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Abstract During financial crisis, companies constantly
need free cash flows to efficiently react to any uncertainty,
thus ensuring solvency. Working capital requirement
(WCR) has been recognized as a key factor for releasing
tied up cash in companies. However, in literatures related
to lot-sizing problem, WCR has only been studied in the
single-level supply chain context. In this paper, we initially
adopt WCR model for a multi-level case. A two-level
(supplier–customer) model is established on the basis of
the classic multi-level lot-sizing model integrated with
WCR financing cost. To tackle this problem, we propose
sequential and centralized approaches to solve the two-
level case with a serial chain structure. The ZIO (Zero
Inventory Ordering) property is further confirmed valid in
both cases. This property allows us to establish a dynamic
programming-based algorithm, which solves the problem
in O(T4). Finally, numerical tests show differences in
optimal plans obtained by both approaches and the
influence of varying delays in payment on the WCR of
both actors.

Keywords two-level ULS problem, lot-sizing, working
capital requirement, ZIO property, infinite production
capacity*

1 Introduction

Tactical production planning is one of the major decision
processes in production management as emphasized in the
MRP II (Manufacturing Resource Planning) methodology.
Tactical planning aims to fulfill customers’ demands by
determining the quantities to be manufactured while
minimizing logistic costs, such as holding, setup, and
production costs. To tackle this problem, several mathe-
matical models have been designed; among them, “lot-
sizing” models have been recognized for their efficiency
(Drexl and Kimms, 1997). In recent years, literatures of
supply chain management, which followed the original
work of Babich and Sobel (2004), have become aware that
financial and operational problems are imbricated. In
addition, simultaneously optimizing the two dimensions
can improve companies’ global performance in a more
efficient way (Peng and Zhou, 2019).
Extending the tactical plan process by considering

financial aspects and optimizing logistic costs and their
financial impacts seems promising. This process can
reduce bankruptcy risk by finding the trade-off between
the logistic and financial costs generated by operation
decisions made at the tactical supply chain management.
Therefore, this study proposes to deal with tactical
planning at a multi-level supply chain with a serial
structure while considering different financial aspects,
such as financing of Working Capital Requirement (WCR)
and the net discounted value.
Previous works focused on a single-level model either

with a constant demand (Harris, 1913) or a variable
demand (Wagner and Whitin, 1958). In this study, we
consider the multi-level lot-sizing problem (MLLP), which
has been elaborated to plan end items and components,
owing to their bill of material under infinite capacities
assumption based on MRP (Material requirements plan-
ning) philosophy. This mathematical formulation can
model the considered supply chain. Moreover, this
research aims to extend the MLLP model by integrating
financial costs and the profit of each site. We focus on
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profit maximization problem, given that the profit is the
difference between the revenue and the sum of the logistic
and financial costs.
To address this complex problem, we initially study the

two-level problem by extending the work of Bian et al.
(2018), including financial costs, with concept of WCR
and Net Present Value (NPV), in the case of a serial
structure (see Fig. 1). This problem is called 2ULSP(WCR)

(uncapacitated lot-sizing problem), wherein we consider a
supply chain that is composed of two sites and that extends
the previous single-level model. In this system, a supplier
purchases and processes raw materials to produce inter-
mediate goods in site S0. These goods are delivered to a
manufacturer for further processing in site S1 to satisfy the
external demand. Only one type of item is manufactured in
each site, which is denoted as P0 in S0 and P1 in S1.
Additional assumptions are presented in the paragraphs
below.

Each site is characterized by the following:
� Logistic costs. Such costs include purchasing (denoted

by ai, iÎ{0, 1}), setup (denoted by si, iÎ{0, 1}), production
(denoted by pi, iÎ{0, 1}), and inventory holding costs
(denoted by hi, iÎ{0, 1}). Generally, the purchasing unit
cost of the manufacturer should be higher than the total
unit cost for its production of the supplier (i.e., including
all four types of costs).
� Term of payment. One of the differences between

single-level case and two-level case is the payment delay
between site i – 1 and site i (denoted as ri). In the two-level
case, the supplier receives the payment from the
manufacturer after L1 + r1 periods, which include the
delivery delay L1 and payment delay r1 between these
sites. Furthermore, no particular index is given for the final
customer, who commands the external demand, and the
tier 2 supplier, who provides the raw material. Payment
delay from the final customer to the manufacturer is
denoted by r2, whereas the payment from the supplier to
the tier 2 supplier is denoted by r0. Moreover, the delivery
delays, the L of raw material and the finished product are

