3.5)

yg³0 8g 2 G (3.6)

xr 2 f0, 1g 8r 2 R (3.7)
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3.2.2 ARM based on the connection network

Different from the string-based ARM, the connection-
based ARM formulates the maintenance requirements
(e.g., accumulated FH, cycles, and elapsed hours) via
additional variables and constraints. Haouari et al. (2013)
introduced additional decision variables to keep track of
the maintenance indicators. Taking the accumulated flight
hours as an example, the connection-based ARM can be
formulated as Eqs. (3.8)–(3.15) with additional notation
below.

The presented model aims to find a feasible solution to
the ARP with no objective value, however, it can be easily
extended by modifying the objective function. Constraints
(3.9)–(3.11) are cover, flow balance, and aircraft count
constraints, respectively. This model uses uj to compute
accumulated FH. Constraints (3.12) reset uj if the
connection time between leg i and j is sufficiently lengthy
to perform maintenance, and constraints (3.13) update uj if
the leg connection i ! j is insufficiently lengthy for a

maintenance. The other two maintenance requirements,
i.e., number of cycles and elapsed hours, can be formulated
in a similar manner. This model cannot be solved directly
by the commercial solver because of quadratic terms in
constraints (3.12) and (3.13). To overcome this difficulty,
Haouari et al. (2013) proposed a reformulation and
linearization technique (RLT).
Based on the connection network, Başdere and Bilge

(2014) solved an operational ARP, in which the main-
tenance deadline for each aircraft is given. An aircraft must
undergo one particular maintenance before its maintenance
deadline, and the objective function aims to maximize
aircraft utilization by minimizing the total unused flying
time before maintenances for all aircraft. Başdere and
Bilge (2014) tackled this problem by duplicating leg
connection arcs to represent different maintenance states,
i.e., before maintenance, undergo maintenance, or after
maintenance. The model is solved by branch-and-bound
and a heuristic method based on compressed annealing.
Safaei and Jardine (2018) extended the connection-based
model to ensure that sufficient maintenance opportunities
are provided within any time interval in the planning
horizon for each aircraft. This procedure was performed by
discretizing the entire planning horizon into a set time grid
(days) and posing additional constraints to count the total
maintenance opportunities for an aircraft within any
possible discretized period.

3.2.3 ARM based on the time–space network

In many airline companies, daily maintenance is performed
during the night after an aircraft completes all the flights,
which maximizes aircraft utilization rate at daytime.
Therefore, the maintenance requirement can be simplified
to the maximum number of consecutive flying days
without maintenance. To solve this kind of maintenance
requirement, Liang et al. (2011) proposed a compact
network representation of the ARP, namely, rotation tour
network (Fig. 4). The two steps are followed for
constructing the network. The first step is to duplicate
the daily time–space network for D days, and D is the
maximum number of days allowed between two con-
secutive maintenances (e.g., D = 3 in Fig. 4). The second
step is to construct the maintenance arcs, which start at the
end of each day at a maintenance airport and end at the
beginning of the first day of the same airport. A
maintenance arc that starts at the end of the day d
represents the aircraft undergoing maintenance after d-days
flying, where d = {1, 2,…,D}. Traditional overnight arcs at
non-maintenance airports are omitted. Hence, the main-
tenance feasibility is guaranteed automatically in the
rotation tour network (see Fig. 4(b)).
The mathematical formulation is given in Eqs. (3.8) and

(3.16)–(3.22) with additional notation below.

Sets (cont.)

LMj – set of legs i of all feasible connection i ! j, i, jÎ L+, and a
maintenance check could be planned between the arrival of
leg i and the departure of leg j

LNMj – set of legs i of all feasible connection i ! j, i, jÎ L+, and a
maintenance check could not be planned between the arrival
of leg i and the departure of leg j

Constants (cont.)

tj flying hours of leg j

uUB maximum flight hours between two consecutive maintenance
checks

Variables (cont.)

xij Î {0, 1}. xij = 1, if the connection i ! j is selected, i, jÎ L+;
xij = 0, otherwise.

uj total accumulated flight hours since last maintenance check
after leg j served

Model 3.2 ARM based on the connection network

Min 0 (3.8)

s.t.
X

i2Lþ
xij ¼ 1 8j 2 L (3.9)

X

i2L*
xil –

X

j2L*
xlj ¼ 0 8l 2 L (3.10)

X

l2L
x0l£M (3.11)

ujxij ¼ tjxij 8i 2 LMj – , 8j 2 L (3.12)

ujxij ¼ ðui þ tjÞxij 8i 2 LNMj – , 8j 2 L (3.13)

tj£uj£uUB 8j 2 L (3.14)

xij 2 f0, 1g 8i, j 2 Lþ (3.15)
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The objective function (3.8) is 0, and the model is
formulated as a feasibility problem. Cover constraints
(3.16) ensure that each leg is covered once. Flow balance
constraints (3.17) require that the number of inbound
aircraft equals the number of outbound aircraft at each
node in the network. Aircraft count constraints (3.18)
assure the number of aircraft used equals or is below the
total number of available aircraft. In particular, if a
maintenance arc variable zsd = 1, then a string lasting for
d days is implied. Consequently, d aircraft should fly the
string. Consider the example in Fig. 4, the string leg1!
leg3! leg6! leg5′! leg2″! leg4″! zA3 uses the
maintenance arc at the end of day 3 at airport A. Hence,
three aircraft are needed to cover these six legs every day.
The number of variables and constraints increases linearly
with the number of flights and the maximum maintenance
day D. Airport capacity constraints (3.19) ensure that the
number of aircraft being maintained at each airport is not
greater than the airport’s capacity. This model can be
solved directly by the commercial solver, and the

Fig. 4 The daily time–space network and the rotation tour network.

