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Abstract Due to the characteristics of hesitant fuzzy sets
(HFSs), one hesitant fuzzy element (HFE), which is the
basic component of HFSs, can express the evaluation
values of multiple decision makers (DMs) on the same
alternative under a certain attribute. Thus, the HFS has its
unique advantages in group decision making (GDM).
Based on which, many scholars have conducted in-depth
research on the applications of HFSs in GDM. We have
viewed lots of relevant literature and divided the existing
studies into three categories: theory, support and methods.
In this paper, we elaborate on hesitant fuzzy GDM from
these three aspects. The first aspect is mainly about the
introduction of HFSs, HFPRs and some hesitant fuzzy
aggregation operators. The second aspect describes the
consensus process under hesitant fuzzy environment,
which is an important support for a complete decision-
making process. In the third aspect, we introduce seven
hesitant fuzzy GDM approaches, which can be applied in
GDM under different decision-making conditions. Finally,
we summarize the research status of hesitant fuzzy GDM
and put forward some directions of future research.

Keywords hesitant fuzzy set, hesitant fuzzy preference
relation, group decision-making

1 Introduction

GDM is an interdisciplinary subject integrating mathe-
matics, economics, social psychology, behavioral science,
management science and many other disciplines. An
important characteristic of GDM problems is multiple
complexities: (1) There often exist several conflicting goals
in GDM problems; (2) DMs often have different

preferences for attributes and alternatives. Thus, in the
GDM process, contradictions and conflicts become
inevitable problems. Therefore, the GDM process is
usually a process of interactively seeking satisfactory
decision-making results.
Due to the complexity of attributes, the members of

decision-making groups often have different social,
economic, cultural backgrounds, and have specific knowl-
edge structures and behavioral characteristics. These will
be reflected in the DMs’ preferences for the alternatives.
Traditional decision-making methods usually assume that
the DMs are completely rational, that is to say, the
decision-making behaviors of the DMs must be based on
the completeness of knowledge and the consistency of
values or preferences. This is definitely impossible. In
practical decision-making processes, due to inherent
physiological conditions and different educational back-
grounds, the DMs cannot have complete knowledge and
consistent values or preferences. That is to say, the DMs
are always boundedly rational. They can only give choices
or assessments that satisfy themselves, but not the same as
others, not the optimal solution.
The above facts tell us that the GDM problems often

have strong uncertainty, which is represented as fuzziness
within the decision-making group. For example, the
limitations of the knowledge of some experts and the
different preferences among different experts will make the
evaluation information given by the decision-making
group a certain degree of fuzziness. Therefore, in today’s
environment, the GDM methods pay more and more
attention to the fuzzy information contained in the GDM
problems.
Specifically, when an expert gives an evaluation value

for a program, he/she is likely to hesitate in a few values.
Moreover, when more than one expert evaluates an
alternative, it is very possible for them to have different
opinions. This is not because of the error in the initial
decision-making information, but because those evaluation
values should be represented by a set of several possible
values.
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In 2010, Torra (2010) proposed the concept of HFS. The
basic components of HFSs are HFEs, which is consisted of
several possible values between 0 and 1. Therefore,
compared to other extension forms of fuzzy sets, the
HFS can describe the hesitant information of the DMs
more comprehensively and meticulously. Then, Xia and
Xu (2011) gave the mathematical expression of HFS and
defined the concept of HFE. Since then, HFS theory has
developed rapidly and has been widely used in various
decision-making processes, including the GDM field. In
fact, the characteristics of HFEs are very compatible with
the GDM problems. For example, when the evaluation
values given by experts are different, we can integrate them
into an HFE. Thus, several isolated evaluation values
become one with the HFE form. This makes many single
decision-making approaches be applied to GDM (espe-
cially multi-attribute group decision-making (MAGDM))
problems. In this way, the calculation processes of lots of
GDM problems are effectively simplified.
We searched the Internet for a large number of

documents on the scope of applications of HFS in GDM
and selected dozens of them which are more important. It
can be clearly seen that the scope of applications of HFS in
GDM is mainly divided into the following three parts:
(1) The hesitant fuzzy sets and hesitant fuzzy preference

relations (HFPRs);
(2) A decision support for GDM— the consensus

processes under hesitant fuzzy environments;
(3) The hesitant fuzzy MAGDM methods.
This paper summarizes the applications of HFEs in

GDM from the above three perspectives. In Section 2, we
introduce the concepts, properties, some operations and
typical aggregation operators of HFSs (HFEs) and three
kinds of HFPRs. Section 3 introduces the consensus
process under hesitant fuzzy environment, which provides
an important support for the solutions of hesitant fuzzy
GDM problems. Section 4 introduces several hesitant
fuzzy MAGDM methods, which provide some practical
ways to solve the hesitant fuzzy MAGDM problems under
different conditions. The above three sections are the main
lines of the paper, which basically cover the whole process
of solving a hesitant fuzzy GDM problem. Moreover, the
methods in them are also more fundamental and commonly
used. The last section supplements the contents of the
previous sections and introduces some scattered methods
for solving hesitant fuzzy GDM problems. Besides, we put
forward some directions of the applications of HFS theory
in GDM.

2 Hesitant fuzzy aggregation operators and
preference relations

As mentioned earlier, HFSs can be applied to many
decision-making circumstances, especially the MAGDM

problems. In order to get the best alternative in a MAGDM
problem, the scholars have proposed two common ways
(Xia and Xu, 2011b): (1) Integrate all the DMs’ opinions
on a certain alternative for each attribute, and then integrate
the evaluation values of all attributes of the alternative; (2)
For each alternative, we integrate the evaluation values of
all attributes given by a certain DM, and then integrate the
opinions of all DMs with respect to each alternative.
Regardless of the method, hesitant fuzzy aggregation
operators are an important tool. In this section, we
introduce the concepts and some properties of HFSs and
HFEs and the existing hesitant fuzzy aggregation opera-
tors.

2.1 Hesitant fuzzy elements

Definition 1 (Torra, 2010). Let X be a fixed set, then, a
hesitant fuzzy set on X is a function that maps each element
of X to a subset of [0,1].
For easy understanding, Xia and Xu (2011b) gave the

mathematical expression of the HFS as follows:

A ¼ fhx,hAðxÞijx 2 Xg,
where hAðxÞ is a set of values in [0,1], which expresses the
membership degrees to which an element x is attached to a
set A. h ¼ hAðxÞ ¼ fγ1,γ2,:::,γjhjg is called the hesitant
fuzzy element, where γiði ¼ 1,2,:::,jhjÞ are the terms of h,
and jhj is the number of terms in h. We useQ to express the
set of all HFEs.
The following definition gives the concepts of score

values and deviation degrees of HFEs.
Definition 2 (Xia and Xu, 2011b; Chen et al.,

2013a). Suppose that h is an HFE, then sðhÞ ¼
1

jhj
X

γ2hγ is called the score value of h. �ðhÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jhj
X

γ2h
�
γ – sðhÞ

�2r
is called the deviation degree of h.

Based on the above two concepts, a method to compare
the sizes of two HFEs can be obtained:
Suppose that h1 and h2 are two HFEs, s(h1) and s(h2)

are the score values of h1 and h2, respecively. �ðh1Þ and
are the deviation degrees of h1 and h2, respectively. Then,
(1) If sðh1Þ < sðh2Þ, then h1< h2;
(2) If sðh1Þ > sðh2Þ, then h1> h2;
(3) If sðh1Þ ¼ sðh2Þ, then

(i) If �ðh1Þ < �ðh2Þ, then h1> h2;
(ii) If �ðh1Þ > �ðh2Þ, then h1< h2;
(iii) If �ðh1Þ ¼ �ðh2Þ, then h1 = h2.

Some operations and properties of HFEs can be
introduced as follows:
Definition 3 (Torra, 2010; Xia and Xu, 2011b; Liao and

Xu, 2014b). Let h, h1 and h2 be three HFEs, l>0 is a real
number. Then,
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(1) hc ¼ [ γ2hf1 – γg;

(2) h1[ h2 ¼ [ γ12h1,γ22h2maxfγ1,γ2g;

(3) h1 \ h2 ¼ [ γ12h1,γ22h2minfγ1,γ2g;

(4) hl ¼ [ γ2hγ
l;

(5) lh ¼ [ γ2hf1 – ð1 – γÞlg;

(6) h1 � h2 ¼ [ γ12h1,γ22h2fγ1 þ γ2 – γ1γ2g;

(7) h1 � h2 ¼ [ γ12h1,γ22h2fγ1γ2g;

(8) h1 � h2 ¼ [ γ12h1,γ22h2fγg,

where γ ¼
γ1 – γ2
1 – γ2

,γ1³γ2,γ2≠1

0,   others

8><
>: ;

(9) h1 � h2 ¼ [ γ12h1,γ22h2fγg,

where γ ¼
γ1
γ2
,γ1£γ2,γ2≠0

1,   others

8><
>: :

Next, we briefly introduce some properties of HFEs.
Property 1 (Xia and Xu, 2011b; Zhu et al., 2012). For

any three HFEs h, h1 and h2, l>0, the following equations
hold:

(1) hc1[ hc2 ¼ ðh1 \ h2Þc,

hc1 \ hc2 ¼ ðh1[ h2Þc;

(2) ðhcÞl ¼ ðlhÞc,

lðhÞc ¼ ðhlÞc;

(3) hc1 � hc2 ¼ ðh1 � h2Þc,

hc1 � hc2 ¼ ðh1 � h2Þc;

(4) lðh1 � h2Þ ¼ lh1 � lh2,

ðh1 � h2Þl ¼ hl1 � hl2;

(5) ðh1 � h2Þ � h3 ¼ h1 � ðh2 � h3Þ,

ðh1 � h2Þ � h3 ¼ h1 � ðh2 � h3Þ:

Property 2 (Liao and Xu, 2014b). For any four HFEs

h ¼ fγljl ¼ 1,2,:::,jhjg, h1 ¼ fγi1ji ¼ 1,2,:::,jh1jg, h2 ¼
fγj2jj ¼ 1,2,:::,jh2jg and h3 ¼ fγk3jk ¼ 1,2,:::,jh3jg, l,l1,
l2>0 and l1³l2. Then, the following equations hold:

(1) l1h� l2h ¼ ðl1 – l2Þh,

when γl≠1,

hl1 � hl2 ¼ hðl1 – l2Þ,

when γl≠0;

(2) hc1 � hc2 ¼ ðh1 � h2Þc,

hc1 � hc2 ¼ ðh1 � h2Þc;

(3) ðh1 � h2Þ � h2 ¼ h1,

when γi1³γj2,

and γj2≠1,

ðh1 � h2Þ � h2 ¼ h1,

when γi1£γj2,

and γj2≠0;

(4) lðh1 � h2Þ ¼ lh1 � lh2,

when γi1³γj2,

and γj2≠1,

ðh1 � h2Þl ¼ hl1 � hl2,

when γi1£γj2,

and γj2≠0;

(5) h1 � h2 � h3 ¼ h1 � h3 � h2,

when γ1³γ2,γ1³γ3,γ2≠1,γ3≠1,

and γ1 – γ2 – γ3 þ γ2γ3³0;

(6) h1 � h2 � h3 ¼ h1 � h3 � h2,

when γ1£γ2γ3,γ2≠0,γ3≠0;

(7) h1 � h2 � h3 ¼ h1 � ðh2 � h3Þ,

when γ1³γ2,γ1³γ3,γ2≠1,γ3≠1,
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and γ1 – γ2 – γ3 þ γ2γ3³0;

(8) h1 � h2 � h3 ¼ h1 � ðh2 � h3Þ,

when γ1£γ2γ3,γ2≠0,γ3≠0:
Most of the above contents can be extended to interval-

valued hesitant fuzzy environments (Chen et al., 2013b).