not considered in this problem, that is, L0 = L2 = 0 (they
remain in the mathematical formulation for not losing
generality).
� Financial aspects. The same financial aspects (dis-

count and interest rates) in the previous single-level model
are considered in this case. The discount rate is denoted by
αi, iÎ{0, 1}, whereas the interest rate (the rate of financing
the WCR) is denoted by βi, iÎ{0, 1}.
Hofmann et al. (2011) indicated that the buying

company often has a lower capital cost rate than its
supplier, resulting from a shortened cash-to-cash cycle. In
practice, the unit sales price of supplier (i.e., the unit
purchasing cost of manufacturer) is usually greater than the
average cost per product, including all logistic and
financial costs, to gain profit. Furthermore, the supplier
frequently has a lower inventory carrying rate since its
goods are warehoused in large quantities and scaling
effects are achieved (Hofmann et al., 2011). Thus, the
inventory holding cost is greater in S1 than in S0 (i.e.,
h0< h1). We assume that r1≥r2 for this problem, which
implies that the manufacturer takes the dominant role in the
chain. We also assume that the interest rates are equal in the
centralized approach. In conclusion, the two-level model is
established under the following assumptions:
Production aspects
� No replenishment and production delays are antici-

pated, given that they are negligible compared with the
period duration;
� Demand should be met on time (no backlogging);
� The initial and final stocks of all items are defined as

zero;
� One unit of item is manufactured using one unit of

component or raw material;
� Delivery delays of raw materials and finished products

are not considered;
� Intermediate goods are only held in the inventory of

the supplier;
� Inventory holding unit cost is greater in the manu-

facturer level than the one in the supplier level.
Financial aspects
� The payment of the manufacturer to the supplier for

the intermediate goods is executed after the receipt of the
goods;
� Payments of all logistics and financial costs are made

at initial periods;
� The margin caused by the sale of selling products is

not used for financing WCR;
� Products in the same lot uniformly share the setup

cost. However, the inventory holding cost is measured for
each product on the basis of its total holding time in the
inventory;
� The purchasing unit cost of one level should be higher

than the unit cost for producing one unit at the lower
(adjacent) level;
� Discount rate is greater at the supplier level than that at

the manufacturer level;

Fig. 1 Physical and financial flows in a two-level supply chain.
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� Payment delay from the manufacturer is shorter or
equal to the one from the supplier;
� The interest rates of the two levels are assumed equal

in the centralized approach.

2 Literature review

Working capital management (WCM) has been recognized
for its promising potential to improve supply chain
performance (Timme and Williams-Timme, 2000). How
WCM affects company performance and profitability has
been revealed at the national and sector levels (Lind et al.,
2012; Enqvist et al., 2014). In our work, we study the
impact of cash flows on the production plans within an
enterprise network. In this section, the classic linear
formulation of MLLP and the resolution approaches in the
lot-sizing literature are presented. Moreover, the definition
of WCR in the fields of finance and accounting is
summarized.

2.1 MLLP

MLLP can be modeled as a mixed integer linear program
(MILP). Table 1 describes the notations of the parameters
and the decision variables. The gozinto coefficient aij is
equal to zero if item i is not an immediate successor of item
j. Otherwise, the quantity of item j should be equal to that
required for producing one item i.

The objective function is the sum of setup and inventory
holding costs as formulated in the following expression:

Max
XT
t¼1

XN
i¼1

ðhi$Iit þ si$YitÞ, (1)

s. t.

Xit£M$Yit, 8ði, tÞ2 ½1, N � � ½1, T �, (2)

Iit ¼ Iiðt – 1Þ þ Xit – dit –
XN
j¼1

aij$Xit,

8ði, tÞ2 ½1, N � � ½1, T �, (3)

ðIit, XitÞ2ℕ2, Yit 2f0, 1g, 8ði, tÞ2 ½1, N � � ½1, T �: (4)

Equation (2) determines whether a setup for the production
of item i occurs at period t. Equation (3) represents
inventory balance. Equation (4) represents the integrity
constraints.