Model 3.3 ARM based on the time–space network

Min 0 (3.8)

s.t.
X

d2D
xld ¼ 1 8l 2 L (3.16)

X

l2Lnþ

X

d2D
αdnxld þ ynþ þ

X

s2SM

X

d2D
βsdnþ zsd

–
X

l2Ln –

X

d2D
αdnxld – yn – –

X

s2SM

X

d2D
βsdn – zsd

¼ 0 8n 2 N (3.17)

Sets (cont.)

SM set of maintenance airports, indexed by s

Indicators

αdn Î {0, 1}. αdn = 1, if node n belongs to day d; αdn = 0,
otherwise.

βsdnþ Î {0, 1}. βsdnþ = 1, if maintenance arc at airport s inbound to
node n on day d; βsdnþ = 0, otherwise.

βsdn – Î {0, 1}. βsdn – = 1, if maintenance arc at airport s outbound
from node n on day d; βsdn – = 0, otherwise.

Constants (cont.)

D maximum number of days between two consecutive main-
tenances for an aircraft

QM
s maximum number of aircraft that can undergo maintenance at

airport s per night

Variables (cont.)

xld Î {0, 1}. xld = 1, if leg l is flown on day d; xld = 0, otherwise.

zsd number of aircraft at maintenance airport s at the end of day d

X

s2SM

X

d2D
d⋅zsd£M (3.18)

X

d2D
zsd£QM

s
8s 2 S (3.19)

xld 2 f0, 1g 8l 2 L, 8d 2 D (3.20)

ynþ , yn – ³0 8n 2 N (3.21)

zsd³0 8s 2 S, 8d 2 D (3.22)
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computational results showed that the largest case with 352
flights can be solved within 15 s.
Table 4 shows the time–space-based ARM has less

space complexity than the other two models and possesses
good linear relaxation solution (Liang et al., 2011). One of
the disadvantages is that the time–space network fails to
provide the leg connection information. Hence, indicators,
such as FH, cycle numbers, and elapsed hours, can hardly
be formulated in this network. To consider these
cumulative maintenance requirements in the time–space-
based ARM, Khaled et al. (2018) used additional variables
and big-M constraints to monitor the aircraft accumulated
flight time and flying days without maintenance.

3.2.4 Comparison among three models

Table 4 presents the key differences among the three
models. Given a fleet network, the basic ARP is typically
modeled as a feasibility problem. Rows 2 and 3 reveal the
number of decision variables and constraints correspond-
ing to the three formulations, respectively. Table 5
indicates the computational capacities of different models.
Tables 4 and 5 show that different models have various

computational capabilities and resolutions on solution
details. In particular, the string-based model provides the
most flexible solution approach to cater to various
maintenance and routing considerations, whereas the
time–space network-based model can directly solve the
largest test instances in a timely manner. Hence, research-
ers and participants should select the suitable model to
satisfy different research and business requirements. Given
that the ARP aims to find the main feasible solution, the
robustness of the result schedule becomes more important
than that in FAP. A review on the robust ARP is presented
below.

3.3 Robust ARM

As flight network becomes more complex, various
disruptions, such as weather, air traffic control, and
mechanical problems could have hazardous effects on

airlines. In this section, literature that focused on robust
ARP can be divided into two categories: Propagated delay
(PD) minimization and domain-specific optimization.

3.3.1 Propagated delay minimization

Delay is a critical indicator to evaluate schedule perfor-
mance. Thus, many studies focused on robust schedule via
delay or PD minimization. Generally, the delays can be
specified into two parts, namely, the primary delay (also
called non-propagated or independent delay) and PD.
Table 6 provides some of the relevant concepts of delay,
where leg i and leg j are flown by the same aircraft
successively, and minTm refers to the minimum turn time
between the sequential legs. Table 7 shows examples of
these concepts, which are further illustrated in Fig. 5.
Most researchers choose string-based network as

convenient to model PD because delay propagates along
the routes (Lan et al., 2006; Dunbar et al., 2012; 2014;
Froyland et al., 2014; Liang et al., 2015; Yan and Kung,
2018).
Lan et al. (2006) modify the string-based ARM to

minimize total PD. They fit flight delays as independent
log-normal distributions using historical data. They also
consider flight retiming to reallocate the buffer time
between connected legs, thereby improving schedule
robustness. A column generation algorithm is used to
solve the linear relaxation of the model, and a heuristic
branch-and-price algorithm is used to solve the integer
programming problem. The test case with 278 flight legs
and 4 fleets can be solved in 13 s.
Liang et al. (2015) present an accurate computation of

the expected propagated delay (EPD) of a string. Because
computing the EPD of a string could be time-consuming,
they prove a tight lower bound for estimating the EPD and
propose a two-stage column generation method that makes
use of the lower bound to speed up the solution process.
Large test cases with more than 6000 flights per week can
be solved within 3 h.
Instead of minimizing EPD, Yan and Kung (2018)

sought to minimize the maximal possible PD. When flight

Table 4 Differences among the string-based network (SN), connection network (CN), and time–space network (TSN)

SN CN TSN

Decision variable Route Connection Leg

#Variables many O(|L|2) O(|L|)

#Constraints O(|L|) O(|L|2) O(|L|)

How to get route generate from solution generate from solution solve an Eulerian tour

Maintenance requirements CD/FH/C/EH CD/FH/C/EH CD (Liang et al., 2011)
FH/C (Khaled et al., 2018)

Maintenance formulations implied in the variables adding variables and quadratic constraints CD: modifying the network
FH/C: adding variables and big-M constrains

Solution method column generation algorithm RLT and heuristics solver

Notes: CD: maximum accumulated calendar day, FH: maximum accumulated flight hour, C: maximum number of takeoff and landing, EH: maximum accumulated
elapsed hour.
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Table 5 Data size and computation running time of models in research

Literature Network Data size Runtime (s)

