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Abstract The high-end equipment intelligent manufac-
turing (HEIM) industry is of strategic importance to
national and economic security. Engineering management
(EM) for HEIM is a complex, innovative process that
integrates natural science, technology, management
science, social science, and the human spirit. New-
generation information technology (IT), including the
internet, cloud computing, big data, and artificial intelli-
gence, have made a remarkable influence on HEIM and its
engineering management activities, such as product system
construction, product life cycle management, manufactur-
ing resources organization, manufacturing model innova-
tion, and reconstruction of the enterprise ecosystem.
Engineering management for HEIM is a key topic at the
frontier of international academic research. This study
systematically reviews the current research on issues
pertaining to engineering management for HEIM under

the new-generation IT environment. These issues include
cross-lifecycle management, network collaboration man-
agement, task integration management of innovative
development, operation optimization of smart factories,
quality and reliability management, information manage-
ment, and intelligent decision making. The challenges
presented by these issues and potential research opportu-
nities are also summarized and discussed.

Keywords high-end equipment, intelligent manufactur-
ing, engineering management, information technology*

1 Introduction

High-end equipment manufacturing (HEM) is a core part
of the industrial and equipment manufacturing value chain.
It is an important indication of a nation’s capabilities in
science and technology and comprehensive power. It also
guarantees technological advancements and industrial
transformation and growth at the national level. The
industry is of strategic importance to national defense and
economic security. High-end equipment (HE) refers to a
type of technical equipment with advanced technology,
large capital investment, and a long life span. It is
applicable in many disciplines, and its production must
be organized with cross-domain, cross-industry, and cross-
regional manufacturing resources. HE can be classified as
basic, specialized, and outfit equipment. Examples include
high-end computer numerical control machine tools, large-
scale and high-end forming equipment, large-scale inte-
grated circuit manufacturing equipment and other basic
equipment such as large-scale scientific instruments, civil
aircraft, and high-speed electric multiple units. HE also
includes aerospace, marine engineering, modern military,
and other special equipment, as well as petrochemicals,
large-scale power, and other outfit equipment.
Currently, new-generation information technology (IT),

including the internet, cloud computing, big data, artificial
intelligence, and block chains, is integrated into the
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manufacturing industry. This integration stimulates the
development of the intelligent manufacturing industry,
which is the main feature of this new scientific,
technological, and industrial revolution. Intelligent manu-
facturing is increasingly important for the development
and transformation of HEM industries and promotes an
evolution to intelligent, internet-connected, and service-
oriented HE. The traditional HEM innovation system is
reorganized using cross-domain and networked innovation
platforms, namely, crowd innovation and crowdsourcing
models, which have considerably influenced traditional
management ideas, production modes, and business
models. Moreover, new-generation IT plays a critical
role in the innovation-driven development of HEM.
In recent years, developed countries and regions have

accelerated the development of science and technology and
the industry, with HEM in the internet and big data
environment being one of the most important aspects of
national competition. Strategies for re-industrialization
have correspondingly been proposed. For example, the
United States has formulated the “Advanced Manufactur-
ing Partner Program” and the “Advanced Manufacturing
Country Strategic Plan” while Germany has proposed
“Industry 4.0.” The UK, France, and Japan have also
promulgated a series of strategic initiatives for the
development of HEM, such as “British Manufacturing
2050,” the “New Industrial Revitalization Plan,” and the
“2014 Manufacturing White Paper.” The Chinese govern-
ment has proposed the implementation of “Made in China
2025” and the “Internet Plus” action plan, a development
plan of “New Generation of Artificial Intelligence,”
guidelines for deepening “Internet Plus Advanced Manu-
facturing” for the development of the industrial internet,
and a series of strategic plans to promote the deep
integration of manufacturing technology and IT.
Many world-class HEM companies are seriously paying

attention to the remarkable changes of the equipment
manufacturing industry caused by emerging IT. These
companies apply such emerging IT to their HE products,
manufacturing processes, and management to gain position
in the industry value chain. For example, Tesla in the US
uses automotive intelligence to design and develop smart-
connected new energy automotive products. Specifically,
the internet of vehicle technology enables product data to
be shared with any other products, operating systems,
manufacturers, and users, thereby contributing to the
evolution of automotive products into a series of integrated
services that can improve customer satisfaction. Airbus
SAS has recently built the largest and most efficient supply
chain system in global manufacturing by applying the
Internet of Things (IoT) technology to logistic areas, such
as raw material procurement, inventory storage, and
product sales. Siemens AG and Mitsubishi Corporation
have used IoT and big data technologies to achieve full
automation control and digital manufacturing manage-
ment, including the development, production, service, and

remanufacturing of the products in their entire life cycle.
This approach improves the automation level and
efficiency of manufacturing processes.
The deep integration of new-generation IT and the

manufacturing industry has greatly influenced the HEM
industry, thereby changing the relationships among HEM
systems, people, organizations, society, and the environ-
ment. At the same time, the HE industry value chain has
expanded, as reflected by its widespread influence on the
economy, society, and the environment. Intensive techno-
logical innovations and collaborations emerge in the
processes of product development, production, and
service. Such changes prompt a new set of features and
development trends and ultimately initiate major develop-
ment in the management of HE for intelligent manufactur-
ing projects.
Engineering management for high-end equipment

intelligent manufacturing (HEIM) is a complex innovative
process that deeply integrates natural science, technolo-
gies, management science, social science, and the human
spirit. In this process, people combine various technical,
human, and material resources and diverse ideas to develop
HE with unique market appeal and intensive knowledge
base and technology. Engineering management for HEIM
is a type of complex system engineering with multiple
levels, disciplines, and agents that are deeply coupled.
When used to deal with theoretical and technical problems,
this type of system engineering should be applied to
engineering practices. Moreover, engineering management
for HEIM requires breakthroughs not only in individual
engineering technology but also in the overall technology
based on comprehensive coordination. It is also a type of
innovative activity that is systematic, time sensitive,
collaborative, and risky. The precise analysis of product
demand, the strategic selection of project portfolio, the
R&D organization of key technologies, the classification
and optimization of manufacturing processes, the dynamic
scheduling of manufacturing resources, the cooperative
control of multiple agents and departments, the dynamic
decision making regarding manufacturing processes, and
the scientific construction of information systems are
management problems that must be addressed in the
process of developing HE with independent intellectual
property rights. Therefore, the integration of scientific,
technological, and organizational management, as well as
institutional mechanism innovations, through effective EM
is necessary to realize comprehensive integration innova-
tion and thereby achieve project goals.
The present study investigates the effects of new-

generation IT on HE and intelligent manufacturing
engineering and then analyzes the key challenges and
problems in management activities, including cross-
lifecycle management, network collaboration manage-
ment, task integration management of innovative devel-
opment, operation optimization of smart factories, quality
and reliability management, information management, and
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intelligent decision making for HEIM. Then, the current
research status, future research opportunities, and the
directions of each issue are explored. Figure 1 shows the
relationship among the key issues on engineering manage-
ment for HEIM.