2.2 Resolution methods for MLLP in the literature

Sequential approach of the MLLP problem is one of the
first approaches proposed on the basis of the MRP method,
which plans the production level by level. Early works on
the sequential application of single-level algorithm
(including Wagner-Whitin algorithm for ULS) have been
investigated by Yelle (1979) and Veral and LaForge
(1985). Later, approximate applications of the MLLP
problem are proposed by integrating the logistics cost of
the end item into its components. In certain cases, cost
modifications are proposed (Black-burn and Millen, 1982;
Bookbinder and Koch, 1990; Dellaert and Jeunet, 2003).
In the non-distributed MLLP literature, the centralized

approach remains the main stream since the early works of
Zangwill (1968; 1969). The author has optimally solved
the problem with serial BOM (bill of material) by
proposing dynamic programming-based algorithms.
Other optimal algorithms include the assembly-structure-
based method of Crowston and Wagner (1973), and branch
and bound algorithms of Afentakis et al. (1984) and
Afentakis and Gavish (1986). However, the optimal
solution can be obtained for small instances, given that
the complexity of the MLLP problem is NP (non-
deterministic polynomial)-hard (Steinberg and Napier,
1980). The large-sized MLLP problem becomes further
difficult to investigate for satisfactory results with reason-
able computational effort. For this reason, metaheuristic
algorithms have been largely developed for the efficiency
of solving this problem in complex realistic structure cases.
Dellaert and Jeunet (2000) established a hybrid genetic
algorithm for this problem with a general product structure.
Tang (2004) proposed the simulated annealing algorithm
for assembly structure and one finished item. Han et al.
(2009) and Deroussi and Lemoine (2009) also suggested
particle swarm optimization algorithms for MLLP with an
assembly structure. A maximum–minimum ant colony
optimization algorithm is proposed for serial, assembly,
and general structure problems in the study of Pitakaso

Table 1 Notation for MLLP

Parameters

T Number of periods

N Number of items

dit Customer’s demand for item i at period t

aij Gozinto coefficient

hi Inventory holding cost for item i

si Setup cost for item i

Ii0 Initial inventory for item i

M Big number

Decision variables

Xit Production quantity for item i at period t

Iit Inventory for item i at the end of period t

Yit Binary variable that indicates whether a setup for item i occurs at
period t
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et al. (2007). Moreover, a neighborhood search based
meta-heuristic technique has been developed by Xiao et al.
(2011a) for small- and medium-sized problems (Xiao et al.,
2011b; 2012; 2014). Certain studies focus on collabora-
tions among facilities, such as Fink (2004) and Homberger
and Gehring (2010).
To fill the research gap, our work is the first to integrate

the WCR financing cost into the MLLP problem. The two-
level serial chain case is initially considered in this study,
and we proved that this new problem can be solved in
polynomial time with assumptions.

3 MLLP with WCR financing cost

3.1 WCR model in the multi-level context

Bian et al. (2018) defined WCR as “the minimum financial
resources needed for firms in order to run their business
activities”. More specifically, it is the minimum amount of
financial resources to cover operational costs before
receiving client payments for goods and/or services. The
WCR is mainly caused by a mismatch between cash
inflows (accounts receivable) and cash outflows (accounts
payable) associated with the total production and com-
mercial cycle as presented in Guez (2014). WCR is
measured as the sum of accounts payable, accounts
receivable, and inventories (Hofmann and Kotzab, 2010).
WCR has two components, namely, operating WCR
(OWCR) and non-operating WCR (NOWCR). NOWCR
is generated by the time mismatch of cash flows, which are
related to non-operating activities (debt on investment,
dividends to be collected or to be disbursed, exceptional
events, among others). Given its marginal importance,
NOWCR has no particular economic significance. In
contrast to the recurrent OWCR, NOWCR is difficult to
predict and analyze and is occasionally event-based.
Therefore, we only consider OWCR and regard it as
WCR in this work. The operating cycle corresponds to the
regular and recurring company activities. This regularity
entails permanent financial consequences given that they
are commonly renewed. Considering this dynamic in the
financial analysis is ensured by the notion of financing
need for operation or WCR. Thus, WCR is considered a
financial need caused by company activities, which require
financial resources to cover.
WCR is justified by the following simple principles:
� A receivable (or payable), although acquired and

certain, is not usually paid immediately by the customer (to
the supplier);
� A stock is not sold immediately, and the products

remain in stock for a period before sold.
These different gaps generate a financial need for

companies that should be financed either by the settlement
period negotiated with the supplier, by the working capital,
or by the treasury. Consequently, WCR can be expressed

by the following formula:

WCR ¼ Account receivableþ Inventory value

–Account payable:

Figure 2 illustrates WCR through a small example (Pu.
stands for Purchasing, Pr. stands for Production, I.H.
stands for Inventory Holding, and De. is for Delivery). The
payment delays between the manufacturer and its supplier
and between the end-customer and the manufacturer are
considered in one period. A production decision taken at
period 1 implies the immediate payment of production
costs. Purchasing costs are paid at period 2 due to the
payment delay. Thus, a product is sold at period 2.
Inventory holding costs are paid at periods 1 and 2. The
manufacturer receives the money at period 4 due to
payment delay. Thus, the manufacturer must finance the
logistics costs from periods 1 to 4.

Table 2 presents that the notations of parameters and
decision variables adopted in the two-level case are similar
to that in the single-level model. In such a case, parameter i

Fig. 2 Illustration of WCR in the context of a lot-sizing problem
(Bian et al., 2018).
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can take three values, namely, 0 for the supplier, 1 for the
manufacturer, and 2 for the external customer. Bian et al.
(2018) explained the reason of using the disaggregation
variable.

3.2 Mathematical formulation of WCR

During each period, WCR is composed of the same terms
as the single-level case for covering the purchasing
(purch), setup (setup), production (prod), and inventory
holding (inv) costs. The formulation of WCR in this case is
similar to the previous case to cover the different logistics
costs associated to the disaggregated production quantity,
Xitk (where iÎ{0, 1}, tÎ[0, T], and kÎ[t, T]). For instance,
WCRpurch

itk represents the WCR for financing the purchasing
cost related to Xitk. Without loss of generality, we consider
the beginning of the supplier’s production as the beginning
of the global planning horizon. For this reason, the delivery
delay to site i can postpone its planning in the global
planning horizon and add discount effects to the incoming
and outgoing cash flows of site i. For instance, the first
term in the formulation of the manufacturer’s WCR,

1

ð1þ αiÞLi
, reflects the discount effect of this backward

shift of planning horizon for L1 periods. The WCR of the
supplier and of the manufacturer are expressed by the
following equations, where iÎ{0, 1}, tÎ[0, T], and kÎ[t,
T]. Accordingly, the supplier’s WCRs are written as:

WCRpurch
0tk ¼a0$X0tk$

XT
j¼tþr0

1

ð1þ α0Þj
–

XT
j¼kþL1þr1

1

ð1þ α0Þj
 !

,

(5)

WCRprod
0tk ¼ p0$X0tk$

XkþL1þr1 – 1

j¼t

1

ð1þ α0Þj
, (6)

WCRsetup
0tk ¼ s0$Y0t

Q0t þ 1 – Y0k
$X0tk$

XkþL1þr1 – 1

j¼t

1

ð1þ α0Þj
, (7)

WCRinv
0tk ¼ h0$X0tk$

Xk – 1
w¼t

XkþL1þr1 – 1

j¼w

1

ð1þ α0Þj
: (8)

The manufacturer’s WCRs are formulated as follows:

WCRpurch
1tk ¼ 1

ð1þ α1ÞL1
$a1$X1tk

$
XT

j¼tþr1

1

ð1þ α1Þj
–
XT

j¼kþr2

1

ð1þ α1Þj
 !

, (9)

WCRprod
1tk ¼ 1

ð1þ α1ÞL1
$p1$X1tk$

Xkþr2 – 1

j¼t

1

ð1þ α1Þj
, (10)

WCRsetup
1tk ¼ 1

ð1þ α1ÞL1
$

s1$Y1t
Q1t þ 1 – Y1k

$X1tk$
Xkþr2 – 1

j¼t

1

ð1þ α1Þj
,

(11)

WCRinv
1tk ¼

1

ð1þ α1ÞL1
$h1$X1tk$

Xk – 1
w¼t

Xkþr2 – 1

j¼w

1

ð1þ α1Þj
:

(12)

Combining all these terms, the total WCR for site iÎ{0,
1} is given by the equation below:

WCRi ¼
XT
t¼1

XT
k¼t

ðWCRpurch
itk þWCRprod

itk

þWCRsetup
itk þWCRinv

itk Þ, (13)

and the financing cost of WCRi is thus βi � WCRi.