2.2 Hesitant fuzzy aggregation operators

In this section, we recall some typical aggregation
operators.
Definition 4 (Xia and Xu, 2011b). Let hiði ¼ 1,2,:::,nÞ be a
set of HFEs, and ω ¼ ðω1,ω2,:::ωnÞTð0£ωi£1 andXn

i¼1
ωi ¼ 1Þ be the weight vector of them. Then,

(1) The hesitant fuzzy weighted average (HFWA)
operator is a mapping from Θn to Q with the following
form:

HFWAðh1,h2,:::,hnÞ ¼ �n
i¼1

ωihi

¼ [ γi 2 hi 1 –∏
n

i¼1
ð1 – γiÞωi

� �
:

(2) The hesitant fuzzy weighted geometric (HFWG)
operator is a mapping from Θn to Q with the following
form:

HFWGðh1,h2,:::,hnÞ ¼ �n
i¼1

hi
ωi ¼ [ γi 2 hi ð1 –∏

n

i¼1
γiÞωi

� �
:

(3) The generalized hesitant fuzzy weighted average
(GHFWA) operator is a mapping from Θn to Q with the
following form:

GHFWAlðh1,h2,:::,hnÞ ¼ �n
i¼1

ðωihi
lÞ1=l

¼ [ γi 2 hi 1 –∏
n

i¼1
ð1 – γli Þωi

� �1=l
( )

,

where l>0 is a constant. Particularly, if l ¼ 1, then the
GHFWA operator reduces to the HFWA operator.
(4) The generalized hesitant fuzzy weighted geometric

(GHFWG) operator is a mapping from Θn to Q with the
following form:

GHFWGlðh1,h2,:::,hnÞ ¼
1

l
�n
i¼1

ðlhiÞωi

� �

¼ [ γi 2 hi 1 – 1 –∏
n

i¼1

�
1 – ð1 – γiÞl

�ωi

� �1=l
( )

,

where l>0 is a constant. Particularly, if l ¼ 1, then the
GHFWG operator reduces to the HFWG operator.

Property 3 (Xia and Xu, 2011b). Let hiði ¼ 1,2,:::,nÞ
be a set of HFEs, and ω ¼ ðω1,ω2,:::ωnÞTð0£ωi£1andXn

i¼1
ωi ¼ 1Þ be the weight vector of them. Then, the

following three inequalities hold:
(1) HFWGðh1,h2,:::,hnÞ£HFWAðh1,h2,:::,hnÞ;
(2) HFWGðh1,h2,:::,hnÞ£GHFWAlðh1,h2,:::,hnÞ;
(3) GHFWGlðh1,h2,:::,hnÞ£HFWAðh1,h2,:::,hnÞ:
Property 4 (Xia and Xu, 2011b). Let hi ¼ ði ¼ 1,2,:::,nÞ

be a set of HFEs, and ω ¼ ðω1,ω2,:::,ωnÞTð0£ωi£1Þ and
Σn
i¼1ωi ¼ 1 be the weight vector of them. Then,

(1) �n
i¼1ωih

c
i ¼ �n

i¼1h
ωi
ið Þc,

�n
i¼1ðhci Þωi ¼ �n

i¼1ωihið Þc;

(2) �n
i¼1ωiðhci Þl

	 
1=l ¼ 1

l
�n

i¼1ðlhiÞωið Þ
� �c

,

1

l
�n
i¼1

ðlhci Þωi

� �
¼ �n

i¼1
ðωih

l
i Þ

� �1=l
 !c

:

Below we introduce some aggregation operators based
on ordered aggregation operators:
Definition 5 (Xia and Xu, 2011b). Let hi ¼ ði ¼

1,2,:::,nÞ be a set of HFEs, h�ðiÞ be the ith largest one of

them, and ω ¼ ðω1,ω2,:::,ωnÞTð0£ωi£1Þ and Σn
i¼1ωi ¼

1 be the vector associated with the integration. Then,
(1) The hesitant fuzzy ordered weighted average

(HFOWA) operator is a mapping from to Q with the
following form:

HFOWAðh1,h2,:::,hnÞ ¼ �n
i¼1

ωih�ðiÞ

¼ [ γ�ðiÞ 2 h�ðiÞ 1 –∏
n

i¼1

�
1 – γ�ðiÞ

�ωi

� �
:

(2) The hesitant fuzzy ordered weighted geometric
(HFOWG) operator is a mapping from to Q with the
following form:

HFOWGðh1,h2,:::,hnÞ ¼ �n
i¼1

h�ðiÞ
ωi

¼ [ γ�ðiÞ 2 h�ðiÞ 1 –∏
n

i¼1
γ�ðiÞ

ωi

� �
,

(3) The generalized hesitant fuzzy ordered weighted
average (GHFOWA) operator is a mapping from Θn to Q
with the following form:

GHFOWAlðh1,h2,:::,hnÞ ¼ �n
i¼1

�
ωih�ðiÞ

l
�1=l

¼ [ γi 2 h�ðiÞ 1 –∏
n

i¼1

�
1 – γl�ðiÞ

�ωi

� �1=l
( )

,
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where l>0 is a constant. Particularly, if l ¼ 1, then the
GHFOWA operator reduces to the HFOWA operator.
(4) The generalized hesitant fuzzy ordered weighted

geometric (GHFOWG) operator is a mapping fromΘn toQ
with the following form:

GHFOWGlðh1,h2,:::,hnÞ ¼
1

l
�n
i¼1

�
lh�ðiÞ

�ωi

� �

¼ [ γ�ðiÞ 2 h�ðiÞ 1 – 1 –∏
n

i¼1

�
1 –
�
1 – γ�ðiÞ

�l�ωi

� �1=l
( )

,

where l>0 is a constant. Particularly, if l ¼ 1, then the
GHFOWG operator reduces to the HFOWG operator.
Considering both the importance of the HFEs them-

selves and the importance of the orderly position of the
HFEs, we introduce the following four hesitant fuzzy
aggregation operators:
Definition 6 (Xia and Xu, 2011b). Let hi ¼ ði ¼

1,2,:::,nÞ be a set of HFEs, w ¼ ðw1,w2,:::wnÞTð0£wi£1

and
Xn

i¼1
wi ¼ 1Þ be the weight vector of them, and ω ¼

ðω1,ω2,:::ωnÞTð0£ωi£1 and
Xn

i¼1
ωi ¼ 1Þ be the vec-

tor associated with the integration. Then,
(1) The hesitant fuzzy hybrid average (HFHA) operator

is a mapping from to Q with the following form:

HFHAðh1,h2,:::,hnÞ ¼ �n
i¼1

ωi
_h�ðiÞ

¼ [ _γ�ðiÞ 2 _h�ðiÞ
1 –∏

n

i¼1
1 – _γ�ðiÞ
	 
ωi

� �
,

where _h�ðiÞ is the ith largest one in _hk ¼ nwkhkðk ¼
1,2,:::,nÞ , and n is the balance factor.
(2) The hesitant fuzzy hybrid geometric (HFHG)

operator is a mapping from Θn to Q with the following
form:

HFHGðh1,h2,:::,hnÞ ¼ �n
i¼1

€h�ðiÞ
ωi

¼ [ €γ�ðiÞ 2 €h�ðiÞ
1 –∏

n

i¼1
€γ�ðiÞ

ωi

� �
,

where €h�ðiÞ is the ith largest one in _hk ¼ hnwk
k ðk ¼

1,2,:::,nÞ.
(3) The generalized hesitant fuzzy hybrid average

(GHFHA) operator is a mapping from Θn to Q with the
following form:

GHFHAðh1,h2,:::,hnÞ ¼ �n
i¼1

ωi
_h�ðiÞ

l
	 
1=l

¼ [ _γ i 2 _h�ðiÞ
1 –∏

n

i¼1
1 – _γl�ðiÞ
� �ωi

� �1=l
( )

,

where l>0 is a constant, _h�ðiÞ is the ith largest one in.
_hk ¼ nwkhk ðk ¼ 1,2,:::,nÞ Particularly, if l ¼ 1, then the
GHFHA operator reduces to the HFHA operator.
(4) The generalized hesitant fuzzy hybrid geometric

(GHFHG) operator is a mapping from to Q with the
following form:

GHFHGlðh1,h2,:::,hnÞ ¼
1

l
�n
i¼1

l€h�ðiÞ
	 
ωi

� �

¼ [ €γ�ðiÞ 2 €h�ðiÞ
1 – 1 –∏

n

i¼1
1 – 1 –€γ�ðiÞ
	 
l� �ωi

� �1=l
( )

,

where l>0 is a constant, €h�ðiÞ is the ith largest one in
_hk ¼ hnwk

k ðk ¼ 1,2,:::,nÞ. Particularly, if l ¼ 1, then the
GHFHG operator reduces to the HFHG operator.
The above-mentioned are some basic and widely used

hesitant fuzzy aggregation operators. In addition to these,
the scholars have proposed many other hesitant fuzzy
aggregation operators that are more complex and can be
applied to more complicated practical decision-making
problems. We will not repeat them here for details. As an
important part of the research of HFSs, they will be briefly
introduced in Section 5.