2 Remarkable influence of new-generation
IT on engineering management for HEIM

2.1 Changes in the HEIM industry

New-generation IT is reshaping manufacturing industries
and has introduced collective technological revolution
characterized by greenness, intelligence, and ubiquity in
almost all fields. New technological and industrial
revolutions are emerging. Globally, new IT has become
an integral part of the HEM innovation system. New
enterprise–user relationships have been formulated due to
the rapid and easy interaction between humans and the
internet. Moreover, the organization and management
modes of HEM are changing. All of these phenomena have
promoted radical innovations in technology and manage-
ment that exert a profound influence on the manufacturing
model and development strategy of the HEM industry.
Construction technology for product system. New-

generation IT is continuously integrated into HE products
and is an indispensable part of the product system, which
gradually evolves products into intelligent products and

smart, connected systems. Ultimately, the intelligence
level, performance, and application scope of HE have
advanced, improved, and expanded, respectively.
Product life cycle management. New-generation IT is

applied to the entire life cycle of HEM processes, including
product R&D, production, usage, and maintenance
remanufacturing activities. This application improves the
innovation design capabilities of HE and the intelligence of
production and maintenance, reduces the manufacturing
time and costs, and decreases the risk of manufacturing.
Organization of manufacturing resources. New-

generation IT is widely used in the collaborative processes
among suppliers, vendors, and collaborators, thereby
building a global network for manufacturing and optimi-
zing the value chain and network. Thus, market demands
can increase rapidly, global manufacturing resources can
be organized efficiently, and the utilization efficiency of
these resources can be improved.
Innovation in the manufacturing business model.

New-generation IT accelerates the servitization process of
HEM. All services are brought into the sales scope, and the
boundary between products and services has become less
obvious. The existing model of physical product-oriented
sales is projected to be replaced by a model of service-
oriented sales based on physical products.
Reconstruction of the enterprise ecosystem. The

manufacturing value network is the natural ecological
environment for node enterprises. Under the new-generation
IT environment, restructuring the production factors of HE

Fig. 1 Relationship among the key issues on engineering management for HEIM
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companies is inevitable and is expected to lead to the
reconstruction and optimization of the enterprise ecosys-
tem.

2.2 Trends and new characteristics

The deep integration between new-generation IT and the
manufacturing industry is changing the relationship among
manufacturing systems, people, organizations, society, and
the environment. This integration is expanding the value
chain of HE products, thereby complicating the techno-
logies of manufacturing. The influence of this phenomenon
on the development of society and the economy is
extensive, and collaborations in development, production,
and services are increasingly intense. Trends in globaliza-
tion, collaboration, and intelligence are emerging, along
with new manufacturing models, such as large-scale
customization and service-based manufacturing and colla-
borations. The HEIM process presents new features.
Diversification of manufacturing data. HEM informa-

tion product types are diverse. Business data include
concept design, detailed design, manufacturing process,
and packaging and transportation data generated from
internal and external enterprises and the IoT. Operation and
maintenance data include operation status, maintenance
plan, and service evaluation data. Therefore, manufactur-
ing data are currently characterized by complex sources,
rich types, large volumes, low value density, and rapid
updates.
Servitization of manufacturing products. The rapid

development of the internet and big data, mobile comput-
ing, the IoT, cloud computing, and other IT tools has
enabled HE products to evolve into smart-connected
products. In this context, HE products can be converted
into a series of integrated services to provide new value for
users throughout the product life cycle.
Personalization of manufacturing mode. The rapid

development of new-generation IT provides manufacturers
with a way to ensure timely communication with
customers. This development enables companies to meet
customer needs rapidly and accurately and achieve large-
scale customized production at a low cost according to
customer requirements.
Coordination of manufacturing process. The compe-

tition for HEM under the environment of new-generation
IT is no longer between individual enterprises but among
the entire value network. Enterprises must integrate the
value chain horizontally, establish alliances with manu-
facturing companies vertically, and use open innovation
platforms to converge on globalization manufacturing
resources and socialized smart resources to finally engage
in collaborations in the manufacturing process.
Globalization of manufacturing resources. In the

new-generation IT environment, the entire enterprise is
regarded as the main body of manufacturing resources. It is
also considered to be made up of independent functional

units, such as equipment, production lines, and production
workshops, which can be converted into manufacturing
resources. HEM-related companies apply their own
manufacturing resources by utilizing IT to participate in
the global collaborative manufacturing process and realize
the globalization of manufacturing resources.
These new features have changed the interactive

methods and behavior methods among individuals,
organizations, and resources in the HEM process. A series
of changes in the management of HEM projects have been
implemented. (i) Organizational forms have evolved from
a single company to a cross-border manufacturing
ecosystem based on the value chain and network.
(ii) Operational decision-making models have been
transformed from event-driven models to data-driven
real-time decision-making models. (iii) Collaborative
manufacturing methods have moved from static collabora-
tive manufacturing based on the supply chain to dynamic,
adaptive shaft-spoke collaborative manufacturing. (iv)
Finally, the manufacturing production mode has shifted
from large-scale manufacturing production to large-scale
personalized manufacturing driven by data and services.
In summary, HEIM is system engineering with deep

integration of technology and management, and its core
technology is engineering management. Project manage-
ment theory and technical problems that must be solved in
the development of HE with independent intellectual
property rights include cross-lifecycle management, net-
work collaboration management, task integration mana-
gement of innovative development, operation optimization
of smart factories, quality and reliability management,
information management, and intelligent decision making
for HEIM. The scientific management of HEIM engineer-
ing facilitates the coordination of the relationships among
engineering systems and the project environment, science
and technology, talent and capital and other resources, and
the engineering activities in various departments and units.
With such coordination, achieving goals is relatively easy.
In this regard, the value goals, management solutions, and
theoretical approaches of HEIM must be analyzed from a
broad perspective.