3.3 Mathematical formulation of objective functions

The objective functions of these approaches mainly depend
on the total logistics and financial costs and the profit of
each site. They can be written in a similar form to the
single-level problem. The formulations of logistics cost for

Table 2 Notations for the 2ULSP(WCR)

Parameters

T Number of periods

dit Customer’s demand for site i at period t

vi Unit product price for item i

ai Unit raw material cost for item i

hi Inventory holding cost for item i

si Fixed setup cost for item i

pi Unit production cost for item i

ri Delay in payment from site i to site i – 1

Li Delivery delay from site i – 1 to site i

αi Discount rate per period of site i

βi Interest rate for financing WCR of site i

Decision variables

Qit Total production quantity at site i in period t

Xitk Production quantity in period t for satisfying (a part of)
demand in period k of site i

Iit Inventory for item i at the end of period t

Yit Binary variable, which indicates whether a setup for
item i occurs at period t

252 Front. Eng. Manag. 2020, 7(2): 248–258



each site are composed of four components over the entire
horizon. These components are computed using the
following equations. Given that lead time is not considered
in this problem (the reason is explained in Section 4), the
logistics costs of the two sites can be expressed as follows:

LCpurch
i ¼ ai

XT
t¼1

Qit

ð1þ αiÞtþri
, (14)

LCprod
i ¼ pi

XT
t¼1

Qit

ð1þ αiÞt
, (15)

LCsetup
i ¼ si

XT
t¼1

Yit
ð1þ αiÞt

, (16)

LCinv
i ¼ hi

XT
t¼1

XT
k¼t

Xk – 1
q¼t

Xitk

ð1þ αiÞq
, (17)

where i = 1 signifies the manufacturer, and i = 0 represents
the supplier. In sequential problem, the manufacturer’s
objective is prioritized, thereby leading to a maximization
problem at S1 level:

Max R1 – ðLC1 þ β1 �WCR1Þ: (18)

This sub-problem can be simply solved using the
approach proposed by Bian et al. (2018). The result is
the input (demand) of the sub-problem at the supplier’s
level for another maximization problem, which can be
resolved through the same approach:

Max R0 – ðLC0 þ β0 �WCR0Þ: (19)

Therefore, we only focus on the centralized problem,
which maximizes the total profit of both sites:

Max
X1
i¼0

½Ri – ðLCi þ βi �WCRiÞ�: (20)

For both approaches, the constraints are similar to that of
the classic MLLP problem.

4 Resolution method for centralized
objective

In a centralized problem, we maximize the global profit of
the two levels. Zangwill (1968) proposed a dynamic
programming-based algorithm to solve the MLLP problem
with serial BOM structure and a computation time of O
(NT4), where N is the number of levels in the problem.
Zangwill (1968) modeled the problem in the form of a
network with nodes presented in Fig. 3. Such a node (i, j)
represents period i in the site at level j. Passing the node,
the vertical arcs represent the production quantity (e.g., Qij

is the production quantity in period i at level j), and the
horizontal arc, Iij, denotes the quantity of products held in
inventory in period i at level j. Therefore, the production
decision at the node (i, j) is considered in determining the
value of Qi(j+ 1), which aims to satisfy the demand of level
j+ 1. This decision is based on the upstream incoming
flows, that is, Qij and I(i – 1)j. Moreover, this decision can
determine the value of the other downstream flow, that is,
Iij. With the values of these arcs, we can calculate the setup
and production costs in the function of Qij ("i, j) and the
inventory holding cost in the function of Iij ("i, j).
The provenances of upstream flows cannot be precisely

traced in this network representation. Therefore, we cannot
obtain the information on the production time of the
products in I(i – 1)j. Consequently, the associated WCR
cannot be correctly measured. Thus, Zangwill’s algorithm
cannot be directly applied to this problem, and a new
concept is required to address this problem. Therefore, we
initially reveal that the ZIO property remains valid for this
two-level problem. Subsequently, the new concept can be
explicitly described in the following. In this centralized
problem, delivery delay is not considered because it can
amplify the discount effect on the cost of the manufacturer
when the delivery delay is theoretically significant.
Consequently, the NPV of the costs and the revenues of
the manufacturer are negligible and have no impact on the
optimization of the two-level plans. Thus, the delivery is
not considered in this approach to avoid this unrealistic
situation.
Theorem: A set of optimal production plans of the

supplier and the manufacturer exists in Ii(t – 1)� Qit = 0, "t,
iÎ{0, 1}, where Iit is the inventory of site i at the end of
period t in the 2ULSP(WCR) problem with associated
assumptions in Section 1.
Proof: See Bian (2017) section 5.4.3.
Algorithm of the centralized approach
Figure 4 indicates that this approach has a Russian doll

type procedure. This procedure is adopted by dynamically
calculating the optimal (sub-)plan of the manufacturer
every time we compute the arc value for the master
problem at the supplier level in the recursion. Therefore,
key elements are the formulations of the arc value of the