Clarke et al. (1997) CN 2246 Arc 32

Gopalan and Talluri (1998) SN 12 Aft/33 Leg –

Barnhart et al. (1998) SN 190 Leg 35768

Talluri (1998) SN – –

Sarac et al. (2006) SN 175 Leg 461

Lan et al. (2006) SN 278 Leg 13

Burke et al. (2010) TSN 504 Arc 98

Liang et al. (2011) TSN 70 Aft/352 Leg 15

Dunbar et al. (2012) SN 54 Leg 10

Liang and Chaovalitwongse (2013) SN 4 Flt/2086 Leg 3867

Haouari et al. (2013) CN 138 Aft/344 Leg 10

Başdere and Bilge (2014) CN 354 Leg 100

Dunbar et al. (2014) SN 54 Leg –

Froyland et al. (2014) SN 53 Leg 3094

Liang et al. (2015) SN 6072 Leg 10059

Safaei and Jardine (2018) CN 772 Leg –

Yan and Kung (2018) SN 23 Aft/117 Leg –

Maher et al. (2018) SN 526 Aft/3370 Leg 77

Khaled et al. (2018) TSN 1494 2902

Table 6 Relevant concepts of delay

Abbreviation Full name Definition

STD scheduled time of departure –

ETA estimated time of arrival –

ATD actual time of departure –

ATA actual time of arrival –

IDD independent delay of departure IDDj ¼ maxðATDj – STDj –PDj, 0Þ
IDA independent delay of arrival IDAj ¼ maxðATAj –ETAj –PDj, 0Þ
PD propagated delay PDj ¼ maxðATAi þminTm – STDj, 0Þ

Table 7 Example of relevant concepts of delay (minTm = 50 min)

Leg ID STD ETA ATD ATA IDD IDA PD

1 08:00 10:00 08:00 10:30 00:00 00:30 00:00

2 11:00 13:00 12:00 14:10 00:40 00:70 00:20

Fig. 5 Example of relevant concepts of delay.
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leg delays lie in a pre-specified uncertainty set, using a
robust optimization approach, they propose an exact
decomposition solution approach under a column-and-
row generation framework. Their approach is reported to
outperform the local approach provided in Dunbar et al.
(2014) by reducing both mean and extreme total PD.

3.3.2 Domain-specific optimization

Studies on domain-specific optimization identify specific
features of flight networks and improve robustness by
strengthening or attenuating these features. Ageeva (2000)
improves schedule robustness by creating more swap
opportunities between aircraft routes. A heuristic approach
is proposed to solve the problem. Burke et al. (2010)
consider the schedule reliability and aircraft swap
opportunities in ARP. They define reliability in terms of
the probability that succeeding flights are not delayed
because of previous flight delays and propose a multi-
objective approach based on hybrid genetic algorithms for
robust scheduling. Their simulation study shows that at
least 20% improvement in both objectives could be
realized. Liang et al. (2018) incorporate the flexibility of
aircraft maintenance into their recovery model. Computa-
tional experiments have shown that swapping planned
maintenances may bring a considerable reduction in
recovery cost (about 20% to 60%). Hence, swap
opportunities for planned maintenances might be consid-
ered in the planning stage to improve the robustness of
ARP.

3.4 Industrial considerations

Apart from maintenance regulations, some studies incor-
porate industrial considerations into ARP. For example, the
Euler-tour requirement (also called big-cycle constraints)
is often applied to ARP to balance wear and tear among
different aircrafts. A directed graph is called Eulerian if
each node has in-degree equal to out-degree and is
connected. An Euler tour of an Eulerian digraph is a
cycle that includes all the arcs (i.e., leg arcs and ground
arcs in the flight network) exactly once. For airlines, the
Euler-tour requirement requires all aircrafts of the same
fleet to fly the same sequence of all legs assigned to the
fleet so that depreciation does not fluctuate among aircraft
(Clarke et al., 1997; Talluri, 1998; Gopalan and Talluri,
1998). Another consideration is the maintenance capacity
of airports. Aircraft maintenance requires necessary air-
craft components and manpower and thus, the capacity of
aircraft to receive service at a maintenance airport is not
infinite. Therefore, many researchers consider airport
capacity constraints in the ARP to make a more practical
aircraft schedule (Liang et al., 2011; 2015; Liang and
Chaovalitwongse, 2013; Khaled et al., 2018).

3.5 Solution methods

As discussed above, many studies on ARP are based on the
string-based network. However, because of the large
number of possible connections, enumerating all feasible
strings is impractical. The column generation framework
has been proven efficient and effective for such problems
with a huge number of strings (Barnhart et al., 1998; Sarac
et al., 2006; Lan et al., 2006; Dunbar et al., 2012; 2014;
Froyland et al., 2014; Liang et al., 2015; Yan and Kung,
2018). Other methods, such as branch-and-bound (B&B),
Lagrangian relaxation (LR), Benders decomposition (BD),
etc. are also proposed to solve different models. Details are
shown in Table 8.

4 Crew scheduling problem

After aircraft routing is performed, crew scheduling
problem (CSP) will allocate crew to flights and is always
divided into two sub-problems: Crew pairing problem
(CPP) and crew rostering problem (CRP) (Arabeyre et al.,
1969; Barnhart et al., 2003b). Similar to an aircraft route, a
pairing consists of a sequence of legs spanning 1–5 days
that begin and end at the same crewbase (Gopalakrishnan
and Johnson, 2005; Belobaba et al., 2009). The crewbase is
usually the domicile of the crew and is located in the same
city where the airline has a hub. A crew member usually
needs to complete a pairing before he or she can rest with
one or more days. CPP selects a set of pairings with
minimal crew cost, such that each leg is covered by at least
one pairing. Then, CRP generates the monthly schedule
(called a roster) for each crew member with respect to all
crew regulations (Belobaba et al., 2009). A roster typically
includes training, vacations, and pairings assigned to the
crew member. The objective of CRP could vary from one
airline to another. For example, in the US, the preference
bidding process is commonly used and is usually driven by
seniority (i.e., the preferences of more senior crew are
prioritized) (Barnhart and Smith, 2012). In other countries
like China, the fairness of workload and salary among the
crew play an important role in CRP. In short, CPP focuses
on total cost, whereas CRP focuses on people-related
factors such as fairness, fatigue, and satisfaction.