2.3 Hesitant fuzzy preference relations

Preference relations are an important part of GDM.
Sometimes, in a GDM problem, making specific evalua-
tions of all alternatives is difficult. But comparing every
two alternatives is relatively simple. At this point, we can
use the experts’ preferences between the objects (alter-
natives or attributes) to rank all the objects. This is a
general idea that we use the preference relations to solve
the GDM problems. As a product of HFSs and preference
relations, hesitant fuzzy preference relations (HFPRs) are
the representative tool of HFSs applied to GDM. In fact,
since the HFPR was introduced, some of its extensions
have been proposed. Such as interval-valued hesitant fuzzy
preference relation (IVHFPR), probabilistic hesitant fuzzy
preference relation (P-HFPR) and probabilistic interval-
valued hesitant fuzzy preference relation (P-IVHFPR).
They are also widely used in the GDM problems. In this
section, some concepts and properties of the HFPR and its
extensions will be summarized.
Definition 7 (Xia and Xu, 2013). Let X ¼ fx1,x2,:::,xng

be a fixed set, then a hesitant fuzzy preference relation can
be represented by a matrix H ¼ ðhijÞn�n 2 X � X , where

hij ¼ fγlij,l ¼ 1,2,:::,jhijjg is an HFE which expresses all
possible preference degrees of the alternative xi over xj
given by the DMs. Moreover, H should satisfy the
conditions below:
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γ�ðlÞij þ γ
�ðjhjij – lþ1Þ
ji ¼ 1,   γii ¼ 0:5,     jhijj ¼ jhjij,i,j

¼ 1,2,:::,n,

where all γði < j ¼ 1,2,:::,nÞ are ranked in ascending order
and all γijði > j ¼ 1,2,:::,nÞ are ranked in descending order.
γ�ðlÞij denotes the lth value in hij, l ¼ 1,2,:::,jhijj , and jhijj is
the number of elements in hij .
The first condition is reasonable. If the preference degree

of the alternative xi over xj is γ , then the preference degree
of the alternative xj over xi should be 1 – γ . On the other
hand, in the hesitant fuzzy circumstance, the sum of the lth

smallest value in hij and the lth largest value in hji should
be 1. The second condition is easy to understand. The
preference degree of the alternative xi over itself should be
0.5. The third condition means that the length of hij and hji
should be the same. In particular, if for every hij ,i , j =
1,2,...,n, there is only one value in it. Then, the HFPR
reduces to an FPR.
Example 1. Suppose that lots of experts compare three

alternatives in pairs. Experts give the preference degree of
the alternative x1 over x2. Some experts give 0.2 (then the
preference degree of x2 over x1 given by them should be
1 – 0.2 = 0.8); some of them give 0.25 (then the preference
degree of x2 over x1 given by them should be 1 – 0.25 =
0.75); the others give 0.3 (then the preference degree of x2
over x1 given by them should be 1 – 0.3 = 0.7). Thus, the
preference information of the alternative x1 over x2 can be
expressed as an HFE h12 ¼ f0:2,0:25,0:3g, and the
preference information of the alternative x2 over x1 can
be expressed as an HFE h21 ¼ f0:7,0:75,0:8g. In a similar
way, according to the preference information given by the
experts, two HFEs h13 ¼ f0:4,0:5g and h23 ¼ f0:55,0:6g
can be obtained, then we can get h31 ¼ f0:5,0:6g and
h32 ¼ f0:4,0:45g. Based on the above information, an
HFPR R ¼ ðhijÞn�n 2 X � X can be obtained as Table 1.

The matrix

H ¼
f0:5g f0:2,0:25,0:3g f0:4,0:5g

f0:7,0:75,0:8g f0:5g f0:55,0:6g
f0:5,0:6g f0:4,0:45g f0:5g

0
B@

1
CA,

is the preference matrix of the HFPR H.
Similarly, the hesitant multiplicative preference relation

(HMPR) can be discussed as follows:
Definition 8 (Xia and Xu, 2013). Let X ¼ fx1,x2,:::,xng

be a fixed set, then a hesitant multiplicative preference

relation can be represented by a matrix H ¼ ðhijÞn�n 2
X � X , where hij ¼ fγlij,l ¼ 1,2,:::,jhijjg is an HFE which
expresses all possible preference degrees of the alternative
xi over xj given by the DMs. Moreover, H should satisfy
the conditions below:

γ�ðlÞij $γ
�ðjhjij – lþ1Þ
ji ¼ 1,   γii ¼ 1,     jhijj ¼ jhjij,i,j ¼ 1,2,:::,n,

where all γijði,j ¼ 1,2,:::,nÞ are ranked in ascending order,

γ�ðlÞij denotes the lth smallest value in hij, l ¼ 1,2,:::,jhijj and
jhijj is the number of elements in hij.
In fact, if the preference degree of the alternative xi over

xj is γ, then the preference degree of the alternative xj over
xi should be 1=γ. Thus, in the hesitant multiplicative
circumstance, the product of the lth smallest value in hij and
the lth largest value in hji should be 1. The second condition
means that the preference degree of the alternative xi over
itself should be 1. The third condition stipulates that the
lengths of hij and hji should be the same.
Example 2. Suppose that lots of experts compare three

alternatives in pairs. Experts give the preference degree of
the alternative x1 over x2 with hesitant multiplicative
information. Some experts give 1/3 (then the preference
degree of x2 over x1 given by them should be 1/(1/3)= 3);
some of them give 1/2 (then the preference degree of x2
over x1 given by them should be 1/(1/2)= 2); the others
give 2/3 (then the preference degree of x2 over x1 given by
them should be 1/(2/3)= 3/2). Thus, the preference
information of the alternative x1 over x2 can be expressed
as an HFE h12 ¼ f1=3,1=2,2=3g , and the preference
information of the alternative x2 over x1 can be expressed
as an HFE h21 ¼ f3=2,2,3g. In a similar way, according to
the preference information given by the experts, two HFEs
h13 ¼ f3=4,4,1g and h23 ¼ f5=4,5=3g can be obtained,
then we can get h31 ¼ f1,4=3g and h32 ¼ f3=5,4=5g.
Based on the above information, an HMPR R ¼ ðhijÞn�n 2
X � X can be obtained as Table 2.

The matrix

H ¼
f1g f1=3,1=2,2=3g f3=4,1g

f3=2,2,3g f1g f5=4,5=3g
f1,4=3g f3=5,4=5g f1g

0
B@

1
CA is the

preference matrix of the HMPR H.
In many situations, due to certain conditions, the DMs

cannot give precise preference degrees to compare the
alternatives. Thus, interval-values are good choices to
express their evaluations.

Table 1 The HFPR H

x1 x2 x3

x1 {0.5} {0.2,0.25,0.3} {0.4,0.5}

x2 {0.7,0.75,0.8} {0.5} {0.55,0.6}

x3 {0.5,0.6} {0.4,0.45} {0.5}

Table 2 The HMPR H

x1 x2 x3

x1 {1} {1/3,1/2,2/3} {3/4,1}

x2 {3/2,2,3} {1} {5/4,5/3}

x3 {1,4/3} {3/5,4/5} {1}
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Remark. In the above definition, the values in HFEs are
required to be arranged in order of sizes. Xu et al. (2017b)
pointed out that this condition may cause some problems in
the consistency-reaching process.
Definition 9 (Chen et al., 2013b). Let be a fixed set, then

an interval-valued hesitant fuzzy preference relation can be
expressed by a matrix ~H ¼ ~hij

	 

n�n 2 X � X , where ~hij ¼

~γlij,l ¼ 1,2,:::,j~hijj
� �

is an IVHFE which expresses all
possible preference degrees of the alternative xi over xj
given by the DMs. Moreover, ~H should satisfy the
conditions below:

inf~γ�ðlÞij þ sup~γ
�ðjhjij – lþ1Þ
ji ¼ sup~γ�ðlÞij þ inf~γ

�ðjhjij – lþ1Þ
ji ¼ 1,

~γii ¼ ½0:5,0:5�,    j~hijj ¼ j~hjij,i,j ¼ 1,2,:::,n,

where all ~γijði,j ¼ 1,2,:::,nÞ are ranked in ascending

order, ~γ�ðlÞij denotes the lth smallest interval-value in
~hij, l ¼ 1,2,:::,j~hijj, and j~hijj is the number of elements in
~hij.
Similar to the above two definitions, if the preference

degree of the alternative xi over xj is ~γ ¼ inf~γ,sup~γ½ � , then
the preference degree of the alternative xj over xi should
be 1 – sup~γ,1 – inf~γ½ �. Moreover, in the interval-valued
hesitant fuzzy circumstance, it should be in line with the

elaboration of the first condition. The second condition
means that the preference degree of the alternative xi over
itself should be [0.5,0.5]. The third condition stipulates that
the length of ~hij and ~hji should be the same.
Example 3. Suppose that three experts compare the

three alternatives in pairs. When they give the preference
degree of the alternative x1 over x2, one of them gives
[0.2,0.3] (then the preference degree of x2 over x1 given
by him/her should be [1 – 0.3,1 – 0.2]= [0.7,0.8]); another
one gives [0.3,0.4] (then the preference degree of x2 over
x1 given by him/her should be [1 – 0.4,1 – 0.3]=[0.6,0.7]);
the last one gives [0.4,0.5] (then the preference degree of
x2 over x1 given by him/her should be [1 – 0.5,1 – 0.4]
=[0.5,0.6]). Thus, the preference information of the
alternative x1 over x2 can be expressed as an IVHFE
~h12 ¼ f½0:2,0:3�,½0:3,0:4�,½0:4,0:5�g , and the preference
information of the alternative x2 over x1 can be expressed
as an IVHFE ~h21 ¼ f½0:5,0:6�,½0:6,0:7�,½0:7,0:8�g. In a
similar way, according to the preference information given
by the experts, two IVHFEs ~h13 ¼ f½0:3,0:4�,½0:4,0:5�g
and ~h23 ¼ f½0:5,0:6�,½0:65,0:7�g can be obtained, then we
can get ~h31 ¼ f½0:5,0:6�,½0:6,0:7�g and ~h32 ¼ f½0:3,0:35�,
½0:4,0:5�g. Based on the above information, an IVHFPR
~H ¼ ~hij

	 

n�n 2 X � X can be obtained as Table 3.