Fig. 3 A node and associated arcs in Zangwill’s network
presentation of the multi-level production problem.
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sub-problem and master problem. The former allows us to
integrate the interdependency among levels by including
all costs and revenues that depend on the manufacturer’s
plan. When these arc values are calculated, we can directly
apply the recursion of the single-level algorithm to obtain
the optimal value of the sub-problem. The latter differs
from those in the single-level problem because the optimal
value of the corresponding sub-problem is considered.
� We denote that a sub-problem, associated to the E0

tk of
the master problem, is Subtk;
� The arc value of the master problem between period t

and k is E0
tk ;

� For valuing E0
tk , we must optimally resolve Subtk. The

arc value between t' and k' in Subtk at level 1 is denoted by
E1
tkt0k 0 ;
� The optimal value to reach node k' at level 1 from node

t in Subtk is denoted by Opt1tkk0 ;
� We assume that all required intermediate goods are

delivered at period t by the supplier.
First, in Subtk, the arc value of E1

tkt0k0 consists of the
inventory holding costs (denoted by Inv0tt0k0 ), all WCR
financing costs (WCR0

tkt0k0 ), the revenue (R0
t0k 0) of the

supplier, and all logistics and financial costs of the
manufacturer for the production of dt'k' in period t'. The
four indices of WCR0

tkt0k 0 are all necessary, given that
WCR0

tkt0k0 presents the WCR of the supplier’s logistic cost
that depends on the production of dt'k'. In addition, t and k
are used to link this calculation to the associated sub-
problem Subtk. Particularly, all products manufactured at
period t by the supplier uniformly share the setup cost.
With this unit setup cost, the WCR of setup cost is
computed. The quantity of these products is found as dtk in
Eq. (22). Considering that we calculate E1

tkt0k0 , the

intermediate goods to satisfy the external demand from
dt' to dk' – 1 are already produced by the supplier at period t
and can be delivered to the manufacturer at period t'.
Furthermore, based on the ZIO property for the
2ULSP(WCR) problem, the production quantity can only be
the sum of demands in the following periods. Thus, the
components of E1

tkt0k0 can be written as follows:

Inv0ttíkí¼
Xt#– 1
t¼t#

Xk#– 1
q¼t#

h00ldq, (21)

WCR0
tktíkí¼ a0$

Xk#– 1
q¼t#

dq
XT

j¼tþr0

1

ð1þ α0Þj
–
XT

j¼t#þr1

1

ð1þ α0Þj

0
@

1
A

þ p0$
Xk#– 1
q¼t#

dq$
Xt#þr1 – 1

j¼t

1

ð1þ α0Þj

þ s0
dtk

$
Xk#– 1
q¼t#

dq$
Xt#þr1 – 1

j¼t

1

ð1þ α0Þj

þ h0$
Xk#– 1
q¼t#

dq$
Xt#– 1
w¼t

Xt#þr1 – 1

j¼w

1

ð1þ α0Þj
,

(22)

R0
tíkí¼ v00ðtíþr1Þ

Xk#– 1
l¼t#

dl: (23)

Revenue R0
t0k0 only depends on the manufacturer’s

production plan to produce dt'k' at period t'. Thus, the

Fig. 4 Centralized approach for 2ULSP(WCR).
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supplier can receive the payment in period t' + r1.
Moreover, the two other components, such as the logistics
and financial costs of the manufacturer, LC1

t0k0 and
β1 �WCR1

t0k0 , are directly modeled with the proposed
WCR model in Section 3. To simplify the formula, we
denote:

ajit ¼ ai$
1

ð1þ αjÞt
, (24)

and other cost parameters in the same way.