4.1 Cost and regulations of crew

Given a solution to ARP, CSP will minimize the total crew
cost, such that the regulations mandated by the governing
agencies and other organizations like labor unions are
satisfied. Rather than a fixed salary, the payment structure
of the crew involves many factors, including flying hours,
seniority of the crew, and additional allowance. As a
primary method for fatigue risk management, various
regulations have detailed limitations on the working time
of crew. Figure 6 may help to understand the crew cost and
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formulation of regulations. We adopt the description of
crew cost by Barnhart et al. (2003b) because the specific
situation varies slightly among different countries and
airlines. A pairing is composed of several duties and the
duty is composed of several legs flown within a day. The
duty cost is a maximum of three terms, that is, the
accumulated flying hours, a fraction of the elapsed time,
and a minimum guaranteed time (see Eq. (a) in Fig. 6). The
cost of a pairing consists of two parts (see Eq. (b) in Fig. 6):
(1) the maximum of the total duty cost, a fraction of the
total elapsed time, and a minimum guaranteed cost, and (2)
extra cost, such as lodging.
Crew regulations focus on (1) the flight duty period (the

duty time), which begins at the time to report for duty and
ends when the aircraft is parked after the last landing, (2)
the flight time, which refers to the time between an aircraft
moving from its parking place and resting on the
designated parking position, and (3) the rest period.
Some details are shown in Table 9.
As mentioned above, the crew cost is highly nonlinear.

Because different regulations set limits on different
indicators (see Table 9), any of these indicators could
constrain the crew scheduling results. Usually, no indicator
could dominate others. Hence, missing any of the
indicators might lead to an infeasible solution. Therefore,
catering to the complex cost and all regulations in CSP is a
challenging issue.

4.2 Crew pairing problem

CPP is usually formulated as a set partitioning problem
(SPP). Barnhart et al. (2003b) present a general formula-
tion of CPP as shown in Eqs. (4.1)–(4.3). This model takes
pairings as decision variables and captures implicitly the
regulations and nonlinear cost in the definitions of
variables and parameters.

Table 8 Summary of solution approaches in the literature for the fleet assignment problem (FAP)

Literature Network Solution method

B&B BD B&P CG C&RG LR Heuristic Others

Clarke et al. (1997) CN �
Barnhart et al. (1998) SN �
Gopalan and Talluri (1998) SN �
Talluri (1998) SN �
Lan et al. (2006) SN � �
Sarac et al. (2006) SN �
Burke et al. (2010) TSN �
Liang et al. (2011) TSN �
Dunbar et al. (2012) SN �
Haouari et al. (2013) CN �
Liang and Chaovalitwongse (2013) SN �
Başdere and Bilge (2014) CN � �
Dunbar et al. (2014) SN � �
Froyland et al. (2014) SN � �
Liang et al. (2015) SN � �
Khaled et al. (2018) TSN �
Maher et al. (2018) SN � �
Safaei and Jardine (2018) CN �
Yan and Kung (2018) SN �

Sets (cont.)

P set of feasible pairings, indexed by p

Pl set of pairings including leg l

Parameters (cont.)

cp cost of pairing p

Variables (cont.)

xp Î {0, 1}. xp = 1, if pairing p is selected; xp = 0, otherwise.

Model 4.1 Basic crew pairing model (CPM)

Min
X

p2P
cpxp (4.1)

s.t.
X

p2Pl

xp³1 8l 2 L (4.2)

xp 2 f0, 1g 8p 2 P (4.3)
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In CPM, the total cost is minimized in the objective
function (4.1). The cover constraints (4.2) ensure that each
leg is covered by at least one pairing. The problem is a
typical integer programming problem with a large number
of variables, which can be solved efficiently by the branch-
and-price approach.
In the basic CPM, any pairing from any crewbase could

be selected in the solution. However, some crewbases
might be assigned more pairings than the available crew
capacity, whereas other crewbases might have fewer
pairings for the available crew. Therefore, Hoffman and
Padberg (1993) and Saddoune et al. (2012; 2013) introduce
the base constraints (also called crewbase balancing
constraints) to match the workload to the crew resource
at a crewbase. The base constraints limit the total number
of flying hours assigned to the crew of a base (see
Eq. (4.4)).

Some studies adopt other formulations to model CPP
rather than the general model. Vance et al. (1997) propose a
duty-based formulation and divide the decision process
into two stages: Cover legs by duties and cover duties by
pairings. They propose a column-generation-based frame-
work to solve the model. The largest test case with 174

Fig. 6 Relationship of duty, pairing, and roster.

Table 9 Typical crew regulations

Indicator Horizon Limitation1 Source2

Flight duty period 1 Duty 9–14 H CFR.14.117.13, CCAR.121.485

Flight time 1 Duty 8–9 H CCAR.121.483, CFR.14.117.11

Flight time 1 Month 100–120 H CCAR.121.487, CFR.14.121.483, ORO.FTL.210

Flight time 1 Year 900–1000 H CCAR.121.487, CFR.14.121.483, ORO.FTL.210

Rest period consecutive 168 H 30 H CFR.14.117.25

Rest period between 2 Duties 10 H CFR.14.117.25

Notes: 1. H: hour; 2. CFR: Code of Federal Regulations, CCAR: China Civil Aviation Regulations, ORO: Organization Requirements for Air Operations, FTL: EASA
Flight Time Limitations.

Sets (cont.)

