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Abstract Energy sustainability is a complex problem
that needs to be tackled holistically by equally addressing
other aspects such as socio-economic to meet the strict
CO2 emission targets. This paper builds upon our previous
work on the effect of household transition on residential
energy consumption where we developed a 3D urban
energy prediction system (EvoEnergy) using the old UK
panel data survey, namely, the British household panel data
survey (BHPS). In particular, the aim of the present study
is to examine the validity and reliability of EvoEnergy
under the new UK household longitudinal study (UKHLS)
launched in 2009. To achieve this aim, the household
transition and energy prediction modules of EvoEnergy
have been tested under both data sets using various
statistical techniques such as Chow test. The analysis of the
results advised that EvoEnergy remains a reliable predic-
tion system and had a good prediction accuracy (MAPE
5%) when compared to actual energy performance
certificate data. From this premise, we recommend
researchers, who are working on data-driven energy
consumption forecasting, to consider merging the BHPS
and UKHLS data sets. This will, in turn, enable them to
capture the bigger picture of different energy phenomena
such as fuel poverty; consequently, anticipate problems
with policy prior to their occurrence. Finally, the paper
concludes by discussing two scenarios of EvoEnergy
development in relation to energy policy and decision-
making.

Keywords urban energy planning, sustainable planning,
Big Data, household transition, energy prediction*

1 Introduction

The UK residential sector accounts for the second largest
share of the UK’s total energy (30%) and emits around
14% of the country’s carbon dioxide (Department for
Business, Energy & Industrial Strategy (BEIS), 2017a).
This justifies why this sector is playing a central role in the
UK decarbonisation framework. In particular, the UK
government has recently placed a special emphasis on
building retrofit due to the aged (75% built before 1975)
and leaky nature of the existing dwelling stock (Edwards
and Townsend, 2011). As around 68% of the UK dwelling
stock benefited from retrofitting measures, the implemen-
tation of physical strategies will be less effective,
challenging, and expensive in the long term (BEIS,
2017b). Thus, local authorities should explore alternative
measures based on other aspects such as behavioral and
socio-economic, which are also responsible for 4%–30%
of the variation in domestic energy consumption patterns
(Brounen et al., 2012; Jones et al., 2015). However, before
developing such strategies (e.g., socio-economic), it is
important to determine their degree of influence on
residential energy usage. This will not only facilitate the
decision-making process with regards to the suitability of
available policies but also help estimate their impact prior
to implementation.
The effect of socio-economic, behavioral, physical,

psychological factors on domestic energy consumption has
been extensively reviewed in the literature (Druckman and
Jackson, 2008; Abrahamse and Steg, 2009; Frederiks et al.,
2015; Longhi, 2015). In our previous study (Medjdoub and
Chalal, 2017), we contributed to this body of literature by
investigating the impact of household demographic
transitions on their energy consumption patterns. Our
findings suggested that household transition patterns from
one family type to another have a significant effect on their
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domestic energy usage. This has led to questioning the
non-consideration of this concept in urban energy plan-
ning, especially after knowing that it constitutes an
important determinant of consumer purchasing behavior
in other disciplines (e.g., marketing). By knowing the
future transitions probabilities of consumers to different
family structures over their lifecycle, marketers could
anticipate their needs and determine the services and
products that are suitable for them and in a proactive
manner (Du and Kamakura, 2006; Hitesh, 2018). In
response to the lack of energy prediction tools supporting
household lifecycle transition patterns, we have previously
developed a 3D urban energy prediction system (Evo-
Energy) (Medjdoub and Chalal, 2017). EvoEnergy has the
ability to predict domestic energy at the urban scale in
function of (1) household transitions from one family type
to another (e.g., from single to couple without children,
etc.), and (2) the variation in the household socio-
economic and demographic factors. The predicted energy
figures are then mapped onto a given area in a color-coded
manner with the help of a GIS (Geographic Information
System) module.
Although incorporating the concept of lifecycle house-

hold transitions seems promising as it promotes proactive
energy planning, it could be argued that tools relying on
such concept (e.g., EvoEnergy) might be prone to
validation issues associated with their long-term usage.
This could be partially attributed to the fact that algorithms
of such tools, which have been developed using specific
data sets (e.g., the British household panel data survey
(BHPS)), may not reflect current demographic and socio-
economic changes of an evolving population. To this end,
the research presented in this paper builds upon our
previous work (Medjdoub and Chalal, 2017) on the effect
of household transition patterns on domestic energy
consumption by evaluating the performance of EvoEnergy
under the new UK household longitudinal study
(UKHLS). To achieve this aim, the following objectives
have been addressed:
� The validation of household transition models from