3 Cross-lifecycle management of HEIM

Since the beginning of the 21st century, the cross-lifecycle
management of HEIM has broken through the barriers of
traditional design, manufacturing, and service. Modeling
and optimizing HEIM ecosystems have been performed
chronologically at the global level. With the development
of new manufacturing modes such as Industry 4.0, the
industrial internet, and networked manufacturing, the
cross-lifecycle management of HEIM has become a
leading research direction for management concepts and
technological changes in the HEIM field. This section
analyzes the present research on HEIM carried out by
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domestic and foreign academia and industries under four
topics (Fig. 2).

3.1 Integration and optimization of cross-lifecycle business
process in HEIM

The integration and optimization of the cross-lifecycle
business process in HEIM covers development and design,
production and manufacturing, operation and maintenance
services, and other related business process management
(BPM) stages of HE. Under the internet and big data
environment, the demand for decentralized manufacturing
for networked collaborative manufacturing is increasing,
and the production factors and production processes of an
enterprise are expected to undergo strategic reorganization.
Equipment manufacturing enterprises need to understand
the situation, carry out the strategic transformation of
business processes in a timely manner, and build a BPM
platform that adapts to a networked collaborative manu-
facturing environment (McElheran, 2015). The present
situation of domestic and overseas research and develop-
ment is analyzed on the basis of two aspects.
Integration of cross-lifecycle business processes.

Tanriverdi et al. (2007) surveyed 93 large- and medium-
sized US firms to explore how enterprises select the
outsourcing mechanism of their business processes. Whi-
taker et al. (2010) developed a conceptual model to
identify and analyze the corporate level characteristics that
promote the outsourcing of domestic and overseas
business processes. Guo et al. (2014) presented a data
flow model of workflow management and mathematics to
solve the independent multi-stakeholder problem of data
exchange in business process integration under a dynamic

environment. La Rosa et al. (2013) investigated the
construction of an integrated business process model
from the process model collection of shared public
fragments to optimize the most frequently occurring
model fragments.
Optimization of cross-lifecycle business processes.

Gröger et al. (2012) introduced a complete concept of a
manufacturing process warehouse that can serve as a core
part of an advanced manufacturing analysis platform.
Sohail et al. (2015) explained that a process warehouse
resource assessment method can be used for process
improvement. Nguyen et al. (2016) proposed the evolution
of process performance through the concept of staged
phase flow. Senderovich et al. (2016) proposed the
operational performance improvement method according
to queuing network-based conformance inspections and
deviation origin analysis. Sun et al. (2017) adopted a
mirror matrix method based on footprint variant and
parallel programming that optimizes the original process
according to the log.
The current research is mainly focused on aspects that

include heterogeneous business process matching and
sharing, cross-enterprise business process integration,
improvement, and outsourcing mechanisms. In the future,
an in-depth study must explore the flexible integration and
intelligent optimization of cross-lifecycle heterogeneous
business processes in HEIM on the basis of similarity
measurements and massive operational logs, respectively.

3.2 Cross-lifecycle data integration and traceability in
HEIM

Cross-lifecycle data integration and traceability in HEIM

Fig. 2 Key research issues in cross-lifecycle management of HEIM engineering
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cover multi-source, multi-type, and multi-modal data
sources from all stages of product development, design,
manufacturing, use, and recovery. Through data analysis
and mining, an effective model is established to realize
data integration and traceability management. This section
provides an analysis of the development status of domestic
and foreign research from three aspects.
Cross-lifecycle data integration in HEIM. Morris

et al. (2004) focused on data integration at different stages
of the equipment life cycle and investigated the integration
of equipment life cycle data, data matching, data synthesis,
and information service. Maltzahn and Anderl (2011)
proposed a method to generate bill of material (BOM) on
the basis of the requirement specification for reusing
product knowledge semi-automatically. Zhou and Wang
(2009) proposed the integration of multi-source hetero-
geneous data on the basis of middleware.
Cross-lifecycle data traceability in HEIM. Xu et al.

(2010) focused on the problem of closed-loop tracking and
feedback of equipment information and proposed a data
tracing framework composed of system, process, and data
layers. Liang and Wang (2013) examined the content
recommendation of webpages based on users’ usage logs
using origin tracking theory. Zhang et al. (2012) proposed
a rule-based traceability algorithm for data origins. Tang
and Yun (2008) established a quality data integration
model and emphasized the traceability of quality data.
Cross-lifecycle multimodal data correlation in

HEIM. Yazdi and Kahani (2014) analyzed a large body
of semantic data to conduct association rule mining and
enrich the semantics with the meaning of ontology.
Nugraheni et al. (2016) presented a framework to develop
a semantic data warehouse that can deal with incomplete
and heterogeneous data. Bao et al. (2014) designed data
integration and fusion architecture for the information
island problems brought about by massive heterogeneous
data and subsequently proposed an algorithm to deal with
conflicts by using metadata.
Shortcomings are still observed in the integration and

traceability of cross-lifecycle data in HEIM. In terms of
data integration theory, the current research mainly focuses
on product life cycle maintenance based on IT. In terms of
data traceability theory, a variety of research on scientific
workflow, semantic web, and biology is available, but
related works on the origins of equipment cross-lifecycle
data are limited. In terms of multi-modal data correlation
theory, studies on the integration of heterogenous cross-
lifecycle data with multiple sources, organic data correla-
tion by means of semantic integration, and masking the
physical and logical differences between data are also
available.