Lp set of legs included in pairing p

Ps set of pairings begging and ending at crewbase s

Constants (cont.)

uLBs lower bound of crew hours assigned to base s

uUBs upper bound of crew hours assigned to base s

uLBs £
X

p2Ps

X

j2Lp
tjxp£uUBs 8s 2 S (4.4)
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flights takes about 10 h to solve. Barnhart and Shenoi
(1998) develop a time–space network of duties and
propose an approximate model for CPP. Their computa-
tional experiments show the solution of the approximate
model can be used to speed up the solution process of the
traditional model by 84%. Based on the connection
network, Haouari et al. (2019) introduce decision variables
that represent crew connection, that is, flying two
consecutive legs by the same crew. Additional constraints
are used to describe feasibility regulations of duties and
pairings explicitly. They present a novel compact poly-
nomial-sized nonlinear formulation for CPP, which is then
linearized and lifted using the reformulation linearization
technique. A real-life instance having 336 daily flights can
be solved in two hours.

4.3 Crew rostering problem

CPP focuses on crew cost minimization because the crew
cost depends mainly on the pairing structure, whereas CRP
emphasizes solution feasibility by satisfying safety
regulations and individual requirements of crew members.
CRP can also be divided into two stages: The first stage
makes the pre-assignment of each individual crew member
and the second stage assigns pairings and rest periods to
individual crew members without conflicting with pre-
assignments. The pre-assignments usually include annual
leaves, medical appointments, training, reserve blocks to
be a substitute crew member when necessary, and other
preassigned activities (Gamache et al., 1999). Barnhart
et al. (2003b) present a basic CRM, shown in Eqs. (4.5)–
(4.8).

The cover constraints (4.6) require a minimum number
of crew members assigned to each pairing. The crew count
constraints (4.7) ensure each crew member is assigned
exactly one roster.
CRP focuses more on practical considerations. A more

detailed description of typical rules and regulations can be
found in Kohl and Karisch (2004). Some rules and
preferences are formulated through variables and con-
straints, and others can be optimized in the objective
function (see Table 10). For example, the target of CRP is
to find a feasible solution and thus, the objective is to
minimize the number or duration of uncovered activities
(Gamache et al., 1999; Cappanera and Gallo, 2004). Some
studies make a trade-off between infeasibility cost and
operating cost (Saddoune et al., 2012; Zeighami and
Soumis, 2019). Souai and Teghem (2009), Maenhout and
Vanhoucke (2010), and Doi et al. (2018) penalize the
deviation of the assigned workload to promote fairness
among all crew members.

4.4 Extension of the crew scheduling problem

Many additional considerations are incorporated into CPP
and CRP. Because CPP overlooks individual crew
information, its solution may not be optimal for CRP.
Therefore, considering the requirements and constraints of
CRP in CPP is beneficial.
Guo et al. (2006) incorporate preassigned activities, such

as training and requested off-duty days and crew
availability, into CPP, making it easy to solve CRP through
the heuristic approach, and a reduction of total crew cost is
achieved. Obviously, solving CPP and CRP using an
integrated model is a direct method to improve optimality,
but it is impractical and intractable for real-life problems.
Consequently, Souai and Teghem (2009) solve the
integrated CSP using a genetic algorithm. Saddoune
et al. (2012) speed up the solution process through a
combination of column generation and a heuristic named
dynamic constraint aggregation (DCA). DCA helps reduce
the number of constraints in the master problem of column
generation.
Deadhead means repositioning the crew as a passenger

or non-operating crew member by any mode such as bus,
train, and airplane. In the scheduling stage, it provides
more feasible crew connections to construct pairings. As
described in Barnhart et al. (1995), deadhead plays an
essential role in long-haul operations, especially at the
airport with few scheduled flights or flights not scheduled
daily. A considerable number of legs could be deadhead
candidates and thus, the CPP is solved iteratively and non-
potential deadhead flights are eliminated in each iteration.
To summarize, deadheads help to achieve better crew
utilization via more flexibility.
Crew can be categorized into different ranks such as

captain, first officer, and flight engineer, based on quality

Sets (cont.)

E set of crew, indexed by e

Q set of feasible rosters, indexed by q

Qp set of rosters containing pairing p

Parameters (cont.)

cqe cost of assigning roster q to crew member e

Mp minimum number of crew members required by pairing p

Variables (cont.)

xqe Î {0, 1}. xqe = 1, if roster q is assigned to crew member e; xqe
= 0, otherwise.

Model 4.2 Basic CRM

Min
X

q2Q

X

e2E
cqexqe (4.5)

s.t.
X

q2Qp

X

e2E
xqe³Mp

8p 2 P (4.6)

X

q2Q
xqe ¼ 1 8e 2 E (4.7)

xqe 2 f0, 1g 8q 2 Q, 8e 2 E (4.8)
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and experience. Different flights have specific demands of
crew members, that is, how many captains and first officers
are needed. Downgrading (also called fly below rank)
allows a captain to fly as the first officer, whereas the
converse is rarely allowed. It could be formulated via
modification of coverage constraints as Eqs. (4.9)–(4.10).

Constraints (4.9) ensure that the number of captains
meets the requirements and constraints (4.10) ensure that
the total number of captains and first officers is greater than
or equal to the demand of crew members and thus, a
captain can be used as the first officer. The idea of
downgrading also provides more flexibility to CSP, and it
is considered in the enhanced rostering model proposed by
Dawid et al. (2001).
In practice, not all flights are scheduled daily. On the

contrary, some are operated only on weekends or several
weekdays. Therefore, the solution pairings may not be able
to fly repeatedly, which is unlikely to be friendly to the
crew. Therefore, Klabjan et al. (2001) present a crew
pairing model to make a trade-off between crew cost and
regularity.
More swap opportunities are believed to benefit the crew

recovery in operations. A move-up crew, introduced by
Shebalov and Klabjan (2006), is a crew that is ready to fly
the flight of a disrupted crew. Given a flight l, they define
the rules to count the move-up crew (see Fig. 7, crew 2 is a

move-up crew of leg 5), such as the crew members (1) are
ready to fly before the departure time of l, (2) end their
pairings at the same day of the pairing covering l, and (3)
share the same crewbase of the crew covering l.
As shown in Eqs. (4.11)–(4.12), the additional variable

zlst is introduced to count the move-up crews, and the
objective function is modified to minimize the total pairing
cost and encourage more move-up crews.