Medjdoub and Chalal (2017) under a new UKHLS.
� The comparison of the effect of household transition

on domestic energy usage based on both data sets (BHPS
and UKHLS).
� The validation of the performance of the energy

prediction algorithm using both data sets.
Ensuring the validity and reliability of our 3D urban

energy prediction system (EvoEnergy) under the new
UKHLS facilitates its adoption in urban energy planning.
By doing so, EvoEnergy can assist energy decision-makers
to: (1) Predict the long-term variation in the residential
energy consumption of urban districts in function of
changes in the household demographic and socio-
economic profiles; (2) enable proactive management of
the energy grid to meet the demand levels; (3) facilitate the
development of policies that target specific groups (e.g.,

low-income lone parents); and (4) estimate the long-term
impact of a particular policy on a population segment prior
to its implementation.
In addition to the above benefits, making our 3D urban

energy prediction system accessible to consumers in the
near future (on-going research) would help them: (5)
Understand their actual and future energy usage patterns;
(6) raise their pro-environmental awareness; and (7)
engage in energy saving activities.
The rest of the article is structured as follows. First,

Section 2 gives an overview of studies that have analyzed
the impact of various factors on residential energy
consumption. This section ends with a brief insight into
EvoEnergy published previously by Medjdoub and Chalal
(2017) to help the reader acquaint with the topic. Section 3
discusses the research methodology. Sections 4 and 5
analyze the research findings. Section 6 concludes the
article and Section 7 gives future recommendations.

2 Previous work

Please note that physical factors affecting residential
energy are outside the scope of this paper. For more
information, please refer to our previous extensive review
(Chalal et al., 2016).

2.1 The effect of psychological factors

While socio-economic factors have a prominent role in
predicting the household energy usage patterns, a number
of psychological factors were found to have a direct effect
on a person’s energy-related behavior (Yang et al., 2016).
These factors include environmental awareness, beliefs,
culture, values and attitudes, preferences, subjective
norms, and intentions and goals (Huebner et al., 2016;
Guo et al., 2018). For example, Abrahamse and Steg
(2009) advised that psychological factors are related to
energy savings but not the actual energy consumption.
Similarly, Vringer et al.(2007) did not find a significant
relationship between the variable values and domestic
energy usage. As for environmental awareness, few studies
(Barr et al., 2005; Steg and Vlek, 2009) advised that
superior environmental awareness levels are associated
with higher energy savings and lower energy consumption
levels. However, such relationship is usually either weak or
insignificant. Other scholars such as Khosrowpour et al.
(2018) concentrated on developing feedback strategies to
tackle the knowledge and environmental awareness gap;
consequently, induce changes in household energy con-
sumption. For example, Faruqui et al. (2010) suggested
that implementing direct energy feedback in the form of in-
home display (IHD) can contribute to 14% and 7% savings
in the electricity usage of households who are on
prepayment and direct debit schemes, correspondingly.
In addition to the above, many studies suggested that a
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person’s attitudes, values, and intentions to engage in pro-
environmental behavior have an impact on domestic
energy usage. However, such an effect does not necessarily
translate to a conforming change in energy consumption or
savings (Bamberg and Möser, 2007; Huebner et al., 2013).
For instance, Kavousian et al. (2013) surprisingly
discovered that households who expressed an interest in
purchasing energy efficient appliances consumed high
levels of daily minimum energy consumption.
Likewise, personal comfort can have a significant impact

on residential energy usage. More precisely, any possible
decrease in personal comfort could reduce the likelihood of
engaging in energy conservation activities (Gatersleben et al.,
2002). For example, Barr et al. (2005) found that 40%
of householders with “good pro-environmental” behavior
were not willing to sacrifice their comfort to save energy.
On the other hand, the percentage of those who unwilling
to compromise their comfort to save energy among the
“non-environmentalist” group was more than 75%.