The matrix

~H ¼
f½0:5,0:5�g f½0:2,0:3�½0:3,0:4�,½0:4,0:5�g f½0:3,0:4�,½0:4,0:5�g

f½0:5,0:06�½0:6,0:7�,½0:7,0:8�g f½0:5,0:5�g f½0:5,0:6�,½0:65,0:7�g
f½0:5,0:6�,½0:6,0:7�g f½0:3,0:35�,½0:4,0:5�g f½0:5,0:5�g

0
B@

1
CA

is the preference matrix of the IVHFPR ~H .

3 Consensus building under hesitant fuzzy
environment

When dealing with the GDM problems, we need to
consider the opinions of all (at least most) experts. If there
is a big difference in the opinions of these experts, the
decision-making results derived from the information will
be not convincing. Thus, the ultimate agreement of the
decision-making group’s thinking is an important issue
that must be taken into account. Therefore, when HFPRs
are applied to the GDM problems, the consensus is an
important support and guarantee for the GDM process. In

this section, we mainly introduce the consensus process of
GDM under hesitant fuzzy environment.

3.1 A consensus process of the hesitant fuzzy group
decision-making

In this part, we use the method in Ref. Zhang et al. (2015)
to explain the general process of a consensus process under
hesitant fuzzy environment. At first, the definition of
normalized hesitant fuzzy preference relation (NHFPR) is
introduced below:
Definition 10 (Zhang et al. 2015a). Suppose that H ¼

ðhijÞn�n is an HFPR, &ð0£&£1Þ is the optimized
parameter. If we add & into hijði < jÞ , and add (1 – &)

into hjiði < jÞ, then we can obtain a new HFPR H ¼
hij
	 


n�n which satisfies the following condition:

(1) jhijj ¼ max jhijjji,j ¼ 1,2,:::,n
� �

,i≠j;

(2) hij
	 
�ðqÞ þ hji

	 
�ðqÞ ¼ 1, hii ¼ 0:5,i,j ¼ 1,2,:::,n;

(3) hij
	 
�ðqÞ£ hij

	 
�ðqþ1Þ
, hjiÞ�ðqÞ³ hji

	 
�ðqþ1Þ
,

�
whe-

re hij
	 
�ðqÞ

is the qth element of hij . Then, H ¼ hij
	 


n�n is
called the normalized hesitant fuzzy preference relation

Table 3 The HFPR ~H

x1 x2 x3

x1 {[0.5,0.5]} {[0.2,0.3],[0.3,0.4],
[0.4,0.5]}

{[0.3,0.4],
[0.4,0.5]}

x2 {[0.5,0.6],[0.6,0.7],
[0.7,0.8]}

{[0.5,0.5]} {[0.5,0.6],
[0.65,0.7] }

x3 {[0.5,0.6],[0.6,0.7] } {[0.3,0.35],[0.4,0.5] } {[0.5,0.5]}
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based on the optimized parameter s, abbreviated as the
NHFPR, hij is called the normalized hesitant fuzzy element
(NHFE).
Definition 11 (Zhang et al. 2015a). Let H ¼ ðhijÞn�n be

an HFPR, and H ¼ ðhijÞn�n be the NHFPR with & of H. If

hij ¼ hik � hjk �
1

2
,
1

2
,:::,

1

2

� �
,i,j,k ¼ 1,2,:::,n,

then, H is a consistent HFPR with , where the number of
1

2
is jhijj .
In the above definition, the operation is defined as

follows (Zhang et al. (2015a)):

h1 � h2 ¼ [
γ�ðsÞ1 2 h1,γ

�ðsÞ
2 2 h2

γ�ðsÞ1 þ γ�ðsÞ2

h1 � h2 ¼ [
γ�ðsÞ1 2 h1,γ

�ðsÞ
2 2 h2

γ�ðsÞ1 – γ�ðsÞ2

:

Based on the above two definitions, a way to establish a
consistent preference relation can be obtained: Let

~H ¼ ð~hijÞn�n, where ~hij ¼
1

n
�n

k¼1 hik � hkj
	 
� 1

2
: Then,

~H is a consistent HFPR with of H .
Remark. In some conditions, the values obtained

according to the above method may be out of scope
[0,1], and thus, we may need some other ways to obtain a
consistent preference relation (Xu et al., 2018). Due to
space limitations, we will not interpret them here.
Zhang et al. (2015a) defined a distance measure based

on the Hamming distance between two HFEs as follows:
Definition 12. Let H1 ¼ ðh1ijÞn�n and H2 ¼ ðh2ijÞn�n be

two HFPRs, H1 ¼ ðh1ijÞn�n and H2 ¼ ðh2ijÞn�n be their
NHFPRs with & , respectively. Then, the distance between
H1 and H2 can be defined as follows:

DðH1,H2Þ ¼
2

nðn – 1Þ
Xn
i<j

DH h
1
ij,h

2
ij

� �
,

where DHðh1ij,h2ijÞ is the Hamming distance between h
1
ij

and h
2
ij.

Based on Definition 12, a consistency index can be
defined below:
Definition 13 (Zhang et al., 2015a). Given an HFPR H,

its NHFPR H and its consistent HFPR ~H , a consistency
index of H can be defined as the distance between H and
~H :

CIðHÞ ¼ DðH , ~H Þ:
Obviously, the smaller the consistency index CI(H) is,

the more consistent the HFPR H is. Especially, ~H is a
consistent HFPR if and only if CI(H)= 0. Thus, given a
threshold CI , for an HFPR H, if CIðHÞ£CI , then we can

call it the HFPR with acceptable consistency. If an HFPR is
not an HFPR with acceptable consistency, then we can
adjust it in the following way:
For an HFPR H ¼ ðhijÞn�n and a threshold CI , if

CIðHÞ > CI , then we can construct a new HFPR

H# ¼ ðh0
ijÞn�n, h

0
ij ¼ δhij þ ð1 – δÞ~hij , where δ 2 ð0,1Þ is

a parameter. If CIðH#Þ£CI , then the adjustment is
completed. Otherwise, repeat the previous step.
After introducing the consistency of the HFPR, we will

introduce the consensus index based on the distance
between HFPRs. But before this, we need to know the
concept of the group hesitant fuzzy preference relation
(GHFPR).
Definition 14 (Zhang et al., 2015b). Suppose that Hk ¼

ðhkijÞn�nðk ¼ 1,2,:::,mÞ are a set of m HFPRs, Hk ¼
h
k
ij

� �
n�n

ðk ¼ 1,2,:::,mÞ are their NHFPRs, respectively.

Let ω ¼ ðω1,ω2,:::,ωmÞT be their weight vector andXm

k¼1
ωk ¼ 1 . Then, the group hesitant fuzzy preference

relation (GHFPR) is defined as the following form:

HG ¼ �m
k¼1

ωkHk

	 
 ¼ �m
k¼1

ωkh
k
ij

� �
n�n

:

Obviously, according to the definition of GHFPR, it is also
an HFPR.
In what follows, we introduce a consensus index to

measure the agreement between each individual HFPR and
the GHFPR:
Definition 15 (Zhu et al., 2017). Let Hk ¼ ðhkijÞn�nðk ¼

1,2,:::,mÞ be a set of HFPRs, s be the optimized parameter,

Hk ¼ h
k
ij

� �
n�n

ðk ¼ 1,2,:::,mÞ be their NHFPRs, respec-

tively, and HG ¼ ðhGij Þn�n be their GHFPR. Then, the
group consensus index of Hkðk ¼ 1,2,:::,mÞ is defined as:
GCIðHkÞ ¼ D Hk ,HG

	 

.

According to the definition of GHFPR, we can know
that the smaller the group consensus indexGCIðHkÞ is, the
more the opinion of the kth expert is consistent with the
opinions of the group. If GCIðHkÞ ¼ 0, then it means that
this expert is exactly the same as the group.
Similar to the consistency index, the experts can also

give a threshold GCI . If GCIðHkÞ£GCI , then Hk and HG

are considered to be an acceptable consensus. In practical
GDM problems, ifGCIðHkÞ£GCI , then we can adjust Hk

with the formula ðhkijÞ
0 ¼ δhkij � ð1 – δÞhGij until the accep-

table consensus is reached.
In a GDM problem, if m DMs give m preference matrix,

then, we can use the above method to reach a consensus
among all of them. And then, all the consensus-respected
preference information can be used to obtain the ranking of
all alternatives. This provides a complete decision support
model for a GDM problem.
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3.2 Supplementary explanation

The consensus process under hesitant fuzzy environment is
mainly divided into two parts: the consensus process and
the selection process. Based on the characteristics of the
consensus process, the research on it mainly focuses on the
consensus process, especially the consistency and con-
sensus indices and the feedback mechanisms.
Xu et al. (2017b) proposed a consensus model for

HFPRs. Its core content is to establish a new hesitant fuzzy
consistency measure and a consensus measure with a new
standardized method of HFEs proposed by themselves.
They also gave two new feedback mechanisms. Zhang
et al. (2018b) improved the additive consistency by using
some mixed 0–1 linear programming models. Some new
consistency models were established to supplement the
missing elements for incomplete HFPRs. He and Xu
(2017) proposed a consensus reaching model with different
hesitant preference structures. A distance measure based
on three kinds of hesitant preference structures was
introduced, and an interaction mechanism was proposed
to help the DMs adjust their evaluation values. Wu and Xu
(2018) proposed a consensus model for large-scale GDM
with hesitant fuzzy information and changeable clusters. In
their researches, a distance measure was given to compute
the various consensus measures, and a new feedback
mechanism based on the changeable clusters was pro-
posed.
In addition, Liao et al. (2014) proposed a complete

consensus process of the HMPR. At first, the definition of
the consistency of the HMPR and the complete multi-
plicative consistent HFPR were proposed. Using the above
concepts, a modified algorithm for the consistency of
HMPRs was obtained. Moreover, they used the Hamming
distance to give the consensus measure between different
HMPRs in the GDM problems, and gave a feedback
mechanism to correct the inconsistent HFPRs. The above
is the whole process of the hesitant multiplicative GDM
consensus process. It is a very important supplement to the
consensus process under hesitant fuzzy environment.
In a word, there is not much research on the consensus

process under hesitant fuzzy environment, and there is still
a lot of room for development in this area.