3.3 Discovery and fusion of external information resources
for HEIM

In the internet environment, data sources are highly

dispersed and are extremely complicated and fragmented.
The large volumes, complex correlations, and diverse
goals of internet data strongly contradict the management
approach to internal data with high concentrations, regular
correlations, and clear goals. However, once organic
integration is achieved, the internal information manage-
ment of HE enterprises can be injected with strong vitality
and impetus for innovation (Winnig, 2016). The present
situation of domestic and overseas research and develop-
ment is analyzed from the following aspects.
Discovery and acquisition of external information

resources for HEIM. Wang et al. (2017) conceptualized
MRO II and proposed the comprehensive utilization of
internal and external information in enterprises. Hegge and
Wortmann (1991) described the general product model and
proposed a basic management plan around the correlation
of life cycle information. Romanowski and Nagi (2005)
proposed that material lists are modeled by disordered trees
and that a quantitative method is used to compare structural
differences by distance measurement. As a result of the
complexity of external internet information, a traditional
relational database cannot meet the requirements of
extraction and fusion. Therefore, Angles and Gutierrez
(2008) examined various types of graph databases and
reviewed their development and evolution.
Integration of external information resources for

HEIM. Paulheim (2017) extensively reviewed the evolu-
tion and application of knowledge graphs. Lim et al. (2011)
presented the idea of using semantic annotation to integrate
different product data models and build a connection on
top of these product models. Yang et al. (2016) proposed
BOM-based ontology architecture to aid the design of
intersectoral auxiliary systems. Ding et al. (2014) and
Wang et al. (2017) used big data technology to extract
useful information from industrial monitoring data to
support the prediction of part demands, abnormal indivi-
duals, and so on. With the introduction of industrial
internet by GE and Siemens, attention was given to the
integration of internal and external information in the
industrial field. GE Digital began to manage the products
in its asset data service and developed a graph database for
asset management on the basis of Cassandra’s distributed
data graph.
The discovery and fusion of external information

resources for HEIM is still in its infancy, and further
studies on how to define theories, methods, and applica-
tions effectively should be performed. In the future, the
discovery and integration of external information resources
for HEIM based on knowledge graphs will become an
important development trend with the popularization of
industrial internet.

3.4 Quality control of cross-lifecycle data for HEIM

Quality problems are particularly critical in cross-lifecycle
data for HEIM. Batini et al. (2009) showed that identifying
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and resolving conflicts and inconsistencies in data have
become an important research topic. Most existing
cleaning techniques for traditional relational data are not
applicable to quality problems in the cross-lifecycle data
for HEIM, particularly the quality of sequence data
generated by HE, such as wind power units. This section
analyzes the development status of domestic and overseas
research from three aspects.
Data quality measurement theory and profiling.

Abedjan et al. (2015) investigated the latest data profiling
methods, including simple statistical measures, single-
column data analysis indicators, and multi-column correla-
tion analysis methods. Song and Chen (2011) proposed
differential dependencies and introduced a similarity
measure to both sides of the constraint rule. Chu et al.
(2013) proposed denial constraints to profile data size
equality.
Poor data cleaning and correction.Kolahi et al. (2009)

found that the minimum data repair problem based on
functional dependencies is a nondeterministic polynomial
(NP) hard problem that requires the design of an efficient
approximation repair algorithm. Zhang et al. (2010)
proposed the use of absolutely correct master data to
modify data with editing rules. In addition to the method
based on the constraint rule, Bergman et al. (2015)
considered user participation by utilizing user interaction
and feedback on query results to clean up data.
Data alignment technology and optimization of data

acquisition. Zhang et al. (2010) showed that time labels
for sequence data often have errors due to various factors
in a distributed environment. Zhu et al. (2014) investigated
the matching alignment of discrete event sequence data.
According to the alignment of time series data, Müller
(2007) introduced dynamic time warping by adjusting the
alignment of two time series dynamically to minimize the
corresponding point distance.
Therefore, the existing profiling analysis technology for

traditional relational data cannot be directly applied to the
HE operation and maintenance service (HEOMS) data of
sequential data type. Moreover, neither data cleansing nor
repair techniques based on functional dependencies are
applicable to sequence data. The alignment of sequence
data should be explored further on the basis of the existing
discrete event data alignment.

3.5 Challenges and research opportunities

Four problems exist in the cross-lifecycle management of
HEIM in the internet and big data environment. (i) As a
result of the intricacies of products themselves, the
complexity of HEIM determines the level of difficulty of
the life cycle manufacturing process, which involves the
large-scale multi-level business process integration and
optimization problem in cross-enterprise collaboration. (ii)
Large amounts of data are generated and consumed during
the HEIM life cycle, and the bidirectional correlation and

traceability of cross-stage, long-period, and multi-source
heterogeneous data are inevitable technical challenges. (iii)
An open source and sharing economic model enables HE
to realize cross-border data integration and utilization, and
the discovery and integration of external and transbound-
ary information resources of HEIM have become technical
hot spots. (iv) The quality of HEIM data are directly related
to the quality of engineering management for and decision
making in HEIM, and innovating the quality control
method for ensuring the quality of cross-lifecycle data
quality has emerged as a pressing challenge. The main
research topics are as follows.
� Integration and optimization theory for cross-

lifecycle business processes of HEIM in the internet and
big data environment: Unified modeling and hetero-
geneous integration theory and technology of cross-
lifecycle business processes in HEIM; log data collection
for cross-lifecycle business processes and correlation
technology; measurement of key indicators and optimiza-
tion theory for cross-lifecycle processes based on business
log data; improvement strategy for business process
models based on business log mining.
� Data integration and traceability of HEIM in

internet and big data environment: A neutral BOM
automatic generation method, cross-lifecycle data correla-
tion analysis theory, and change impact analysis technol-
ogy for BOM instance; modeling of the origin of complex
event data of HEOMS, data origin descriptions, and data
origin tracing methods; cross-lifecycle time series data
with high throughput, unstructured data, and correlation
analysis theory for BOM diagram data; multi-modal
semantic fusion analysis theory.
� Discovery and fusion theory for external informa-

tion resources of HEIM in the internet and big data
environment: Method of ontology generation in HEIM
based on material inventory characteristics; external data
discovery and collection method for internal and external
life cycle data of enterprises in HEIM; development of
theoretical framework of information cross integration in
the entire life cycle of complex equipment based on
semantics through concept knowledge graph generation
and utilization method based on collection information.
�Data quality control theory of HEIM in the internet

and big data environment: Research on quality control
theory of service data quality of HE; methods for data
quality measurement and profiling theory of HEOMS; a
method for data cleaning and repair as part of HEOMS; an
optimization strategy for HEOMS data collection; forma-
tion of mechanism for HEOMS data flow monitoring.