2.2 The effect of socio-economic factors

Longhi (2015) used the UK household longitudinal study
(UKHLS) to analyze the change in the household energy
expenditure in function of various socio-economic and
demographic factors. The study suggested that socio-
economic factors explain 11% of the variation in domestic
energy use. Similarly, Huebner et al. (2016) analyzed the
energy follow up survey (EFUS) which encompasses a
sample size of 845 English households and discovered that
socio-economic variables explained around 21% of the
variability in electricity consumption. Brounen et al.
(2012) advised that demographic and socio-economic
factors are responsible for 17% and 5% of the variation in
gas and electricity energy consumption, respectively. The
above studies advised that household size was the most
influential factor on domestic energy consumption. In
particular, Longhi (2015) found that one additional
member in the household contributes to 33%–35%
decrease in the per capita energy expenditure. However,
many empirical studies (Bedir et al., 2013; Jones and
Lomas, 2015), which included household size as a
continuous variable in their prediction models, showed
that there is a positive relationship between this variable
and the amount of energy consumed in the dwelling. Other
factors such as age of household reference person (HRP),
income, presence of children, level of education, and
tenure mode, were also found to influence the variation in
energy consumption (Pereira et al., 2019). However, their
significance and magnitude are still inconsistent in the
literature. For example, Nair et al. (2010) and BRE (2013)
suggested that the energy usage of household reference
persons (HRPs) aged between 50 and 65 is high, whereas
the ones aged above 65 is low. On the other hand, Tiwari
(2000) showed that householders aged below 45 are
usually associated with lower energy consumption. Other

studies such as Abrahamse and Steg (2009), Poortinga
et al. (2004), and Bedir et al. (2013) found the effect of age
on residential energy usage not significant. Recently, we
have found that household transition patterns from one
family to another does have a significant effect on their
energy consumption patterns (Medjdoub and Chalal,
2017). For example, on average, a single non-elderly
household has a 53.3% chance of moving to different
household types after 5 years, where the possibility of
becoming a couple with children is 12.1%. The chance of
consuming more than 4000 kWh of electricity annually for
a single non-elderly making a transition to a couple with
children over five years is 35.29%. Based on the findings
of our previous study (Medjdoub and Chalal, 2017), we
have developed a 3D urban energy prediction system
(EvoEnergy) which will be briefly described in the below
sub-section.

2.3 Overview of our 3D urban energy prediction model
(EvoEnergy)

EvoEnergy was developed at the Creative and Virtual
Technologies Laboratory at Nottingham Trent University
in collaboration with Nottingham Energy partnership. The
main intention behind its development was to provide
energy planners with a smart platform that assists their
sustainable energy planning decision-making. A future
goal of this project is to help consumers better engage in
pro-environmental behavior to reduce their home energy
usage (on-going research). Since EvoEnergy prediction
algorithm relies on the British household panel data survey
(BHPS), it can estimate future residential energy con-
sumption for up to 10 years. These predictions are
primarily dependent on (1) household transition possibi-
lities to other household structures and (2) the variation in
their socio-economic circumstances (e.g., income and age).
EvoEnergy system architecture:
As shown in Fig. 1, the architecture of EvoEnergy

comprises four distinct modules. First, the game-based
environment represents the 3D platform where it is
possible to import and interact with any 3D semantic
model via the user-interface module. The 3D semantic
model database module stores the different components of
the CityGML (3D GIS) models in a hierarchically
structured manner to ensure stable and reliable data
management, and moreover, to permit data exchange
(e.g., export, modify, and save) with the Game-based
environment module. On the other hand, the energy related
prediction modules estimate the annual energy consump-
tion of different households based on their socio-economic
module and transition probabilities to other family types.
The inputs (e.g., socio-economic characteristics) and
outputs of the energy related prediction modules are stored
in and loaded from the 3D semantic model database via the
user-interface module. Finally, the Game-based environ-
ment enables the visualization/mapping of outputs from
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the energy related prediction modules.
Modus operandi:
Upon launching EvoEnergy, users can navigate through

the 3D model of a particular urban area (Fig. 2) and view
its energy consumption in a 2D fashion. Moreover, they
can trigger a summary of energy history and socio-
economic profile pertaining to a given dwelling on mouse
hover (Fig. 3). To select a particular house, the user can
either right-click on it or search for it using a valid address
and postcode. To perform energy predictions, users are
required to access the main menu and fill all the input fields
in the physical and socio-economic modules. After that,

they need to select the target household transition (e.g., to
couple without children) and set the timeline (e.g., next
two years) as shown in Fig. 4. The prediction module also
allows performing meaningful comparisons between the
transition patterns and energy usage patterns of different
households (Fig. 5).