3.3 Hesitant analytic hierarchy process

In 2016, Zhu et al. (2016) proposed the hesitant analytic
hierarchy process (H-AHP) which can consider the
hesitancy of the DMs to enhance the modeling ability of
traditional AHP based on the consistency and consensus of
HFPRs and HMPRs. The general process of the H-AHP is
as follows:
(1) For a control criterion, it needs to establish a control

level, a criterion level, and an alternative level to configure

a top-to-bottom hierarchical structure, where each of these
levels may have sublevels;
(2) For each objective in the upper level, let the DMs

compare the objectives in low-levels that correspond to
them to establish HCMs from the information given by the
DMs;
(3) Establish the consistency index, and then check the

consistency degree of each individual HCM to confirm
whether they are acceptable. After that, it needs to adjust
them through a certain feedback mechanism until they all
become acceptable;
(4) Establish the consensus index, and then check the

consensus degrees of the HCMs in each level to confirm
whether they are acceptable. After that, it needs to improve
them through a certain feedback mechanism until they are
acceptable;
(5) For the objectives in each level of the hierarchical

structure, we derive their holistic priorities;
(6) Integrate the holistic priorities of all alternatives in

the order from bottom level to top level. Finally, the
holistic priorities of all alternatives with respect to the
control criterion can be obtained.
The content of hesitant fuzzy analytic hierarchy is very

rich. Due to space limitations, this section is only an
overview of its process. More detailed content, such as the
establishment of consensus index and feedback mechan-
isms, can be seen in Zhu and Xu (2014) and Zhu et al.
(2016).

4 Group decision-making methods based
on HFSs

4.1 Hesitant fuzzy TOPSIS

In order to better solve the multi-attribute group decision-
making (MAGDM) problems, Xu and Zhang (2013)
extended the TOPSIS method to the hesitant fuzzy
environment. Its main idea is to use the distance between
each alternative and the hesitant fuzzy positive and
negative ideal solutions (HF-PIS and HF-NIS) to rank
the alternatives. The HF-PIS and HF-NIS can be defined as
follows:

Aþ ¼ xj, max
i
hγ�ðlÞij ijj ¼ 1,2,:::,n

� �

¼ fhx1,ððγ11Þþ,ðγ21Þþ,:::,ðγl1ÞþÞi,g

fhx2,ððγ12Þþ,ðγ22Þþ,:::,ðγl2ÞþÞi,:::,g

fhxn,ððγ1nÞþ,ðγ2nÞþ,:::,ðγlnÞþÞig,

Zeshui XU et al. An overview on the applications of the hesitant fuzzy sets in group decision-making 171



A – ¼ xj, min
i
hγ�ðlÞij ijj ¼ 1,2,:::,n

� �

¼ fhx1,ððγ11Þ – ,ðγ21Þ – ,:::,ðγl1Þ – Þi,g

fhx2,ððγ12Þ – ,ðγ22Þ – ,:::,ðγl2Þ – Þi,:::,g

fhxn,ððγ1nÞ – ,ðγ2nÞ – ,:::,ðγlnÞ – Þig:
After obtaining the HF-PIS and the HF-NIS, we can use

the hesitant fuzzy Euclidean distances (Xu and Xia, 2011)
to calculate the distances between the alternatives and
them. Then we can get:

dþi ¼
Xn
j¼1

dðhij,hþj Þwj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l

Xl

l¼1
jh�ðlÞij – ðh�ðlÞj Þþj2

r
,

i ¼ 1,2,:::,n;

d –
i ¼

Xn
j¼1

dðhij,h –
j Þwj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l

Xl

l¼1
jh�ðlÞij – ðh�ðlÞj Þ – j2

r
,

i ¼ 1,2,:::,n:

The relative closeness coefficient of an alternative Xi and
the HF-PIS is defined as follows:

Ci ¼
d –
i

dþi þ d –
i

:

Obviously, the higher the relative closeness coefficient
Ci, the closer the distance is to the HF-PIS. Then, we can
use the relative closeness coefficients to rank all alter-
natives. The above is the core idea of the hesitant fuzzy
TOPSIS method.
Xu and Zhang (2013) also extended this method to the

interval-valued hesitant fuzzy environment, which makes
this method further improved. Sun et al. (2018) proposed
an improved synthetic correlation coefficient and applied it
to hesitant fuzzy environment to form an innovative
hesitant fuzzy TOPSIS approach.

4.2 Hesitant fuzzy PROMETHEE

PROMETHEE is an effective method to solve the
MAGDM problems. The main idea of PROMETHEE is
to use the deviation degree of each pair of programs on a
particular attribute to establish preference degrees between
different alternatives. Through these preference degrees,
the overall preference degree between each two alternatives
is obtained, and the outgoing flow, the entering flow and the
net flow of each alternative are further obtained. Therefore,
we can rank all alternatives with them.
Mahmoudi et al. (2016) applied hesitant fuzzy elements

to PROMETHEE and established hesitant fuzzy PRO-
METHEE. It allows the DMs to apply HFEs when giving

evaluation values for each alternative with respect to
different attributes. Then, we can obtain preference degrees
between every two alternatives with HFEs and establish an
HFPR. It avoids the deviation of decision-making results
caused by the DMs forcibly giving accurate evaluation
values under uncertain conditions.
Hesitant fuzzy PROMETHEE can be roughly summar-

ized as the following steps:
(1) For a given decision-making problem, there are a set

of alternatives X ¼ fX 1,X 2,:::,Xmg and a set of attributes
A ¼ fA1,A2,:::,Ang;
(2) The DMs give evaluation values of the alternatives

in X ¼ fX 1,X 2,:::,Xmg with respect to the attributes in
C ¼ fA1,A2,:::,Ang respectively with HFEs. At the same
time, it needs to determine the weight vector of all
attributes, ω ¼ ðω1,ω2,:::,ωnÞT , where

Xn

j¼1
ωj ¼ 1 ;

(3) Compute the deviation degrees of every pair of
alternatives with respect to different attributes
A ¼ fA1,A2,⋯,Ang. We determine the DM’s preference
function, that is, determine the no-difference-threshold q
and the strict-preference-threshold p, and then, compute
the preference degree �k

ij between the alternatives Xi and Xj

with respect to the attribute Ak through the linear
preference function (V-shape), and get the preference
matrix Ukðk ¼ 1,2,:::,nÞ ;
(4) Establish the HFPR Hk ¼ ð�k

ijÞm�m with respect to
the attributes Akðk ¼ 1,2,:::,nÞ ;
(5) Establish the overall HFPR H ¼ ðrijÞm�m ;
(6) Compute the outgoing flows and entering flows of

all alternatives X iði ¼ 1,2,:::,mÞ, denoted as φþðX iÞ and
φ – ðX iÞ;
(7) Compare the sizes of all φþðX iÞði ¼ 1,2,:::,mÞ and

φ – ðX iÞði ¼ 1,2,:::,mÞ to get the preference orders of all
alternatives.
The above is just a rough explanation of hesitant fuzzy

PROMETHEE, please see the detailed algorithm and
formulas in Mahmoudi et al. (2016).

4.3 Hesitant fuzzy ELECTRE

In traditional ELECTRE I methods, for different alter-
natives Xi and Xj , we can divide the attribute set into two
different subsets: the concordance set and the discordance
set. The concordance set contains the attributes for which
Xi is preferred Xj ; the discordance set contains those
attributes for which Xi is inferior to Xj . However, in
hesitant fuzzy circumstance, benefitted from the score
value and the deviation degree, the hesitant fuzzy
concordance (discordance) set can be divided into the
hesitant fuzzy concordance (discordance) set and the
weakened hesitant fuzzy concordance (discordance) set.
Chen et al. (2015) explained these concepts in detail. Let

A ¼ fA1,A2,⋯,Ang be an attribute set. X ¼ fX 1,X 2,⋯,Xmg
be the alternative set, and hik be an HFE, which expresses
the possible evaluation values of the alternative Xi under
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the attribute Ak. For each pair of alternatives X i,X jði,j ¼
1,2,⋯,m;i≠jÞ , their hesitant fuzzy concordance set
contains the attributes for which Xi is preferred to Xj ,
and it can be represented as follows:

Jcij ¼ kjsðhikÞ³sðhjkÞ  and  �ðhikÞ < �ðhjkÞ
� �

,

and the weakened hesitant fuzzy concordance set of them
is defined as:

Jc0ij
¼ kjsðhikÞ³sðhjkÞ  and  �ðhikÞ³�ðhjkÞ
� �

,

where sðhikÞ and �ðhikÞ are the score value and the
deviation degree of hik, respectively. The computing
methods of them can be seen in Xia and Xu (2011).
The difference of Jcij and Jc0ij

is the deviation degree. The

lower deviation degree expresses that the opinions of
different DMs have higher consistency. Therefore, Jcij has
higher consistency than Jc0ij

.

Similarly, the hesitant fuzzy discordance set of Xi and Xj

contains the attributes for which Xi is inferior to Xj , and it
can be represented as follows:

Jdij ¼ kjsðhikÞ < sðhjkÞ  and  �ðhikÞ³�ðhjkÞ
� �

,

and the weakened hesitant fuzzy discordance set of them is
defined as:

Jd0ij
¼ kjsðhikÞ < sðhjkÞ  and  �ðhikÞ < �ðhjkÞ
� �

:

Obviously, Jdij has higher consistency than Jd0ij
.

The above is the core content of HF-ELECTRE I, we
will outline this method below (Readers can find the
detailed algorithm and formulas in Chen et al. (2015)):
(1) Establish the hesitant fuzzy decision-making matrix.

We determine the weight vector of all attributes ω ¼
ðω1,ω2,:::,ωnÞT and the attitude weight vector of different
kinds of hesitant fuzzy concordance (discordance) set

ω¼ ωc,ωc# ,ωD,ωD
#

	 
T;
(2) Compute the score values and the deviation degrees

of the alternatives under all attributes;
(3) Construct the hesitant fuzzy concordance (discor-

dance) set and the weakened hesitant fuzzy concordance
(discordance) set;
(4) Compute the hesitant fuzzy concordance (discor-

dance) index and the weakened hesitant fuzzy concordance
(discordance) index. We establish the hesitant fuzzy
concordance (discordance) matrix and the weakened
hesitant fuzzy concordance (discordance) matrix;
(5) Determine the consistent dominant matrix and the

inconsistent dominant matrix;
(6) Establish the dominant aggregation matrix;
(7) Draw the decision-making map and choose the

better alternative.
After the hesitant fuzzy ELECTRE I was introduced,

Chen and Xu (2015) proposed the hesitant fuzzy
ELECTRE II. Recently, Galo et al. (2018) proposed the
hesitant fuzzy ELECTRE TRI and applied it to a supplier
categorization problem.