Gao et al. (2009) extend the station purity idea of Smith
and Johnson (2006) and set a limitation on the number of
crewbases serving each airport, called crewbase purity. It
provides more opportunities to find a move-up crew in the
stage of recovery.
Similar to robust aircraft routing (see Section 3.3.1), the

robustness of crew scheduling could also be realized by
minimizing delay or delay cost. Yen and Birge (2006)
propose a two-stage stochastic programming model that
minimizes expected total cost in the first stage and the

Table 10 CRM with different objective functions

Literature Objective function

Gamache et al. (1999) min total duration of uncovered pairings

Dawid et al. (2001) max utility value

Cappanera and Gallo (2004) max number/total duration of covered activities

Guo et al. (2006) min (overnight cost+ transfer cost)

Souai and Teghem (2009) min weighting cost (crew cost, flying time deviation)

Maenhout and Vanhoucke (2010) min total penalty cost (cost, fairness, preference)

Saddoune et al. (2012) min weighting cost (crew cost, penalty cost for additional pilots)

Doi et al. (2018) min working time deviation

Zeighami and Soumis (2019) min weighting cost (#uncovered vacation requirements, total cost)

Sets (cont.)

EC set of crew with the rank of captain

EF set of crew with the rank of first officer

Constants (cont.)

MC
p number of crew with the rank of captain required by pairing p

MF
p number of crew with the rank of first officer required by pairing p

X

e2Ec

X

q2Qp

xqe³MC
p

8p 2 P (4.9)

X

e2Ec

X

q2Qp

xqe þ
X

e2EF

X

q2Qp

xqe³MC
p þMF

p
8p 2 P (4.10)

Sets (cont.)

TPD set of possible days of a pairing, that is, {1, 2,…, the maximum
number of days in a pairing}, indexed by t

SCB set of crewbases, indexed by s

Plst set of pairings covering lÎL, starting from sÎ SCB, and there are
tÎ TPD days to the end of the pairing

Plst set of pairings providing a move-up crew for leg l which is covered
by pÎPlst

Parameters (cont.)

w weight in the objective function that encourages more move-up
crews

Variables (cont.)

zlst number of move-up crews of leg l if l is covered by a pÎPlst

Min
X

p2P
cpxp –w

X

l2L

X

s2SCB

X

t2TPD

zlst (4.11)

zlst£
X

p2Plst

xp 8l 2 L, 8s 2 SCB,

8t 2 TPD (4.12)
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delay cost because of the crew changing aircraft in the
second stage. Wei and Vaze (2018) study a robust crew
pairing problem by considering not only the crew cost but
also the other operational features such as the scheduled sit
time when the crew changes aircraft, the scheduled rest
time between duties, the flying time in a duty, the elapsed
time in a duty, the number of crewbase purity violations,
and the number of aircraft changes by the crew within a
duty. To solve the problem, a column generation method is
embedded in a variable diving heuristic. To capture the full
complexity of the crew salary structure (see Section 4.1)
and the effects of increases in duty/pairing elapsed times,
Antunes et al. (2019) formulate a robust pairing model
using robust optimization. They use column generation to
solve the model and modify the approach developed by
AhmadBeygi et al. (2009) to generate columns in the
pricing problem.

4.5 Solution method: Column generation algorithm

As discussed above, both CPP and CRP are usually
formulated as an SPP. However, it is often impractical to
enumerate all the pairings and rosters for real-life
problems. Therefore, the column generation is usually
used to handle the difficulty. It is an implicit enumeration
technique that guarantees the optimal solution to the LP
relaxation. To obtain the optimal integer programming (IP)
solution, the branch-and-price algorithm, which embeds
column generation in the branch-and-bound procedure, is

usually employed. Typically, the pricing problem of the
column generation can be solved by multi-label shortest
path algorithms (Irnich and Desaulniers, 2005).
For shorter computing time and less memory, traversing

all branches is necessary. Two widely used strategies of
branching are branch-on-variable and branch-on-follow-
on. For CPP, the branch-on-variable strategy fixes a pairing
each time, which means a pairing is selected or deleted into
the final solution (Saddoune et al., 2012; Wei and Vaze,
2018). The branch-on-follow-on strategy requires a pair of
legs or duties to be fixed each time, which means for any
pairing, covering only one of them is forbidden (Ruther
et al., 2017). The general solution process discussed above
is illustrated in Fig. 8.

5 Integrated problems

As introduced in Section 1, the scheduling process is
usually divided into sub-problems and solved sequentially,
and the result of the previous sub-problem is the input of
the succeeding sub-problem. Consequently, sub-optimal
solutions are obtained in most circumstances. However, in
some cases, given output to the previous sub-problem, a
feasible solution does not exist to the next sub-problem.
Thus, we have to track back and re-solve previous
problems with additional constraints until a global feasible
schedule is found. Many enhanced models are proposed to
consider additional constraints from the succeeding sub-

Fig. 7 An example of the move-up crew.
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problems to ensure feasibility. Integrated models are also
proposed to solve multiple sub-problems simultaneously to
improve solution quality.