3 Methodology

Figure 6 represents the methodology diagram of the
current study in regard to our previous research (Medjdoub

Fig. 1 Architecture of EvoEnergy.

Fig. 2 3D model of the Sneinton area in Nottingham in EvoEnergy.
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and Chalal, 2017). The undertaken study embraces a mix-
methods research methodology with a multi-level triangu-
lation design. Overall, there are seven stages of imple-
mentation in total, two of which belong to the present study
(orange box, Phases VI and VII). However, to allow the
reader to understand the link between the current and
previous research, phases belonging to our previous work
are briefly described below.
First, Phase I entails the comparison and manipulation of

two distinct UK household panel data sets, namely, the
British household panel data survey (BHPS) and UK
household longitudinal study (UKHLS). The purpose of
the manipulation is to prepare both data sets in a format,
quality, and structure suitable for further analysis in Phases

II, IV, and VI. Phase II includes predicting household
transition models using fixed and random effects binary
logistic regression based on the BHPS and UKHLS data
sets. As shown in Fig. 1, the prediction models resulting
from the UKHLS data set will be only used for validation
purposes. Phase III consists of analyzing the effect of
household transition on energy consumption variables
using point-biserial correlation. Conversely, Phase IV
includes the development of an energy prediction model
based on (1) the household demographic transition
variables and (2) different socio-economic factors. The
developed energy prediction model from Phase IV was
used to create a 3D urban energy prediction model
(EvoEnergy) in Phase V (see Section 2.1). Phase VI

Fig. 3 Summary of a household energy history and socio-economic profile on mouse hover.

Fig. 4 Household energy prediction module.
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entails comparing the prediction models and point-biserial
correlation coefficients developed from the BHPS data set
against the ones created based on the UKHLS data set. In
Phase VII, the accuracy of the energy prediction model
resulting from BHPS data set will be first evaluated against
the one developed based on UKHLS. In addition to
comparing both prediction algorithms to each other, they
will be evaluated against existing EPC (energy perfor-

mance certificate) data. Details about the phases of
implementation in the present study and their findings
are presented in Sections 4 and 5.

3.1 Data preparation—Data description and comparison

The analyzed and compared panel data sets in this study
are the British household panel data survey (BHPS) and

Fig. 5 Comparison of two households’ transition patterns and energy consumption figures.

Fig. 6 The methodology flowchart of this research in relation to our previous work (Medjdoub and Chalal, 2017).
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the UK household longitudinal study (UKHLS). Both are
longitudinal data surveys that encompass random UK
households annually interviewed on their demographic and
socio-economic circumstances in addition to other aspects
such as energy expenditure (Institute for Social and
Economic Research, 2016). The BHPS tracked more
than 5000 households of different structures (e.g., lone
parents) over 18 years between 1991 and 2008. On the
other hand, the UKHLS, which is the successor of BHPS,
has a significantly larger target sample size of 40000
despite starting in 2010 (Understanding Society, 2017).
This, in turn, allows for a high-resolution analysis of
different time-dependent events such as household demo-
graphic transitions. However, UKHLS has only 7 waves
which limit the capturing of household transition patterns
for more than 2–3 years.
From running several statistical including Levene test, it

was found that the socio-economic and demographic
profile of the BHPS and UKHLS samples were completely
different from each other. Considering that age is a
determinant of several socio-economic factors (e.g.,
income), this difference was mainly attributed to a
significant change in the sample age profiles (Fig. 7). For
more information, please consult Table 4 in Appendix A.

3.2 Data preparation—Data manipulation

As depicted in Fig. 6, BHPS was used as the main data
source in this study, whereas the UKHLS was utilized to
validate the research findings. Since this work is part of our
research project on Nottingham city, which has a high
proportion of single non-elderly (Office for National
Statistics, 2018), households who were not single non-
elderly in wave 1 (depicted later) were omitted from both
data sets. As a result, the final sample size of the BHPS was
7038 after merging all waves, except wave 6 that lacked
energy expenditure variables. Conversely, the final sample
size of UKHLS was 8750. The percentage of missing data
in the BHPS and UKHLS data sets were only 2.35% and
4.73% of all values, respectively.