LC1
tíkí¼

�
a11ðtíþr1Þ þ p11tí

� Xk#– 1
l¼t#

dl þ s11tí

þ
Xk#– 1
l¼t#

dl
Xl – 1
q¼t#

h11q, (25)

WCR1
tíkí¼

Xk#– 1
l¼t#

dl
XT
j¼t#

a11ðjþr1Þ –
XT
j¼l

a11ðjþr2Þ

0
@

1
A

2
4

þ
Xlþr2 – 1

j¼t#

p11j þ
Xlþr2 – 1

j¼t#

s11j
dt#k#

þ
Xl – 1
q¼t#

Xlþr2 – 1

j¼q

h11j  35: (26)

Combining the holding and financial costs of the
supplier and all costs of the manufacturer, the formulation
of E1

tkt0k 0 is written as follows:

E1
tktíkí¼ Inv0ttíkíþ β0WCR0

tktíkí–R
0
tíkíþ LC1

tíkí

þ β1WCR1
tík0 : (27)

Using this formulation, we can compute the optimal
value of sub-problem, Opt1tkk0 , by adopting a recursion
compared with the one in the single-level algorithm, which
is:

Opt1tkkí¼ min
t#2 ½t, k#– 1�

fOpt1tktíþ E1
tktíkíg: (28)

The values of Opt1tkt are set to zero. With this recursion, we
sequentially compute the optimal value of Opt1tkðtþ1Þ, then
Opt1tkðtþ2Þ,…, until Opt1tkk . Opt

1
tkk is the optimal value of

Subtk, which is needed to determine the value of E0
tk in the

master problem.
Second, in the recursion of the master problem, we

calculate the arc values at the supplier level. Thus, E0
tk

includes the costs that are independent of the optimal plan
of the corresponding sub-problem (purchasing, setup, and
production costs) and the optimal value of the correspond-
ing sub-problem. Therefore, the arc value at supplier level
is written as follows:

E1
tk ¼

�
a
0
0ðtþrf Þ þ p

0
0t

� Xk – 1
l¼t

dl þ s
0
0t þ Opt1tkk : (29)

With all the elements mentioned above, the final
recursion is formulated as below, where Costt represents
the minimal total cost of both sites minus the revenue of the
supplier. Moreover, the beginning of the planning horizon
is set to zero. Thus, Cost0 = 0.

Costt ¼ min
j2 ½0, t – 1�

fCostj þ E0
jtg: (30)

To obtain the optimal value of the problem, we should
sequentially compute Costt from t = 1 to t = T. The optimal
value is CostT, which can be obtained in O(T4). The
corresponding pseudo-code is given in Algorithm 1.

5 Numerical tests for the 2ULSP(WCR) model

5.1 Optimal production planning comparing both
approaches

In this section, we show the differences between results
(optimal production plans and different costs) obtained by
the classic MLLP and 2ULSP(WCR) models with sequential
and centralized approaches. These differences illustrate the
influence of considering the financing cost of OWCR on an
optimal production program at both levels. In the
following tests, the optimal program using the traditional
MLLP model for two-level problem is denoted by PiM

opt (i =
0 for the supplier’s plan, and i = 1 for the manufacturer’s
plan). Moreover, PiS

opt and PiC
opt represent the optimal

programs calculated by 2ULSP(WCR) model with the

Algorithm 1 Solving 2ULSP(WCR)

Require: All parameter values

for k – 1 to T do

for t = 0 to k – 1 do

for l = t+ 1 to k do

for q = t to k – 1 do

if Opt1tkl > Opt1tkq þ E1
tkql then

Opt1tkl > Opt1tkq þ E1
tkql

end if

end for

end for

if Cost½k� > Cost½t� þ E0
tk then

Cost½k� ¼ Cost½t� þ E0
tk

end if

end for

end for
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sequential and centralized approaches (of the supplier
(with i = 0) and of the manufacturer (with i = 1)),
respectively. The tests are organized to compare among
PiM
opt, P

iS
opt and PiC

opt with the same set of parameter values
provided to show the differences in the production
programs. For the following tests, we adopt the
demand of one instance of Dellaert and Jeunet (2000)
(ph2in01st1de01, demand 1) over 24 periods. Table 3
indicates the values of other parameters (S stands for
Supplier, and M stands for Manufacturer).