4 Network collaboration management for
HEIM

Internet and big data technologies have revolutionized the
network cooperation in HEM by allowing a full integration
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of manufacturing processes and real-time data. This
development has offered a new background for academic
research on cooperative management theory in HEM. The
research conducted by domestic and foreign scholars can
be categorized into the following: (i) end-to-end integra-
tion and collaborative optimization theory of HEM supply
chain, (ii) construction of a HEM service chain and
cooperative scheduling method, (iii) value modeling and
evaluation of the HEM network, and (iv) prediction and
dynamic evolution of HEM.
The recent developments in these areas are discussed in

the following sections. The relationships are shown in
Fig. 3.

4.1 End-to-end integration and collaborative optimization
in the HEM supply chain

Data integration and collaborative optimization in the
HEM supply chain aims to shorten the production cycle
and improve its value by balancing the relationships
among costs, revenue, and service time. Supply chain
contracts are the basis of the collaborative optimization of
the supply chain. An important research area is how to
coordinate the procurement, distribution, and service
strategies of players in the supply chain through contracts.
The accurate definition, measurement, and evaluation of
supply chain risks are essential to enhance the robustness
and effectiveness of the HEM supply chain. In the area of
supply chain contracts in manufacturing enterprises, Sun
and Debo (2014) discussed supply chain profit maximiza-
tion problems with long-term procurement contracts in a
turbulent market environment through the cooperation of

supply chain players. Zhang et al. (2013), Zhang (2010),
and Kayış et al. (2012) investigated the issues in designing
supply chain contracts to control quality, reliability, and
costs in the supply chain cooperation under information
asymmetry. Kim and Netessine (2013) and Roels et al.
(2010) discussed the impact of supply chain information
sharing and supply chain contracts on cooperation in
product design phases. Arshinder et al. (2011) reviewed
the literature on supply chain collaborative optimization in
manufacturing enterprises and explained that designing
collaboration strategies for supply chain utility maximiza-
tion is necessary. Xu and Zhai (2010) examined a two-
phase supply chain collaboration problem. They used
fuzzy numbers to capture the demand and prove that the
expected profit of the supply chain with cooperation is
greater than that without cooperation. Foreman et al.
(2010) took Dell as a research case and minimized the cost
of the supply chain by controlling the supplier’s distribu-
tion path and inventory in the distribution network from
the view of the center-to-central manufacturing. Numerical
results reveal that the approach reduces the supply chain
cost by 60%. In the area of risk control in the operations
management of manufacturing supply chains, Heckmann
et al. (2015) performed a comprehensive literature review
of the definitions, methods, and models related to the risk
of supply chains. They claimed that the definition of
“supply chain risk” in the existing research is fuzzy
and unquantifiable. The measurement indices included
variance and standard deviation, and a risk threshold
analysis method was adopted. The formulation and
optimization methodologies included mathematical pro-
gramming models and heuristic algorithms. Tummala and

Fig. 3 Key research issues in network cooperative management for HEIM
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Schoenherr (2011) reviewed the literature on supply chain
risk management from the aspects of risk identification,
measurement, assessment, and management.
This review shows that the literature focuses on solving

the problem of cooperative optimization in the traditional
supply chain and that research on the HEM supply chain is
limited. In contrast to the traditional manufacturing supply
chain, in which the product procurement cost is a primary
concern, the HEM supply chain is sought to be optimized
in terms of contract design with consideration of product
quality and production cycle. Compared with the tradi-
tional supplier–retailer supply chain network, the coopera-
tion network becomes complicated in the HEM supply
chain, in which the supply chain contract design,
cooperative optimization, and risk control form an
interactive closed loop. Contracts and collaborative
optimization objectives can affect the formulation of risk
models and evaluation results. Moreover, risk control
measures are embodied in the constraints of contract
design and cooperative optimization problems. Supply
chain utility achieves optimum results through close loop
regulation. Existing research discusses risk control without
considering other phases in the high-end supply chain
optimization problem. A comprehensive study on contract
design, collaborative optimization, and risk control in the
HEM supply chain is an important task in the future.

4.2 Construction of HEM service chain and cooperative
scheduling method

The manufacturing service chain is a collection of
intermediate services for a manufacturing enterprise during
the entire life cycle of a product. The manufacturing
service chain is dynamic, complex, and temporal. Accord-
ing to advanced management theories for the activities of
manufacturing enterprises, enterprises are the customers in
the manufacturing service chain, products are the service
targets, information is the foundation, service is the
purpose, and the service chain integrates manufacturing
and service. In the area of construction of the manufactur-
ing service chain and evaluation of service providers,
Ching et al. (2011), Cao et al. (2013), and Wei et al. (2013)
investigated the problem of service ability management;
although the numbers of service providers and retailers
they reviewed were different, they all aimed to maximize
service quality. Jin and Ryan (2012) defined a supplier
scoring function that includes a random probability
selection model constructed by analyzing the competitive
relationship of suppliers. In the area of outsourcing and
cooperation in the manufacturing service chain, Zhou and
Chen (2012) claimed that outsourcing can reduce supply
chain costs and competition through scale effects.
Enterprises can focus on the core business to improve
service levels and cope with the uncertainty of demand
with outsourcing. Liang and Atkins (2013) investigated the

combination of outsourcing and service-level contracts
using principal–agent theory. In the area of cooperative
operation in production scheduling and service chains, Liu
et al. (2013) studied the impact of logistic service quality
on service chain cooperation. Stavrulaki and Davis (2014)
reviewed the strategic decision problems of service chains.
Liu and Xie (2013) examined the multi-stage character-
istics of logistic service cooperation and proposed a three-
level logistic service quality cooperation model for the
service supply chain. Yeung et al. (2011) considered
delivery time, logistics time, and inventory costs and a
system profit maximization problem that includes two
levels of centralized and decentralized manufacturers.
This review reveals that the existing research focuses on

the outsourcing and collaboration of traditional manufac-
turing supply chains. However, under a big data environ-
ment, the HE customization requirements are higher, the
production batch is smaller, and the internal and external
cooperative environments of manufacturers are more
complex than those under traditional environments. For
cooperative operation and scheduling in the service chain
of equipment manufacturing, HEM is characterized by
small inventory scales, simple logistics, and complex
supply chain networks. Research on combining enterprise
scheduling and service chain operation optimization is
rare, and the constraints of time and space costs have not
been considered. Future research could consider the
characteristics of HEM service chains. Models and
algorithms that achieve high efficiency convergence and
obtain global optimal values are highly desirable.