To meet the assumptions of the used statistical tests, the
following data screening procedures have been applied.
First, energy expenditure for gas and electricity were
converted into quantities in kWh. Secondly, variables with
inconsistent coding and/or number of categories across
both data sets (e.g., marital status) have been recoded.
After that, income, expenditure, and energy consumption
variables have been normalized using log10 transforma-
tion. Finally, outliers were checked for and deleted.

4 Validation of transition models and point-
biserial coefficients

To compare the household transition model coefficients, a
likelihood ratio test resembling the Chow test in Stata (Eq.
(1)) was used (Chow, 1960; Stata, 2015). In particular, the
test will compare the coefficients and intercepts of the
pooled model (combined BHPS and UKHLS) against the
model comprising interaction effects between covariates
and the data set dummy variable (BHPS or UKHLS). The
statistics of the likelihood ratio test are defined in Eq. (1).

LR ¼ – 2ðL1 – L0Þ: (1)

Let L0 and L1 be the log-likelihood values related to the
pooled model (containing both data sets) and constrained
models (model with interaction and main effects),
correspondingly. If the constrained model is true, LR is
approximately c2 distributed with d0 – d1 degrees of
freedom, of which d0 and d1 are the degree of freedom
pertaining to the pooled and constraints models, corre-
spondingly (Greene, 2002).
Due to the limitation of the UKHLS in capturing

household transition patterns beyond 2–3 years, the
following procedures have been implemented to support
the validation process. First, we compared the line graphs
showing the change in the proportion of single non-elderly
households over the BHPS and UKHLS waves. Moreover,
the Mann–Whitney U and Kolmogorov–Smirnov Z tests
were adopted to test the null hypothesis that discrepancies

Fig. 7 Pie charts showing the distribution of age groups over the BHPS and UKHLS data sets.
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in the transition rates of single non-elderly over both data
sets are not significantly different (McCrum-Gardner,
2008).
Findings of the validation of transition models and

point-biserial coefficients:
Table 1 represents the statistics of the likelihood ratio

Chow test, which compare the regression coefficients of
transition models from BHPS and UKHLS. Overall, it is
evident that the p-values of this test overall all models were
greater than 0.05. This signifies that there is no significant
difference between the constants and coefficients of the
compared household transitions models. To overcome the
UKHLS limitation in capturing household transitions
beyond 2–3 years, the authors have analyzed the decline
in the proportion of single non-elderly households across
the BHPS and UKHLS as a result of them becoming other
family types such as couples without children (Fig. 8). In
general, it is evident that the decrease in the proportion of
single non-elderly followed the same trend across the first
seven waves of both data sets, although there were minor
discrepancies of 8.8% on average. In addition to that, it is
expected that the decline in the percentage of single non-
elderly households in the future waves of UKHLS will
follow the same trend of the discontinued BHPS (1991–
2008) but with minor discrepancies. To verify these
findings, a Mann–Whitney U and Kolmogorov–Smirnov
Z tests have been conducted (Table 2). The p-values of
both tests were greater than 0.05, which means that there is
no significant difference in the distribution of single non-
elderly transitions over both data sets. Therefore, we can
conclude that both BHPS and UKHLS are reliable data sets

for predicting household transition models. However, we
recommend employing either the BHPS or a combined
BHPS and UKHLS data set as both scenarios allow the
capturing of transition patterns for a period of at least 10
years.
Following the above discussion, it was expected that the

impact of household transitions on energy consumption
would remain consistent under the UKHLS data set. To
reinforce this claim, the point-biserial correlation coeffi-
cients resulting from BHPS and UKHLS have been
compared (Table 3). From analyzing Table 3, it is evident
that the point-biserial coefficients were in good agreement
despite minor discrepancies of approximately 0.01 on
average. The direction and significance of the point-
biserial coefficients also remained consistent over both
data sets. For those reasons and in line with the above
recommendation on transition models, BHPS is still a
reliable data set for predicting domestic energy consump-
tion in function of household transitions. Nevertheless,
using a combined UKHLS and BHPS data set represents
also a viable option.