5.1 Integrated fleet assignment and aircraft routing problem

Four common aircraft maintenance checks are introduced
in Section 3.1. Keeping maintenance feasibility is one of
the main purposes of ARP. However, the solution to FAP is
not always maintenance feasible for the following ARP. A
roll-back is inevitable if we cannot find a feasible solution
to ARP. Therefore, a general motivation of integrated fleet
assignment and aircraft routing models is to guarantee the
feasibility of aircraft maintenance.
Barnhart et al. (1998) propose a string-based integrated

model of FAP and ARP to ensure maintenance feasibility
and capture the through-revenues associated with aircraft
connections. The minimum time to perform maintenance is
included at the end of the string to ensure maintenance
feasibility. They use column generation to solve their
string-based model. Haouari et al. (2009) develop a
connection-based model and propose a two-stage heuristic
approach. Specifically, they build an initial solution
greedily in the first phase and improve the solution by
solving minimum-cost flow problems iteratively in the
second phase. Haouari et al. (2011) present two formula-
tions of the integrated FAP and ARP, one based on flight
connections and the other based on aircraft routes. They
solve the connection-based model by Benders’ decom-
position and solve the route-based model by branch-and-

bound. Their computational results show that the latter
outperforms the former.
Considering flight departure time rescheduling in the

integrated model helps to increase the number of possible
connections and reduce the number of required aircraft.
Therefore, more through-revenues are captured and aircraft
operational costs are saved. Zeghal Mansour et al. (2011)
use a column-generation-based heuristic approach to solve
their integrated model with retiming consideration. In
addition to flight retiming, Sherali et al. (2013a) take more
practical considerations into account, including through-
flight and demand recapture. They impose a flight-time
limitation on each fleet to simplify the maintenance
constraints and improve the tractability of their model.
Furthermore, they use various valid inequalities to
strengthen the formulation. Many researchers reschedule
flight departure time according to historical data and
usually adopt the deterministic formulation. Kenan et al.
(2018) propose a two-stage stochastic model for the
integrated fleet assignment and aircraft routing model with
flight selection consideration to consider the randomness
of passenger demand and flight delay. In their work, flight
selection helps to improve robustness via buffer time
reallocation.

5.2 Integrated fleet assignment and crew scheduling
problem

In general, the fleeting solution decomposes the flight
network and the CPP is solved over a subset of flights

Fig. 8 General solution method for the crew scheduling model.
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because each crew is only qualified to fly a specific fleet.
This dependency is not captured in the solution of the FAP
and thus, the fleet assignment result may be costly to CPP
and the result of CPP may be undesirable to the crew.
Several studies focus on the integrated FAP and CPP to
address this issue.
Klabjan et al. (2002) and Sandhu and Klabjan (2007)

integrate FAP and CPP with a plane-count constraint to
ensure that the number of aircraft used by crews does not
exceed the number of available aircraft. They design two
approaches to solve the integrated model, one is a
combination of Lagrangian relaxation and column genera-
tion, and the other is based on Benders’ decomposition.
Their computation results show the algorithm based on
column generation performs better on average for four test
cases.
Gao et al. (2009) consider station purity and crewbase

purity in an integrated model for FAP and CPP to obtain a
robust schedule. Thus, more recovery opportunities are
introduced into the schedule. For computational tract-
ability, they define crew connections instead of explicit
pairings as decision variables to formulate the problem.

5.3 Integrated aircraft routing and crew scheduling problem

Given an airline network, two types of resource flow exist,
namely, the flow of the aircraft and the flow of the crew.
The two flows cannot always keep pace with each other
because of the numerous and complex regulations and
optional constraints. For example, minimum connection
time is required to ensure the connection of two sequential
flights. The minimum connection time for the aircraft is
called minimal turn time and the minimum connection
time for crew is called minimal sit time. The minimal sit
time of the crew (e.g., 45 min) is usually longer than the
minimal turn time of the aircraft (e.g., 30 min) unless the
crew stays on the same aircraft (in this condition, both are
set to 30 min) because the crew needs additional time to
travel from one gate to another if they change aircraft. A
short connection refers to a connection that is too short for
the crew to change aircraft, but long enough for necessary
preparations (e.g., 35 min). In other words, a short
connection requires the crew to stay on the same aircraft.
Short connections are preferred because it helps to save
crew duty time on the ground and prevent the flight delay
from propagating to more flights. Consequently, to build a
more practical integrated model, the concept of short
connection has attracted the interest of many studies
(Cordeau et al., 2001; Cohn and Barnhart, 2003).
Cordeau et al. (2001) integrate the set-partitioning

models of ARP and CPP through the linking constraints,
which ensure that a short connection can be covered by a
pairing only if it is covered by an aircraft route. The short
connection constraints can be formulated as Eq. (5.1). A
short connection (i, j) ÎC can also be included in a pairing
p if and only if (i, j) is covered by a route r.

Cordeau et al. (2001) use Benders’ decomposition to
solve their model. They solve ARP through column
generation in the master problem and generate cuts by
solving CPP with column generation in the sub-problem.
Because it is the short connection set that links ARP and

CPP, Cohn and Barnhart (2003) use a unique and maximal
(UM) maintenance-feasible short connection set to repre-
sent solutions of ARP and incorporate ARP into CPP
(Eq. (5.2)). Uniqueness means including one variable (i.e.,
xθ) for each UM short connection set is sufficient, rather
than including all feasible routing solutions because
different aircraft routing solutions may cover the same
short connection set. Maximal set means the set would be
infeasible with any additional short connection.

Mercier et al. (2005) introduce another concept called
restricted connection similar to the short connection to
produce a more robust solution. A restricted connection
designates a connection between two flights not flown by
the same aircraft and just long enough not to be considered
short. Therefore, two flights with a restricted connection
can be assigned to a crew even if they are not flown by the
same aircraft, and it is likely to cause delays. To improve
the robustness of the crew schedule, they penalize the
restricted connections in the objective function. Weide
et al. (2010) present a similar model with the consideration
of the restricted connection. They develop an iterative
heuristic approach to make a trade-off between cost and
robustness and generate a series of non-dominant solu-
tions. Cacchiani and Salazar-González (2017; 2020) also
focus on the flight connections and they penalize the
number of aircraft changes in crew pairings in the objective
of their integrated models.
Another important consideration for robust scheduling is

delay minimization. A flight cannot get ready to take off

Sets (cont.)