4.3 Value network modeling and evaluation for HEM

The value network of HEM is complex and is formed by
cross-connecting various value elements in the manufac-
turing supply chain and the service chain. Constructing a
value network model that can capture the unique
characteristics of HEM and accurately quantifying each
element of the value network are essential given the large
uncertainties in the external environment and internal
interactions. A dynamic and quantitative evaluation of
value networks is also critical to the dynamic and uncertain
behavior of each element of the value network. Value
network modeling and evaluation has been studied
extensively in the existing literature.
Value network modeling. Bititci et al. (2004) proposed

a model containing value transactions and different
collaboration features for collaborative environments.
Jayaram et al. (2004) constructed a structural equilibrium
model to link initial conditions to a value creation
mechanism. Zhang (2006) studied an economic problem
that includes multiple heterogeneous supply chains and
constructed a corresponding network model. Wang et al.
(2008) initially divided the industrial value chain into
several stages and then used a directed connected graph to

428 Front. Eng. Manag. 2018, 5(4): 420–450



express the results intuitively. Finally, an industrial value
model was established through an industrial value matrix.
Byramjee et al. (2010) proposed a total value model for
business systems to study the role of relationship quality in
mitigating individual values.
Quantitative evaluation of value networks. Martinez-

Hernandez (2003) proposed a value cube framework to
describe how organizations should collaborate and manage
their operations, resources, production capacity, and
competitiveness to create value. Bititci et al. (2004)
studied the theory of value creation in collaborative
environments and defined two values, namely, internal
(shareholder value) and external values (value reference).
Reiner (2005) studied the customer-oriented promotion
and supply chain process assessment through simulation
models. Wang et al. (2008) proposed two evaluation
criteria, namely, throughput and reliability, using an
industry value matrix to evaluate the competitiveness of
a specific industrial value chain. Saranga andMoser (2010)
developed a comprehensive performance measurement
framework by using the classic two-stage value chain data
envelopment analysis models.
The existing studies on value change modeling and

quantitative evaluation for supply and service chains
mainly target general manufacturing processes. In addition,
the evaluation systems mainly focus on qualitative
indicators and rarely consider quantitative evaluation
tools, which are highly desirable. On the contrary, HEM
has unique characteristics, such as diverse customer
demands, collaborative manufacturing processes, and
socialized manufacturing capabilities. It requires multi-
level manufacturing resource self-organization and integra-
tion across the value chain. With the advent of industry 4.0,
the traditional supply chains have evolved toward a highly
connected supply chain ecosystem that is fully “transpa-
rent” to all the players involved. Therefore, addressing the
impact of the IoTand big data techniques is necessary when
constructing value network models. The dynamic evolution
process of the value network model and the evaluation and
real-time feedback of indicators should be comprehensively
considered to achieve an efficient and dynamic quantitative
assessment of different value networks.

4.4 Dynamic evolution and prediction of value networks in
HEM

The value networks in HEM have undergone significant
changes in the context of the internet and big data
environments. The network structure of various resources
in the manufacturing ecosystem has presented a compli-
cated, dynamic, and diversified form. Key elements change
constantly over time due to the intensive interaction among
various internal and external resources. Therefore, a
comprehensive and quantitative knowledge of correspond-
ing network values is necessary for HEM systems. In

addition, key elements and indicators of future value
networks should be predicted dynamically, and an accurate
judgment of changes in the overall network structure
should be formed. The main relevant research areas are as
follows.
Prediction of value network factors and key indexes.

Oh and Özer (2012) studied the influence of time changes
on forecasting under uncertain conditions by establishing a
generalized model that considers the prediction of multiple
product makers for the same product. Nasser and Turcic
(2017) considered the demand forecast for manufacturers
when retailers hold comprehensive private sales informa-
tion with uncertainty and subsequently proposed a policy
in which manufacturers could temporarily reduce product
price. Dalal et al. (2014) applied the concept of a multi-
agent system in the architecture of the demand forecasting
tool, which can handle the complexities and limitations of
the traditional demand forecasting system used in a real-
time supply chain management system. Williams and
Waller (2010) considered a case in which suppliers can
access seller data and found that demand signals as
prediction resources are more useful than order data.
Dynamic evolution and mechanism of value net-

works. Guide and van Wassenhove (2009) proposed four
aspects for closed-loop supply chain evolution: Remanu-
facturing, remanufacturing to reversible logistics, rever-
sible supply chain coordination, and evolution in the
direction of markets and prices. Lusch et al. (2010)
proposed a robust model as a necessary service agent from
the perspective of service-oriented value networks.
Marsillac and Roh (2014) considered interactions among
products, processes, and designs in the supply chain and
pointed out that the changes in product design cause a
series of changes in production operations. Cheng et al.
(2011) examined factory changes in a manufacturing
network and demonstrated that changes in a manufacturing
plant affect the subsequent network of others in the
manufacturing network.
In summary, studies on the prediction and evolution of

HEM value networks are limited. Forecasting indicators in
the literature mainly focus on demand and sales forecasting
and do not consider the characteristics of HE value
networks. Existing studies have not integrated the internet
and big data into value networks to conduct monitoring
and anomaly detection. HEM is characterized by huge
data, high dimensionality, complex networks, and key
elements that constantly change over time due to the
interactions of various internal and external resources.
Therefore, considering various uncertainties and correla-
tions is necessary when studying HEM value networks to
form a comprehensive and quantitative knowledge of the
network value of systems. This consideration will help to
dynamically predict the key elements and indicators of
future value networks and form an accurate judgment of
the overall changes in network structure.
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4.5 Challenges and research opportunities