5 Validation of energy prediction
algorithms

Reporting the regression coefficients of the developed
energy prediction models is outside the scope of this paper.
For more information, please refer to our previous work
(Chalal, 2018).
As shown in Fig. 9, the accuracy of the energy

Table 1 The results of the likelihood Chow test comparing the coefficients of transition models resulting from BHPS and UKHLS

Transition
target

Year of
transition

Model Goodness of fit
(McFadden’s R2)

obs ll (null) ll (model) df AIC LR chi2
(6)

Prob.> chi2

Couples with
children

1 Pooled model 0.626 480 -188.064 -70.40656 6 152.81 7.68 0.2625

Model with interac-
tion effects

0.646 480 -188.064 -66.56636 12 157.13

2 Pooled model 0.514 269 -104.314 -23.03278 6 58.065 9.91 0.1284

Model with interac-
tion effects

0.527 269 -104.314 -18.07673 12 60.15

Couples with-
out children

1 Pooled model 0.361 1092 -413.4964 -264.3681 7 542.73 8.18 0.3167

Model with interac-
tion effects

0.371 1092 -413.4964 -260.2763 14 548.55

2 Pooled model 0.468 693 -259.5675 -138.1586 7 290.31 10.18 0.1788

Model with interac-
tion effects

0.487 693 -259.5675 -133.0703 14 294.14

Lone parents 1 Pooled model 0.683 4166 -1609.361 -510.5721 8 1037.14 6.12 0.6342

Model with interac-
tion effects

0.685 4166 -1609.361 -507.5138 16 1047.02

2 Pooled model 0.514 2690 -1015.016 -260.9618 8 537.92 3.46 0.9021

Model with interac-
tion effects

0.534 2690 -1015.016 -259.2309 16 550.46
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Fig. 8 The decrease in the percentage of single non-elderly households over different waves of BHPS and UKHLS as a result of them
moving to other household types such as couple without children.

Table 2 The results of the Mann–Whitney U and Kolmogorov–Smirnov Z test statisticsa

Mann–Whitney U test Kolmogorov–Smirnov Z test

Transition rates Transition rates

Mann–Whitney U 15.500 Most extreme differences Absolute 0.429

Wilcoxon W 43.500 Positive 0.429

Z -1.151 Negative 0.000

Asymp. sig. (2-tailed) 0.250 Kolmogorov–Smirnov Z 0.802

Exact sig. [2*(1-tailed sig.)] 0.259b Asymp. sig. (2-tailed) 0.541

Note: a. Grouping variable: DATA; b. Not corrected for ties.

Table 3 Comparison of impact of household transition on energy consumption across BHPS and UKHLS

LP
1 year

LP
2 years

CN
1 year

CN
2 years

CWC
1 year

CWC
2 years

Log10 annual elec-
tricity usage

BHPS 0.11** 0.12** 0.11** 0.093** 0.16** 0.13**

UKHLS 0.114** 0.117** 0.1157** 0.1043** 0.142** 0.152**

Square root of
annual gas usage

BHPS 0.008 0.005 0.114** 0.091** 0.160** 0.135**

UKHLS 0.01 0.009 0.129** 0.0835** 0.148** 0.115**

Note: LP: Lone parent; CN: Couple without children; CWC: Couple with children.
* Significance at the 95% level; ** Significance at the 99% level.

Moulay Larbi CHALAL et al. Big Data to support sustainable urban energy planning: The EvoEnergy project 295



prediction models developed from BHPS and UKHLS is
compared to existing EPC energy data. The EPC data
belongs to householders who made at least one transition
from a single non-elderly family to different household
structures (e.g., couple without children) over the last 2–3
years. It is worth mentioning that the socio-economic and
demographic profiles of the selected householders are
distinct from each other. In this way, it is possible to test the
accuracy of the prediction models at different input values.
The validation process starts by inputting the socio-

economic and demographic characteristics of the chosen
householders, including household transition possibilities,
into the energy prediction algorithms developed from
BHPS and UKHLS. The predicted energy values are then
compared to each other and then against the actual EPC
energy data (Fig. 9). Any discrepancies between the
predicted and EPC energy data are reported using the mean
absolute percentage error (MAPE) and mean percentage
error (MPE) described below in Eqs. (2) and (3).