We initially compare the optimal programs, which
are separately calculated by the classic MLLP and
2ULSP(WCR) models with sequential and centralized
approaches. Figures 5 and 6 illustrate the differences

among PiM
opt, P

iS
opt and PiC

opt (with i = 0, 1), respectively. As
mentioned above, to compare with the same parameters
considered in the classic MLLP model, we thus set ai = pi =
vi = 0 with i = 0, 1, and r0 = 0 to focus on the setup and
inventory holding costs. Moreover, given that the
purchasing cost is not considered in test 1, the payment
delay for raw material r0 is thus irrelevant in this test. We
also compare the total number of products held in the
inventory of both levels. Table 4 indicates the number of
setups. As a result, we observe the following:
� Based on the plans obtained by the MLLP model, we

prefer to hold the finished products in the manufacturer
instead of holding semi-finished products in the supplier.
This finding is explained by the fact that the setup cost of
the supplier is more expensive than that of the manufac-
turer, and the difference of unit holding cost between the
two levels is relatively small. Quasi-synchronized plans of
two levels are shown in Figs. 5 and 6, which allows the
reduction of the inventory level in the supplier.
� Comparing the plans without and with the financial

aspects, we consider that in 2ULSP(WCR) problem, the
number of setups is generally increased (from 5 to 6 at the
supplier level and from 6 to 10 or 8 at the manufacturer
level). This finding confirms the observation in the tests for

Table 3 Parameter values for the 24-period instance

Parameter S M Parameter S M

vi 35 50 hi 1 2

pi 3 3 αi 0.05 0.01

si 800 600 βi 0.03 0.03

ai 3 35 r2 = r1 = 2, r0 = 1

Fig. 5 Comparison of the optimal production programs of the manufacturer with different approaches.

Fig. 6 Comparison of the optimal production programs of the supplier through different approaches.
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the single-level problem, which indicates the interest to
produce more frequently with a small lot size to reduce
financial consequences.
� On the one hand, using the sequential approach can

significantly reduce the manufacturer’s inventory level for
its prioritized optimization objective. On the other hand,
the centralized approach balances the inventory levels
between the two levels for a global optimization objective.

5.2 WCR comparison with varying delays in payment in a
centralized case

In the following paragraphs, we test the influence of
payment delays r2 and r1 on the two-level plans in a
centralized case. Table 3 indicates the parameter values.
We change β0 and β1 to 0.05. In each series of test, the
considered delays r1 and r2 vary from 2 to 18 with a
step of 8.
Figure 7 illustrates the setup numbers with varying r1

and r2 in the centralized approach. The results indicate that

the variation of delays in payment has an additional effect
on downstream companies. The increase in supplier’s
profit is observed in the centralized approach. Moreover,
varying r1 results in an increased total cost of the
manufacturer for the centralized objective. Table 5 reveals
the significant increases of the objective value (OV) and the
total cost of manufacturer (TC1) with varying r2 and the
considerable decreases of these terms with varying r1.
Therefore, the strategies to improve OV are to prolong r2
and reduce r1 as much as possible (e.g., by adopting new
technologies, such as digital supply chain and 5G).

6 Conclusions

In this study, we initially extend the previous single-level
problem to a supplier–manufacturer two-level problem
with a serial chain structure. After establishing the
associated WCR model for this case, the corresponding
mathematical model of this problem is developed,
considering the WCR financial cost of the two levels.
For the solution procedure, the sequential approach, which
prioritizes the maximization of the manufacturer’s profit
than the supplier’s, and the centralized approach, with a
global profit maximization objective, are proposed. The
sequential approach certainly consists a direct application
of the single-level algorithm at two levels. In addition, the
ZIO property remains valid with certain assumptions for
the centralized approach. This property allows us to
develop a revised dynamic programming-based algorithm,
wherein the interdependency among levels is considered
by the arc valuation. The observations obtained in the tests
of the single-level problem are confirmed through the
numerical tests. Furthermore, other observations are
related to the interdependency among levels.

Table 4 Comparison of the total products held in inventory over time

and of the number of setups

Approaches Supplier Manufacturer

Total products held (in unit/period)

MLLP 670 3085

Sequential 1840 1230

Centralized 1005 2065

Number of setups

MLLP 5 6

Sequential 6 10

Centralized 6 8

Table 5 Consequences of varying delays in payment on financial terms

Varying parameter DOV DTC1 DProfit0

r2 59979.8 60742.7 762.9

r1 -31035.1 -61904.4 -30869.3

Fig. 7 Comparison of production plan with varying delays in
payment in the centralized case.
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