4.4 Hesitant fuzzy VIKOR

The VIKOR is a method for solving the MAGDM
problems with conflicting properties based on the special
measure of the closeness degree of the alternative to the
ideal solution. In many decision-making situations,
especially in the beginning of the decision-making process,
the DMs may prefer to use a list of values to express their
evaluation information instead of using isolated determi-
nistic values. Moreover, when the DMs give their
evaluation values for some alternatives with respect to
different attributes, they often have difficulty in reaching
agreement. Therefore, it is more reasonable to use HFEs to
express the evaluation information given by the DMs.
Based on the above analysis, Liao and Xu (2013) proposed
the hesitant fuzzy VIKOR (HF-VIKOR).
Remark. Attributes are often divided into the benefit-

type attributes and the cost-type attributes. Here we only
discuss the benefit-type attributes, and the relevant content
of the cost-type attributes is similar.
The first step of the HF-VIKOR is to find the ideal

solution. If we compute the score values and the deviation
degrees of all HFEs in the hesitant fuzzy decision-making
matrix and compare them, we can obtain the optimal value
and the worst value of the alternative Xi with respect to the
attribute Aj , denoted as:

h*j ¼ max
i

hij

h –
j ¼ min

i
hij

8<
: :

The next step is to find the hesitant fuzzy group utility
measure and the individual regret measure. Before it, the
Manhattan Lp-metric of HFEs should be defined.
Definition 16 (Liao and Xu, 2013). The hesitant fuzzy

Manhattan Lp -metric is defined as:

Lp,i ¼
Xn
j¼1

ωj
dðh*j ,hijÞ
dðh*j ,h –

j Þ

 !p !1=p

ð1£p£þ1;i ¼ 1,2,:::,mÞ,
where ωjðj ¼ 1,2,:::,nÞ is the weight of the attribute Aj ,

which satisfies 0£ωj£1ðj ¼ 1,2,:::,nÞ and
Xn

j¼1
ωj ¼ 1;

dðh*j ,hijÞ is the Manhattan distance between h*j and hij,
which satisfies:

dðh*j ,hijÞ ¼
1

lj

Xlj
t¼1

jh*j �ðtÞ – hij
�ðtÞj,
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where h*�ðtÞj and h�ðtÞij are the tth largest elements of h*j and

hij, respectively, and lj ¼ maxfjh*j j,jhijjg:dðh*j ,h –
j Þ can be

defined in a similar way.
According to Definition 5, the hesitant fuzzy group

utility measure can be expressed as the following form:

Si ¼ L1,i ¼
Xn
j¼1

ωj
dðh*j ,hijÞ
dðh*j ,h –

j Þ

 !
:

Similarly, the hesitant fuzzy individual regret measure
can be defined as:

Ri ¼ Lþ1,i ¼ max
j

ωj
dðh*j ,hijÞ
dðh*j ,h –

j Þ

 !
:

Based on the above content, the hesitant fuzzy
compromise measure can be obtained:
Definition 17 (Liao and Xu, 2013). The hesitant fuzzy

compromise measure is defined as the form:

Qi ¼ v
Si – S

*

S – – S*
þ 1 – vð Þ Ri –R

*

R – –R* ,

where S* ¼ min
i

Si, S – ¼ max
i

Si, R* ¼ min
i

Ri, R – ¼
max

i
Ri; v is the weight of the strategy of maximizing the

utility of attributes. The greater its value, the more average
the DM’s preferences on different attributes will be. v is
usually taken as 0.5 without loss of generality.
It can be seen that the hesitant fuzzy compromise

measure consists of two parts. The core of the first half is
hesitant fuzzy group utility measure, and the core of the
second half is hesitant fuzzy individual regret measure.
The smaller the value of the hesitant fuzzy compromise
measure, the better the alternative. Thus, the ranking of all
alternatives can be obtained.

4.5 Hesitant fuzzy TODIM

The widely used MAGDM methods, such as TOPSIS and
ELECTRE, usually assume that the DMs have complete
rationality. However, in the actual decision-making
processes, the DMs are usually not completely rational
(Camerer, 1998). Thus, the psychological behaviors of the
DMs will have an important impact on the decision-
making processes. Therefore, considering the psychologi-
cal behavioral factors of the DMs, Zhang and Xu (2014b)

proposed the hesitant fuzzy TODIM approach based on a
new measure function and applied it to the MAGDM
problems. Below we first introduce this new measure
function of HFEs:
Definition 18 (Zhang and Xu, 2014b). Let h ¼

fγ1,γ2,:::γng be an HFE, a new measure function ZδðhÞ of
h can be defined as follows:

Zδ hð Þ ¼ Zδðγ1,γ2,:::,γnÞ

¼ ðγ1Þδ þ ðγ2Þδ þ :::þ ðγnÞδ
n

� �1=δ

,

where δ is a parameter given by the DMs, which can be
changed according to the specific decision-making pro-
blems, and satisfies that 0 < δ£1. In particular, if δ ¼ 1
then ZδðhÞ reduces to the score function (Xia and Xu,
2011) of HFEs.
With the above definition, a new way to rank the HFEs

can be obtained as follows: For two HFEs h1 and h2,
(1) If Zδðh1Þ>Zδðh2Þ, then h1 is superior to h2, denoted

as h1> h2;
(2) If Zδðh1Þ < Zδðh2Þ, then h1 is inferior to h2, denoted

as h1< h2;
(3) If Zδðh1Þ ¼ Zδðh2Þ, then h1 is equivalent to h2,

denoted as h1~ h2.
Based on the above measure function and the HFE-

ranking method, in the following, we introduce the hesitant
fuzzy TODIM:
First of all, similar to the typical TODIM method, the

attribute with the highest weight Ai0 is considered as the
reference attribute. Then, the relative weight of each
attribute Ai relative to the reference attribute Ai0 can be
computed with:

wii0 ¼
wi

wi0

,   i ¼ 1,2,:::,n:

After getting the above information, the gain and loss
values of the alternative Xi relative to Xj with respect to
different attributes can be computed. Let A ¼ fA1,A2,:::,
Ang be an attribute set, and X ¼ fX 1,X 2,:::,Xmg be the
alternative set, the evaluation value of the alternative Xi

with respect to the attribute Ak be hik, w ¼ ðw1,w2,:::,wnÞT
be the weight vector of A, and wk0 be the largest one among
wkðk ¼ 1,2,:::,nÞ . Then, the perceptual function value of
Xi relative to Xj on Ak is:

φk Xi,Xj

	 
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wkk0dðhik ,hjkÞ=

Xn

k¼1
wkk0

q
, if   ZδðhikÞ – ZδðhjkÞ> 0,

0, if   ZδðhikÞ – ZδðhjkÞ ¼ 0,

–
1

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
Xn

k¼1
wkk0Þdðhik ,hjk

�
=wkk0

r
, if   Zδ hikð Þ – Zδ hjk

	 

< 0,

8>>>>>>>>><
>>>>>>>>>:
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where � expresses the attenuation factor of the losses,
dðhik ,hjkÞ is the Euclidean distance measure of hik and hjk .
If ZδðhikÞ – ZδðhjkÞ>0 , then φkðX i,X jÞ represents “gains”;
If ZδðhikÞ – ZδðhjkÞ ¼ 0 , then φkðX i,X jÞ represents a “nil”;
If ZδðhikÞ – ZδðhjkÞ>0, then φkðX i,X jÞ represents “losses”.
Next, we can integrate the perceptual function of Xi

relative to Xj under all attributes in A ¼ fA1,A2,:::,Ang:

#ðXi,XjÞ ¼
Xn
k¼1

φkðXi,XjÞ,   i,j ¼ 1,2,:::,m:

Finally, the overall perceptual function values of X iði ¼
1,2,:::,mÞ can be computed with the following formula:

Φ Xið Þ ¼
Xm

j¼1
#ðXi,XjÞ – min

i
f
Xm

j¼1
#ðXi,XjÞg

max
i
f
Xm

j¼1
#ðXi,XjÞg – min

i
f
Xm

j¼1
#ðXi,XjÞg

,

i ¼ 1,2,:::,m:

It is obvious that 0£ΦðX iÞ£1. The greater the overall
perceptual function value of the alternative Xi , the better
the alternative Xi . Thus, the alternatives Xi (i = 1,2,...,m)
can be ranked with the ranking of their overall perceptual
function values.
In the same reference, the authors also proposed the

interval-valued hesitant fuzzy TODIM method. It allows
the DMs to have greater hesitant degree in giving initial
decision-making information. These two methods have
become an important part of the classical decision-making
approach—TODIM.

4.6 Hesitant fuzzy QUALIFLEX

For a non-single value HFE, the membership degrees in it
always have a deviation. It can represent the hesitant
degree of the DM giving this evaluation value. In order to
express the deviation, the hesitant index of HFEs can be
defined below:
Definition 19 (Zhang and Xu, 2015). For a given HFE

h ¼ fγiji ¼ 1,2,:::,ng , its hesitant index is defined as:

hðhÞ ¼
Xn
i,j¼1

�
γ�ðjÞ – γ�ðiÞ

�
=C2

n ,

where γ�ðiÞ and γ�ðjÞ are the ith and jth largest membership
degrees in h and j> i.
It is easy to see that if there is only one membership

degree in h, then hðhÞ ¼ 0 . This means that the DM does
not hesitate to give this evaluation value.
Based on the hesitant index, we can obtain a new way to

compare the sizes of different HFEs:

h1£h2 () γ�ðlÞ1 £γ�ðlÞ2 ði ¼ 1,2,:::,nÞ  and  hðh1Þ³hðh2Þ:
According to the above method, it can be seen that h

={1} is the largest HFE, therefore, h ={1} is called the

ideal HFE, denoted as ~1 .
In the process of dealing with hesitant fuzzy informa-

tion, hesitant index plays an important role. Considering
the influence of hesitant index, some new ranking methods
and distance measures of HFEs will be proposed below:
Definition 20 (Zhang and Xu, 2015). For two given

HFEs hifγ�ðlÞi jl ¼ 1,2,:::,jhijgði ¼ 1,2Þ, let jh1j ¼ jh2j ¼ n,
then the improved hesitant fuzzy Hamming distance can be
defined as:

dNH h1,h2ð Þ ¼ 1

2

1

n

Xn
l¼1

jγ�ðlÞ1 – γ�ðlÞ2 j þ jhðh1Þ – hðh2Þj
 !