MAPE ¼ 1

n
Σ
n

t¼1
jAt –Ft

At
j

� �
� 100, (2)

MPE ¼ 1

n
Σ
n

t¼1

At –Ft

At

� �
� 100, (3)

where At and Ft are actual and predicted energy
consumption values, respectively.
Findings of the validation of energy prediction algo-

rithm:
Figure 10 illustrates the predicted and actual annual

electricity energy figures of the selected householders.
Overall, it is evident that there were some discrepancies
between the estimated and actual values. More precisely,
the mean absolute percentage errors (MAPE) for the BHPS

and UKHLS energy models were 5.47% and 5.15%,
respectively.
As shown in Figs. 11 and 12, the minimum and

maximum mean percentage errors (MPE) for the BHPS
energy model were -1.74% and -9.58%, correspondingly.
On the other hand, the lowest and highest MPE values for
the UKHLS energy model were 1.74% and 7.71%,
respectively. This leads to the conclusion that the
UKHLS energy prediction model had a superior accuracy,
although there were minor discrepancies between its
outputs and the ones of the BHPS energy prediction
model (MAPE 3%). This was in line with the literature
where the goodness of fit of the UKHLS electricity
prediction model reported by Longhi (2015) (0.369) was
superior to the BHPS one stated by Berkhout et al. (2004)
(0.11) and the one we previously reported (Chalal, 2018)
(0.25).
After further investigations, we found that the mean

absolute percentage errors (MAPE) for householders who
made a transition to lone parent, couple with children, and
other family structures were higher than 6%. In particular,
it seems that both energy prediction models over predict
the energy usage associated with couple with children
transitions. Moreover, they underestimate the consumption
of those moving to a lone parent family and other family
structures (e.g., 2 unrelated households). This could be due
to the low representativeness of those household types in
both data sets. Indeed, we found out that the MPE values
associated with transitions to couple without children
households, who have better representativeness in the data
sets, were below 5% (Figs. 11 and 12).
In addition to the above, we have discovered that the

number of transitions made by the householder negatively
correlates with the prediction accuracy of the BHPS and
UKHLS energy models. For example, the householder

Fig. 9 The validation process of the developed energy prediction model.
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Fig. 11 Discrepancies between the estimated energy figures using BHPS and the EPC energy data reported using the mean percentage
error index (MPE).

Fig. 10 Clustered bar graph representing the estimated and actual EPC energy figures of the chosen householders.

Fig. 12 Discrepancies between the estimated energy figures using UKHLS and the EPC energy data reported using the mean percentage
error index (MPE).
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who made two transitions in which the last one was to a
lone parent household had the mean percentage error
(MPE) values of -9.58% (Fig. 11) and -5.23% (Fig. 12).
Similarly, a householder who first moved to couple without
children and then to a couple with children household had
9.30% and 7.29% mean percentage errors as depicted in
Figs. 11 and 12, respectively. Surprisingly, the number of
steps followed in the prediction process had a significant
effect on the estimation accuracy. More precisely, follow-
ing a multifold prediction process, where the annual
electricity usage is predicted at each transition stage, the
accuracy improved by up to 7% in comparison to a one-
fold approach. The reasons behind this improvement are
unknown and are currently under investigation.

6 Discussion and conclusions

In 2009, the British household panel data survey (BHPS)
was replaced by its successor, the UK household long-
itudinal survey (UKHLS) (Understanding Society, 2017).
Our comparison suggested that the socio-economic and
demographic profiles of the BHPS and UKHLS were
distinct, which indicates that the UK society has undergone
some important changes from 1991 to the present. An
example of these changes includes transformations in the
age structure of the population, its educational attainment
profile, and home ownership levels.
For the above reasons and considering that our 3D urban

energy prediction system (EvoEnergy) was partly devel-
oped using the old data set (BHPS), the present research
aimed to evaluate the validity and reliability of EvoEnergy
under the new household panel data survey (UKHLS). To
attain the study aim, we have first evaluated the transition
module of EvoEnergy by comparing the coefficients of
household transition models generated from the BHPS and
UKHLS data sets. Following this, the energy prediction
module of EvoEnergy has been tested by first comparing
the impact of household transition on energy usage over
both data sets. After that, the accuracy of energy prediction
algorithms resulting from BHPS and UKHLS has been
evaluated against existing energy performance certificate
data (EPC).
The analysis of findings advised that there were no