HEM faces new situations and opportunities in policy
orientation and the industrial structure of global competi-
tion. Thus, establishing a collaborative management theory
for HEM networks in the context of the internet and big
data technologies is necessary. This theoretical foundation
is crucial for the reform and development of the HEM
industry in China. Such theory is also closely related to the
improvement of overall operational management levels
and the core competitiveness of the country. Therefore, in
the dimensions of time, space, and tasks, a thorough study
of the major scientific issues in the collaborative manage-
ment of HEM networks under the internet and big data
environments is required. Current research includes the
end-to-end integration and collaborative optimization of
the HEM supply chain, the construction of manufacturing
service chains and collaborative scheduling, value network
modeling and evaluation, and value network prediction
and dynamic evolution. In these areas, the results of end-
to-end integration and collaborative optimization provide a
theoretical basis for the study of collaborative scheduling.
These results are integrated and thus provide a solid
research foundation and theoretical support for value
network modeling and evaluation. Value network predic-
tion and dynamic evolution can be studied further on the
basis of these results. The main research questions are
presented as follows.
� End-to-end integration and collaborative optimiza-

tion for the HEM supply chain. Analyzing the
characteristics of HEM supply chain agreements in the
internet and big data environments is necessary. Through
such analysis, efficient collaborative optimization methods
for the HEM supply chain can be constructed, and the
optimization problems of each node can be quickly and
efficiently solved in the dimensions of time and quality. In
this way, the benefit of the entire supply chain is
maximized.
� Construction of manufacturing service chain and

collaborative scheduling. Achieving this goal requires a
theoretical research framework of collaborative optimiza-
tion for HEM service chains that considers the emerging
technologies under the internet and big data environments.
Evaluation systems and service resource optimization
configuration plans are also necessary for service chain
construction. Finally, collaborative optimization schemes
can be formed by combining the design of mechanisms and
dynamic operations for manufacturers and service provi-
ders in HEM.
� Value network modeling and evaluation for HEM.

Value network models should be initially built for HEM
supply and service chains with consideration of their
characteristics in the internet and big data environments.
These value network models can then be used as basis to
construct systematic and quantifiable dynamic value evalua-
tion systems that consist of multiple objectives and levels.

� Prediction and dynamic evolution of value net-
works. Considering various uncertainties in value net-
works given the new characteristics of HEM value network
nodes is necessary to achieve precise prediction and
evaluation. With such consideration, the correlations
between various factors and indicators can be analyzed,
and the performance of value networks can be evaluated
and forecasted.

5 Task integration management of innova-
tive development in HEIM

HEM develops toward digitization, intelligence, network-
ing, and service orientation given the breakthrough in the
development of new-generation IT. The process of HE
innovation development has also demonstrated new
features of customized manufacturing, open-source needs
assessment, networked tasks, and systemized integration
and verification. In recent years, many studies on task
requirement analysis and management of HE develop-
ment; task decomposition and resource allocation; task
network analysis and evaluation; and system integration,
verification, and evaluation have been undertaken to
support fundamental theories for the study of integration
management for the innovative development of HEIM
(Fig. 4).

5.1 Task requirement analysis and management for the
innovative development of HEIM

The viable solution to acquiring the requirements of the
innovative development of HEIM is to combine the
requirements collected by traditional survey methods and
the potential hidden needs of stakeholders. With this
perspective, we review the following closely related key
technologies.
Web data mining. The determined potential demand for

the innovative development of HEM is further processed
and refined on the basis of the collection and pre-
processing of original web data, including automatic text
abstraction, topic detection and tracking, and sentiment
analysis. Automatic text abstraction refers to the process of
computers automatically extracting content from the
original text and accurately generating the core content
of a document. Query-oriented single documents can be
summarized using a deep auto-encoder to compute a
feature space from a term-frequency input (Yousefi-Azar
and Hamey, 2017). Topic detection and the tracking of
cluster public opinion from the internet lead to the
discovery of interesting topics, which may be continuously
monitored. Semantic frame-based topic detection is
achieved through highly automated, knowledge-supported
frame generation and matching mechanisms, taking
advantage of multiple knowledge sources and extracting
discriminative patterns from documents (Chang et al.,
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2017). Topic tracking systems are improved by adopting
keyword weights and incremental learning. Changes in
topic structure and key topics can be tracked by a self-
learning finite mixture model (Li et al., 2015). Text
sentiment analysis or sentiment mining refers to the
process of detecting, analyzing, and mining subjective
texts that embody the preferences, opinions, and emotions
of users. Recently, a divide-and-conquer approach that
applies a neural network to classify the sentiment of
sentences has been proposed (Chen et al., 2017).
Knowledge graph construction. Raw data obtained

from the internet have unstructured characteristics, thereby
posing great challenges in discovering requirements from
original data. Establishing intelligent semantic retrieval
networks provides a solution to requirement analysis
(Schouten and Frasincar et al., 2016). The semantic
network is a network of data, including knowledge graphs,
that provides users with a query environment and returns
data that are processed and inferred in a graphical manner.
The overall construction process is divided into three
stages, namely, information extraction, knowledge fusion,
and knowledge processing. The first step of information
extraction is the extraction of entities and the extension of
the entity corpus iteratively through an open-domain
unsupervised learning algorithm (Yu et al., 2016). After
the extraction of entities, a series of discretely named
entities are obtained. However, extracting the relationship
between these entities, that is, relationship extraction, is
also necessary. Relationships can be extracted by methods
based on self-supervised learning and conditional random
fields (Zhang et al., 2016). Ambiguity, redundancy, and
error can be eliminated through knowledge fusion such as

entity linking and knowledge mergers. Entity linking,
which mainly includes entity disambiguation and co-
reference resolution, refers to the operation of associating
the entity object extracted from the text to the correspond-
ing entity object in the knowledge base. A general
framework has been presented to link named entities in
web free text with a heterogeneous information network
(Shen et al., 2018). Finally, when a knowledge graph is
constructed, the knowledge input can be obtained from a
third-party knowledge base or structured data for further
knowledge processing.
In general, the technology for web data mining and

knowledge construction has been relatively well deve-
loped, but research on task requirement analysis and
management for the innovative development of HEM is
limited because these studies started later. Therefore,
studying the scientific issues in the requirement analysis of
the innovative development of HEM is a key task for the
future.