C set of short connections, indexed by (i, j)

Rij set of strings including flight connection (i, j)

Pij set of pairings including flight connection (i, j)

Variables (cont.)

xr = 1, if route r is selected; = 0, otherwise.
X

r2Rij

xr –
X

p2Pij

xp³0 8ði, jÞ 2 C (5.1)

Sets (cont.)

P set of solutions to ARP, indexed by q

Pij set of solutions including flight connection (i, j)

Variables (cont.)

xθ = 1, if solution q is selected; = 0, otherwise.
X

�2Πij

x� –
X

p2Pij

xp³0 8ði, jÞ 2 C (5.2)
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until both its aircraft and crews are ready. Thus, the delay
along with aircraft flow and crew flow in the network has a
combined effect on the PD of the flight. Dunbar et al.
(2012) develop an iterative approach based on column
generation to consider the joint PD. In their approach, the
integrated problem is solved iteratively, beginning with
ARP linked to output from CPP, and then switching to CPP
linked to new output from ARP.
Re-solving ARP and CPP close to the day of operations

helps increase aircraft utilization, reduce crew costs, and
increase schedule robustness. Ruther et al. (2017) consider
such a re-optimizing problem of the aircraft routes and
crew pairings. They design the aircraft routes and crew
pairings based on more up-to-date information, that is, the
current location, maintenance, and flying history of each
individual aircraft, and current status of crew. They
propose a branch-and-price-based approach and develop
two strategies to solve its integrated model and accelerate
the solution process.

5.4 Integrated fleet assignment, aircraft routing, and crew
scheduling problem

A rich set of literature has focused on formulating FAP,
ARP, and CPP within a single model. Clarke et al. (1996)
present an enhanced FAM with aircraft and crew
considerations. They impose a lower bound on the number
of aircraft that overnights at maintenance airports and the
number of flights departing from crewbases. Obviously,
the feasibility of the maintenance requirements and
crewbase constraints is not guaranteed fully. Papadakos
(2009) integrates the aforementioned problems with short
connection constraints. In addition to short connection
constraints, Salazar-González (2014) also minimizes the
number of aircraft changes and total connection times in
the crew pairings to improve the robustness. Their problem
is solved with an iterative heuristic method that generates
crew pairings and aircraft routes sequentially at each
iteration. With the same motivation of Salazar-González
(2014), Cacchiani and Salazar-González (2017) propose
two alternative formulations for the integrated problem,
one uses path-based variables to describe the aircraft routes
and the crew pairings, and the other adopts arc-based
variables for the aircraft routes and uses path-based
variables to represent the crew pairings. Their results
show the arc-path method outperforms the path-path
method as well as the heuristic approach developed by
Salazar-González (2014). Noticing the aforementioned
researches do not model the maintenance requirements
explicitly, Shao et al. (2017) include the constraints that
ensure the restrictions on the maximal number of takeoffs,
number of days and total flying time between two
sequential maintenance checks. They also consider other
realistic operational considerations, such as itinerary-based
demands and crew work rules to capture the interdepen-
dencies among FAP, ARP, and CPP. They use a Benders’

decomposition approach to solve the large-scale model and
also design several acceleration strategies to enhance the
solvability. To realize more profit and better robustness,
Cacchiani and Salazar-González (2020) retime flight
departure time in their integrated scheduling model to
decrease the number of aircraft changes in crew pairings.
They test four heuristic algorithms on the data of a regional
carrier with up to 296 flights.

5.5 Other considerations

Apart from improving optimality to maximize the total
profit, additional considerations are considered on some
integrated problems. Pita et al. (2013) consider an
integrated flight scheduling and fleet assignment problem
under airport congestion. They deal with competition and
cooperation among airlines and define the market shares of
airlines as a piecewise linear function of flight frequency
and use it to formulate passenger spill and recapture. Pita
et al. (2014) present an integrated model for SDP and FAP
to minimize social cost rather than airline operating cost.
Specifically, the social cost is the difference between
operating cost and revenues of airlines, airports, and
passengers. The cost includes the flight cost and off-base
cost of airlines, operating cost of airports, and traveling
cost of passengers (i.e., on-board time cost, flight time cost,
waiting time cost, and delay cost). The revenues are
computed as non-aeronautical revenues of the airport.
Based on their socially oriented schedule, a welfare
analysis is developed to assist public authorities in the
design of subsidized air transport networks in Norway.

6 Conclusions and future research

In this paper, we provide a thorough review on three major
airline planning and scheduling problems, including FAP,
ARP, and CSP, in sequence. The overarching objective
shared among these problems is to determine the best
airline and crew schedules effectively while minimizing
overall operational costs. In this review, many state-of-the-
art mathematical optimization models and solution
approaches were proposed and demonstrated to success-
fully address various real-world challenges arising in
individual scheduling problems and integrated airline/crew
schedule applications.
However, solving the complete airline scheduling

problems efficiently for large-scale airlines remains
difficult. Hence, developing efficient solution approaches
and incorporating cutting-edge algorithms and methods,
such as data mining and machine learning, from related
fields, is critical as the demand keeps increasing drama-
tically for traveling within and across countries.
Future studies should consider uncertainty in the

planning and operational stage. Many factors, such as
demand, flying time, mechanical failure, and absence of
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crew, are random in nature. A more realistic and profitable
schedule can be developed by capturing this randomness in
the planning stage.
Many operational constraints and considerations, for

example, crew fatigue and competition from alternative
transportation mode, could affect the effectiveness and
profitability of the schedule. To manage crew fatigue, the
ICAO Standards and Recommended Practices (SARPs)
has supported a performance-based approach in addition to
the prescriptive approach (ICAO, 2019). In Europe and
Asia, especially in short/medium-haul markets, high-speed
rails have become more attractive to passengers. Therefore,
we should incorporate these factors into the planning stage.
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