significant differences between the coefficients of transi-
tion models of both data sets. This suggests that BHPS and
UKHLS are reliable sources for analyzing and forecasting
dynamic relationships including household demographic
transitions. In addition to that, the analysis of point-biserial
correlations over the BHPS and UKHLS data sets proved
that the effect of family transition on domestic energy
consumption remained consistent across the two data sets.
Finally, the BHPS and UKHLS energy prediction models
had a good estimation accuracy when compared to the
actual EPC data (MAPE 5%). However, the UKHLS

energy prediction algorithm had superior accuracy.
While the examination of study findings confirmed the

validity and reliability of EvoEnergy as it stands, it has
opened the doors to new scenarios related to its future
development. The first scenario consists of utilizing the
BHPS data set as the basis for EvoEnergy household
transition module. Moreover, it entails employing a
UKHLS based energy prediction algorithm. Even though
this would certainly improve the energy prediction
accuracy of EvoEnergy, relying on BHPS data set makes
EvoEnergy unable to predict the transition patterns of
households with low representativeness such as lone
parents beyond 7 years. Furthermore, it does not permit
an adequate analysis of the effect of cultural factors on
residential energy demand. This is because the BHPS data
set has low representativeness of ethnic minority groups in
the BHPS sample (McFall and Garrington, 2011). This
would pose a problem especially if the focus of policy-
makers is placed on monitoring and determining the
effectiveness of policies geared toward minor ethnicities
and lone parent families. An example of this includes
analyzing the change in the fuel poverty gap of minor
ethnicity groups in function of government schemes, their
CO2 emissions, and any changes in their socio-economic
and demographic factors. From a policy point of view,
using EvoEnergy under this scenario limits the monitoring,
design, and adjustment of pro-environmental behavior
policies and measures that target specific households over
different stages of their family lifecycle.
In contrast to the above, a better scenario involves using

a combined BHPS and UKHLS data set to inform the
development of EvoEnergy’s household transition and
prediction modules. In this way, it is possible to monitor
more households over a period of at least 25 years. This, in
turn, permits to increase the prediction period of the
transition module to 15 years. Furthermore, it would
overcome the limitations of BHPS by allowing for better
handling of certain household types and ethnic minority
groups. Similarly, adopting a joined BHPS–UKHLS
energy prediction algorithm would help correct the over-
and under-estimations of couple without children and lone
parent households (Section 5.1), respectively. Based on
that, it is argued that using EvoEnergy under this scenario
would support policy- and decision-making by addressing
certain phenomena while taking account of socio-
economic and demographic changes occurring over the
household lifecycle. This will, in turn, enable the
development of proactive measures. For example, one of
the challenges facing UK policy-makers in identifying fuel
poverty is the change in the socio-economic factors of the
households (ADECOE, 2016). Examples of such changes
include varying income levels, change in household size,
deterioration of housing conditions, and change in the fuel
price. Using EvoEnergy in this situation could possibly
help anticipate the likelihood of being a fuel pauvre in
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function of scenarios of change in the household socio-
economic circumstances.

7 Recommendations for future work

The analysis of the research findings has highlighted few
limitations, which should be addressed in the future. These
can be summarized as follows:
� The process of combining the BHPS and UKHLS is

challenging and time consuming. Therefore, there is a need
for tools that could automate or facilitate this process for
other scholars, especially those with little/basic statistical
knowledge.
� Since EvoEnergy is only confined to the UK

residential sector, one of the possibilities is to extend its
socio-economic module to cover different countries such
as Germany, Italy, and Spain.
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Appendix A

Table 4 represents the summary of the homogeneity of
variance analysis of different socio-economic and demo-
graphic variables over the BHPS and UKHLS data sets.
Overall, it is evident that the variance of most factors
across the two data sets was heterogeneous except for the
following variables: Gender, aged 36–45, divorced,
widowed, never married, separated, living as a couple,
A-level, rented from employer, rented from private land-

lord, living in terraced houses, and living in 3-bedroom
dwellings. This implies that the socio-economic and
demographic characteristics of both samples are largely
significantly different from each other.
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