,

and the improved hesitant fuzzy Euclidean distance can be
defined below:

dNE h1,h2ð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

1

n

Xn
l¼1

�
γ�ðlÞ1 – γ�ðlÞ2

�2þ hðh1Þ – hðh2Þ
	 
2 !vuut :

Based on the improved Hamming distance, the signed
distance of a given HFE fγiji ¼ 1,2,:::,ng, i.e., the
Hamming distance between it and the ideal HFE ~1 can
be obtained:

dS h,~1
	 
 ¼ 1

2

1

n

Xn
l¼1

ð1 – γlÞ þ hðh
� !

:

Moreover, we can get a way to rank HFEs based on the
signed distance. For two HFEs h1 and h2,
(1) If dS h1,~1

	 

< dS h2,~1

	 

, then h1 is inferior to h2,

denoted as h1 � h2;
(2) If dS h1,~1

	 

>dS h2,~1
	 


, then h1 is superior to h2,
denoted as h1 	 h2;
(3) If dS h1,~1

	 
 ¼ dS h2,~1
	 


, then h1 is equivalent to h2,
denoted as h1~h2.
In the traditional QUALIFLEX method, we should

obtain all the results of the orders of all alternatives at first,
and then test them one by one. In the test process, we need
to compare the size of the evaluation values for each of the
two alternatives under each attribute to determine if their
orders are consistent with the ranking in the test orders.
Then we can compute the consistency (non-consistency)
index for the ranking of each two alternatives.
However, in the hesitant fuzzy circumstance, the

evaluation values of each alternative with respect to all
attributes are HFEs. Sometimes, even the weights of the
attributes are HFEs. It is hard to compare them directly.
Therefore, we use the ranking method of HFEs based on
the signed distance to determine the consistency (non-
consistency) index for the ranking of each two alternatives.
Below we consider a problem that the weights of attributes
are also HFEs:
Suppose that the lth descending order of the alternatives

is: Pl ¼ ð:::,X i,:::X j,:::Þ . Then, the consistency index of
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the ranking ðX i,X jÞ with respect to the attribute Ak can be
defined as:

φlkðXi,XjÞ ¼ dSðhjk ,~1Þ – dSðhik ,~1Þ:
Then, according to the ranking method of HFEs based

on the signed distance, the following conclusions can be
obtained:
If φlkðX i,X jÞ³0 , i.e., dS hik ,~1

	 

£dS hjk ,~1

	 

, then we

can think that Xi is in front of Xj under the attribute Ak .
That is, it is inconsistent with the order of the two in the
ranking we tested. Therefore, in this condition, φlkðX i,X jÞ
is called the non-consistency index of the order ðX i,X jÞ
under the attribute Ak .
If φlkðX i,X jÞ < 0, i.e., dS hik ,~1

	 

>dS hjk ,~1
	 


, then we can
think that Xi is behind of Xj under the attribute Ak . That is,
it is consistent with the order of the two in the ranking we
tested. Therefore, in this condition, φlkðX i,X jÞ is called the
consistency index of the order ðX i,X jÞ under the attribute
Ak .

Let the weight vector of the attributes be ~W ¼
~W 1, ~W 2,::: ~Wn

	 
T
, where ~Wiði ¼ 1,2,:::,nÞ are all HFEs.

We can compute the weighted consistency (non-consis-
tency) index of the order ðX i,X jÞ under the lth order
Pl ¼ ð:::,X i,:::X j,:::Þ:

φlðXi,XjÞ ¼
Xn
k¼1

φlk
�
Xi,XjÞ 1 – dS ~wk ,~1

	 
	 

:

Finally, the overall consistency (non-consistency) index
of the lth order Pl ¼ ð:::,X i,:::X j,:::Þ can be defined as
follows:

φl ¼
X

Xi,Xj 2X

Xn
k¼1

φlk
�
Xi,XjÞ 1 – dS ~wk ,~1

	 
	 

:

It is easy to see that the larger the overall consistency
(non-consistency) index φl , the more reasonable the lth

order Pl ¼ ð:::,X i,:::X j,:::Þ. Therefore, the best ranking of
the alternatives can be determined by comparing the sizes
of the overall consistency (non-consistency) indexes with

P* ¼ max
m!

l¼1
fflg:

4.7 Hesitant fuzzy LINMAP

The MAGDM process has several forms. One of the
common forms is that multiple experts give their
evaluation values over each alternative with respect to all
attributes, and we rank all alternatives by using some
methods with those evaluation values. When the evalua-
tion values given by the experts are HFEs, the problem will
become more complicated.
Zhang and Xu (2014a) proposed the hesitant fuzzy

LINMAP method based on the interval programming
model. It is mainly used to solve the following MAGDM
problems:
(1) The evaluation values given by the DMs are HFEs;
(2) The preferences between the alternatives given by

the DMs are interval-values;
(3) The weights of attributes are partially known or

completely unknown.
Considering a MAGDM problem: Suppose that X ¼

fX 1,X 2,:::,Xmg is the alternative set, A ¼ fA1,A2,:::,Ang is
the attribute set, E ¼ fE1,E2,:::,Elg is the expert set. The
weight vector of the attributes is w ¼ ðw1,w2,:::,wnÞT and
not all w1ði ¼ 1,2,:::nÞ are known. The weights of all
experts are the same. The evaluation value of the
alternative Xi with respect to the attribute Aj given by the
expert Ek is represented as hkj ðxiÞ. The comparing
preference degrees of all pairs of the alternatives ðX i,X jÞ�
ði,j ¼ 1,2,:::mÞ which are given by the expert Ek are
denoted as the interval-values ~Ckði,jÞði,j ¼ 1,2,:::mÞ.
In order to deal with the above problem, the interval

consistency (non-consistency) index needs to be defined.
First of all, suppose that the hesitant fuzzy positive ideal

solution is X * ¼ ðh*1,h*2,:::h*nÞ , where h*i ¼ fðγ1i Þ*,ðγ2i Þ*,:::
ðγijh

*
i jÞ*gði ¼ 1,2,:::,nÞ are HFEs. For the expert Ek, the

square of the weighted Euclidean distance between X i 2 X
and X* are denoted as Dk

i , I ¼ 1,2,:::,m , i.e.,

Dk
i ¼

Xn
j¼1

wjdEðhkij,h*j Þ2 ¼
Xn
j¼1

wj
1

jh*j j
Xjh*j j
l¼1

�
ðγlijÞk – ðγljÞ*

�20
@

1
A,

i ¼ 1,2,:::,m:

Thus, for two alternatives Xi and Xj , the weighted
Euclidean distance between X* and them can be computed,
denoted as Dk

i and . Let �
k
ij ¼ Dk

i –D
k
j , then, for the pair of

alternatives ðX i,X jÞ with the order X i 	 X j which is given
by the experts, we have:
If �kij£0 , i.e., Dk

i£Dk
j , then Xi is closer than Xj from

X*. It means that Xi is superior to Xj . That is, this is
consistent with the order given by the expert.
If �kij³0, i.e., Dk

i³Dk
j , then Xi is farther than Xj from

X*. It means that Xi is inferior to Xj . That is, this is
inconsistent with the order given by the experts.
In order to measure the consistency degree between the

order of ðX i,X jÞ determined by the distance ðDk
i ,D

k
j Þ and

the order given by the expert Ek, the consistency index
should be determined at first:

ðDk
i –D

k
j Þ* ¼

~Ck

�
i,jÞ$ðDk

j –D
k
i Þ, if  Dk

i£Dk
j ,

0, if  Dk
i >D

k
j :

8<
:

Let Ωk be the set of all alternative pairs. Then, the
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consistency index of all alternative pairs under the expert
Ek can be defined as follows:

~Gk* ¼
X

ði,jÞ 2Ω

ðDk
i –D

k
j Þ*:

Therefore, the group consistency index under all the
experts can be expressed as:

~G
* ¼

Xl
k¼1

~G
*
k :

Similarly, the inconsistency index can be determined
below:

ðDk
i –D

k
j Þ – ¼

0, if  Dk
i³Dk

j ,

~Ck

�
i,jÞ$ðDk

j –D
k
i Þ, if  Dk

i < Dk
j :

8<
:

We can also get the group inconsistency index under all
the experts:

~G
– ¼

Xl
k¼1

~G
–
k :

In the practical decision-making process, we usually think
that the less the group inconsistency index, the better the
decision-making result. And the group inconsistency index
~G

–
should not be larger than the group consistency index

~G
*
. Therefore, the weight vector w of the attributes and the

hesitant fuzzy positive ideal solution X* should make the

smallest while ensuring that ~G
*
is larger than ~G

–
. Based on

the above analysis, an optimization model can be
established to determine the weight vector w of attributes
and the hesitant fuzzy positive ideal solution X*:

min ~G
–� �

s:t:

~G
*
– ~G

–³~ε,

0£ðγn0i Þ*£ðγn0 – 1i Þ*£:::£ðγ1i Þ*£1,  i ¼ 1,2,:::,n,

0£wj£1,
Xn
j¼1

wj ¼ 1,  j ¼ 1,2,:::,n,

8>>>>><
>>>>>:

where ~ε is positive interval-value, which depends on the
needs of the practical decision-making process, and n0 ¼
jX *j is the number of membership degrees in X*.
After a series of transformations (Zhang and Xu, 2014a),

the above model can be transformed into a single-objective
linear programming model based on a parameter � , where
� 2 ½0,1� is a given parameter which depends on the DMs.
The model can be solved by several mathematical

programming models. Thus, the weight vector w of
attributes and the hesitant fuzzy positive ideal solution X*

can be obtained. Then we can determine the orders of all
alternatives under every expert by computing the distance

between each alternative and X*. Finally, the best
alternative can be obtained with the Borda selection
function or the Copeland selection function (Hwang and
Yoon, 1981).
In addition, Zhang and Xu (2014a) also proposed

another LINMAP method based on the hesitant fuzzy
programming model. It can solve the MAGDM problems
with the following conditions: The evaluation values and
preference information between the alternatives given by
the DMs are HFEs; The weights of attributes and the ideal
solution are completely unknown. The ideas of the two
methods are similar, so we will not go into details here.

5 Summary and outlook

5.1 The summary and supplement

Due to its own characteristics, HFSs have a very wide
application in the process of solving GDM problems. This
paper divides these applications into three parts: theory,
support, and methods.

5.1.1 Theory

This part mainly includes the hesitant fuzzy aggregation
operators and HFPRs, specifically the concepts, properties
and operations of HFSs and HFEs, some different kinds of
hesitant fuzzy aggregation operators, the definitions of
HFPR and its extended forms HMPR and IV-HFPR. In
addition to the content mentioned in the text, Zhu et al.
(2012, 2013) proposed the hesitant fuzzy Bonferroni
average (HFABM) and hesitant fuzzy Bonferroni geo-
metric (HFGBM) operators. Subsequently, some hesitant
fuzzy aggregation operators based on quasi-arithmetic
averaging and derivation ideas were proposed (Xia et al.,
2013; Liao and Xu, 2014a). In order to solve the
aggregation problems of HFEs in the multiplicative form,
Xia and Xu (2011a) introduced the hesitant multiplicative
aggregation operators. Zhao et al. (2015) proposed the
hesitant fuzzy prioritized “or” operator to solve the
MADM problems that do not allow compromises between
attributes. There are also some other aggregation operators
(Wei, 2012; Zhang, 2013; Zhang et al., 2014; Zhao et al.,
2014; Meng et al., 2015; Tan et al., 2015; Qin et al., 2016)
that can be used under certain conditions, we will not
repeat them here. The above operators are more able to
adapt to complex situations than those mentioned in the
text. They can provide more powerful guarantees for us to
solve the hesitant fuzzy MAGDM problems.

5.1.2 Support

In the GDM problems, we always need to consider the
opinions of all experts. Thus, when the gap in the opinions
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of different experts is obvious, the consensus becomes an
important support for the GDM process. In the text, we
firstly introduce a complete decision support model based
on the consensus of HFPRs, which includes the establish-
ment of consistency and consensus index, as well as
feedback mechanisms for unacceptable HFPRs. Next,
some supplementary studies were introduced, especially
the consensus process under hesitant multiplicative
environment. At last, as a typical application of the
consensus process under hesitant multiplicative environ-
ment, hesitant fuzzy AHP was introduced. It is a great tool
to solve hesitant fuzzy GDM problems. Besides these,
Zhang et al. (2018c) derived the priority weight vector
from an incomplete HFPR with the logarithmic least
squares method and defined a novel consistency index of
an incomplete HFPR. Xu et al. (2017a) proposed a
dynamical weight adjustment method based on the
consensus reaching process of HFPRs in the hesitant
fuzzy GDM problems. In a word, there is not much
research on the consensus process for hesitant fuzzy GDM.
This field has great potential for development.

5.1.3 Methods

In Section 4, we introduced seven methods and some
extensions of them based on hesitant fuzzy information for
solving hesitant fuzzy GDM problems. These methods
have their own characteristics and can solve the hesitant
fuzzy GDM problems under different conditions. Besides,
Yu et al. (2013) explored an aggregation method of
prioritized HFEs and applied them to hesitant fuzzy GDM
problems. Jin et al. (2016) established a programming
model to determine the optimal weight of an attribute with
some information measures of IVHPEs given by them, and
proposed a hesitant fuzzy MAGDM method benefitted
from the model. He et al. (2016a) studied HMPRs and
proposed three methods for the priorities of HMPRs with
the error-analysis technique. And then, they developed an
approach to GDM with HMPRs by using those methods.
He et al. (2016b) proposed two degrees to compare
different IVHFSs. They also introduced two aggregation
ways of IVHFEs with Bonferroni means, and applied those
degrees and aggregation ways to the GDM problems under
interval-valued hesitant fuzzy environment. Zhang et al.
(2015b) proposed a method to solve the MAGDM
problems with incomplete HFPRs based on the additive
consistency of HFPRs. Wan et al. (2017) developed a
mathematical programming method for solving the hybrid
MAGDM problems with hesitant fuzzy truth degrees and
the group consistency index of HFPRs. In addition to
these, many scholars have proposed some HFSs-based
GDM methods and applied them to all aspects of our daily
life (Farhadina, 2014; Zhang and Wu, 2014a; Ashtiani and
Azgomi, 2016; Li et al., 2015; Sevastjanov and Dymova,
2015; Farhadinia, 2016a; Perez-Fernandez et al., 2016; Xu

et al., 2016; Zhang, 2016; De and Sana, 2017; Lan et al.,
2017; Meng and An, 2017; Acar et al., 2018; Asan et al.,
2018; Cheng, 2018; Osiro et al., 2018; Dincer et al., 2019).
Moreover, several scholars have made minor improve-
ments to the HFSs and the HFPRs to obtain some
extensions of HFSs and HFPRs, and proposed some
hesitant fuzzy GDM methods based on them, such as the
multi-hesitant fuzzy sets (Peng et al., 2015), the hesitant-
intuitionistic fuzzy sets and preference relations (Zhou et
al., 2015), the hesitant Pythagorean fuzzy sets (Liang and
Xu, 2017), the necessary and possible HFSs (Alcantud and
Giarlotta, 2019) and the generalized HFSs (Peng et al.,
2013; Qian et al., 2013).
The above content can explain the following two points:

(1) HFSs and HFPRs do have a wide range of applications
in group decision-making problems; (2) In recent years,
more studies have gradually turned to some extensions of
HFSs.

5.2 A brief introduction to probabilistic hesitant fuzzy sets
and preference relations

As mentioned earlier, due to the need of practical decision-
making problems, more and more scholars have begun to
study some extended forms of HFSs. But the most
important and practical one is the probabilistic hesitant
fuzzy set (P-HFS). The emergence of P-HFS and P-HFE is
to compensate for the defects of HFSs. In fact, due to its
own characteristics, HFSs have the defect of losing
information. Benefitted from applying the probability
distribution, the P-HFSs can effectively avoid this
problem. In this part, we introduce the relevant content
of the P-HFS.
Zhu (2014) firstly proposed the concept of P-HFS and

P-HFE. The core idea of P-HFS is to give each member-
ship degree in HFEs a subordinate probability value that
matches its own weight. After that, Zhang and Wu (2014b)
studied some operations of P-HFEs and applied them to the
hesitant fuzzy MADM problems. Farhadinia (2016b)
introduced the similarity measure of P-HFEs and applied
it to the field of medical diagnosis. Zhu and Xu (2018)
compiled the related concepts and properties of P-HFS and
introduced the definition of probabilistic hesitant fuzzy
preference relation (P-HFPR). In the same paper, the
consistency of P-HFPR has been preliminarily studied.
Zhang et al. (2017) revised the definition of P-HFS and
gave the calculations, ranking methods, standardization
process and some aggregation operators of P-HFSs.
Subsequently, the probabilistic interval-valued hesitant
fuzzy preference relation (P-IVHFPR) (Zhang et al.,
2018a) was proposed. At this point, the basic research
for P-HFSs has basically been completed. In recent years,
it also has some applications in the GDM problems.
Xu and Zhou (2017) established the consensus in the

GDM process under probabilistic hesitant fuzzy environ-
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ment. They also proposed the expected consistency of the
P-HFPR, and used it to calculate the probabilities in the
consistent P-HFPRs (Zhou and Xu, 2018). Wu et al. (2018)
provided a new local feedback mechanism in a consensus
process of P-HFPRs. Sometimes, the probabilities in
P-HFEs or P-HFPRs may not easy to obtain, based on
which, the uncertain P-HFE and uncertain P-HFPR were
proposed. After that, the group consistency index and a
GDM method under uncertain probabilistic hesitant fuzzy
environment were provided (Zhou and Xu, 2017b).
Moreover, Tian et al. (2018) established a prospect
consensus process based on P-HFPRs and applied it to
the field of venture capital. The above methods provide the
important supports for the GDM processes under prob-
abilistic hesitant fuzzy environment. In addition, Ding et
al. (2017) proposed an interactive decision-making method
for solving the GDM problems based on probabilistic
hesitant fuzzy information. Zhang et al. (2018) proposed a
method to deal with the GDM problems based on
P-IVHFPRs. Jiang et al. (2017) introduced the probabil-
istic fuzzy regression approach. Based on which, they
proposed a preference model under probabilistic fuzzy
environment. Zhou and Xu (2017a) gave a tail decision-
making method based on expected hesitant VaR under
probabilistic hesitant fuzzy environment.

5.3 Prospects for future research directions

Based on the status of group decision-making under
hesitant fuzzy environment, we believe that the future
research directions about it are mainly divided into the
following three aspects:
(1) Simplify the operations of HFEs: At this stage, the

operations of HFEs are very complicated. Taking the
simplest operation “addition” as an example, given two
HFEs, each of them has five membership degrees. Then,
there may be up to twenty-five membership degrees in the
“sum” of them. Moreover, if another HFE with three
membership degrees is added, the total “sum”may have up
to seventy-five membership degrees. However, in the
GDM problems, we often need to integrate the evaluation
values given by multiple experts on multiple attributes. At
this time, the complex operations become a huge obstacle.
Therefore, the simplification of operations of HFEs is an
urgent problem to be solved on the application of HFEs to
GDM.
(2) The P-HFS and its application to the GDM: As an

extension of HFS, the P-HFS has its unique advantages,
especially in the GDM problems. For example, suppose
that 20 DMs give their evaluation values to an alternative
with respect to an attribute, where 5 of them give 0.5, 12 of
them give 0.6, 3 of them give 0.7. Then, if we use an HFE
to express those values, h ={0.5,0.6,0.7} can be obtained.
Obviously, it simply cannot reflect the weights behind
the membership degrees. On the contrary, the P-HFE
h(p)={0.5(0.25),0.6(0.6),0.7(0.15)} can more fully express

the opinions of the DMs. Currently, research on P-HFE is
still in its infancy. Therefore, GDM under the probabilistic
hesitant fuzzy environment is also a potential research
direction in the future.
(3) Combine multiple types of information: When we

deal with the GDM problems with HFSs or HFPRs, due to
certain conditions, we always hope that experts can give
their evaluation values in the form of real numbers or
HFEs. But in some cases, some experts can only give
linguistic information or other forms of information. Thus,
if the experts are forced to give their decision information
as a certain form, it is likely to affect the accuracy and
reliability of the decision-making results. Under these
circumstances, we need some methods to aggregate
multiple different types of information. Zhu et al. (2015)
proposed a generalized analytic network process. In this
method, the complex comparison matrices (CCMs) are
used to collect the DMs’ preferences in multiple different
forms, such as FPRs, IVFPRs, HFPRs and stochastic
(stochastic fuzzy) preference relations. This laid a good
foundation for the corresponding research. In a word, in
future research, the combination of multiple types of data
should be another focus of attention.
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