5.2 Task decomposition and resource allocation for the
innovative development of HEIM

The innovative development of HEIM is a complex system
engineering task that integrates fields, industries, regions,
and disciplines. The first task of innovative development is
to transform individualized user requirements into system
design and development task requirements. In the
innovative development of HEIM, coordinating the
allocation of resources, such as people, finances, and
materials, for each development unit and team and
optimizing the allocation of resources for tasks are

Fig. 4 Key research issues in task integration management for the innovative development of HEIM
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necessary.
After the requirement analysis of innovative develop-

ment, the results of the requirement analysis and task
decomposition should be translated into the corresponding
platform or system to facilitate their implementation.
Zheng et al.(2015) translated the requirements of satellite
systems into tasks to improve the scheduling and planning
of on-orbit satellite missions. Product collaborative design
in distributed heterogeneous environments is increasingly
important given the continuous expansion of HEIM
enterprises. Further studying the mapping relationship
between requirements and functions with collaborative
designs is necessary (Liu et al., 2014). In the activity-based
methodology delivered from the US Department of
Defense Architecture Framework, each view product is
developed, and the key relationships are correlated (Lee
and Park, 2015). The optimization of resource allocation is
a main content of the task optimization for innovative
development in HEIM. The resource-occupying priority
rules in portfolio projects are related to influencing factors
such as network density, iterative intensity, and resource
conflict degree (Browning and Yassine, 2016). With regard
to the optimization of resource allocation, the literature
uses multi-objective evolutionary algorithms (Lin and
Chiu, 2018). During the implementation of HE develop-
ment tasks, the task progress and resource status change
dynamically. Further studying the development of task
dynamic resource allocation is necessary (Bertsimas et al.,
2017).
In general, the current literature already includes some

research on task decomposition and resource optimization.
However, few studies have focused on task decomposition
structure and resource allocation for the innovative
development of HEIM. In terms of the task decomposition
structure, an in-depth study based on the multi-view
architecture description method should be conducted. In
terms of resource allocation, the resources required for
each sub-task are generally assumed to be fixed, and the
resource allocation in the sub-task should be investigated
further under the condition in which the amount of
resources is variable. In addition, the dynamic resource
allocation of development tasks requires extensive
research. Therefore, carrying out in-depth analysis and
research on task decomposition and resource allocation
optimization is necessary for the innovative development
of HEIM.

5.3 Task network analysis and evaluation of HEIM
innovative development

The relationship between the tasks of HE development
involves multiply attributes and is hierarchical, dynamic,
and networked; thus, traditional modeling methods are not
applicable. At the same time, HE development tasks are
complex and are challenged by a variety of risk factors.
Hence, ensuring the robust scheduling of developing tasks

is critically important. The existing research on the
application of big data and the IoT in engineering project
management mainly focuses on network modeling,
robustness analysis, and critical node identification.
Complex network modeling. Industrial big data are a

key element in the project management for the innovative
development of HE. The rapid development and applica-
tion of IT, such as the IoT and big data widely used in
project management in many industries (Whyte et al.,
2016), have caused revolutionary changes to task network
analysis and the evaluation of HE development projects.
During project management for the innovative develop-
ment of HE, traditional methods such as critical path, Petri
network, and hierarchical task network are limited due to
over-simplified model abstraction, low computational
power, and lack of capability to model complex interac-
tions. Complex networks, as an abstraction of complex
system structure and mechanism, provide an innovative
modeling approach for large-scale engineering project
management. Task organization networks and information
flow optimization are analyzed by applying a design
structure matrix (DSM) and dynamic network analysis
methods in complex project design and implementation
(Parraguez et al., 2016). With interdependent networks as
an effective modeling framework to solve project manage-
ment problems, a generalized percolation model has been
proposed (Yuan et al., 2017), and the impact of
interdependence on the cascading effect in interdependent
networks has been analyzed using analytic solutions and
simulations (Buldyrev et al., 2010). In addition, the
robustness of interdependent networks has been studied,
and several effective strategies have been proposed to
control cascading effect propagation (Hong et al., 2016).
Network evaluation and robustness analysis. The

current literature reviews focus on the selection of metrics
to measure the task completion level for network
robustness analysis and the capabilities to evaluate the
stability of task networks. Many measurements, such as the
multi-metric approach, a system of system frameworks,
and the so-called end-to-end connectivity, as well as an
“average reliability,” have been proposed to evaluate the
reliability and connectivity of networks. Network robust-
ness has been evaluated by the degree of difficulty, for
example, when considering the network being destroyed in
the case of a network outage (Aouchiche and Hansen,
2013). A greedy model with small world properties has
been developed to improve the robustness of heteroge-
neous IoT (Qiu et al., 2016).
Critical node identification algorithms. The identifi-

cation of critical nodes in task networks during project
management can be categorized depending on whether
global information is used. When global information is
used, a variety of network parameters, such as closeness
centrality, betweenness centrality (Brandes et al., 2016),
and k-core score, may be adopted to measure the
importance of nodes. The shortcoming of these measure-
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ments is that the calculation requires knowing the entire
structure of the target network, and the calculation of
certain matrices has high time complexity. Therefore, the
identification of critical nodes with limited information
provides an alternative when these techniques are not
practical. These measurements include local centrality,
PageRank score, and LeaderRank score. The algorithms
for calculating these scores are comparatively simple and
have low accuracy given that only local information is
used. A new measure, efficiency centrality (EffC), has
been proposed to identify critical nodes (Wang et al.,
2017). This approach identifies critical nodes by removing
each node while considering the changes in the entire
network efficiency after removal.
In general, we have identified substantial literature

reviews on the application of the IoTand big data in project
management, as well as many studies focusing on applying
a network approach to facilitate the management of
complex and large-scale projects. However, in the era of
new-generation IT, network modeling approaches and
robustness analysis are rarely used to incorporate the
characteristics of HE development tasks; thus, their
application should be studied in the future.

5.4 Task integration and verification for the innovative
development of HEIM

System integration involves the effective combination of
components or subsystems to provide system functionality
and satisfy system requirements (Hirshorn, 2017). In the
development of complex systems such as those for
equipment manufacturing, system integration faces addi-
tional challenges, including increasing system size and the
need for system adaptability (Neches and Madni, 2013).
With the emergence of IT such as the internet, the elements
of system integration have become increasingly extensive,
and the hierarchical and dynamic features of system
integration have become prominent. As a result of the
diversified elements of system integration, the verification
and evaluation methods in the integration process have
become one of the key topics in related fields.
Complex system integration. Integrated management,

as the core content of project management, has received
considerable attention since the 1980s (Stuckenbruck,
1997). The impact of different integration mechanisms in
R&D projects on project performance has thus been
studied (Sicotte and Langley, 2000). With such research,
integrated content and elements have expanded quickly,
thereby covering information, knowledge, data, resources,
departments, and personnel. In addition, the integration of
knowledge has become particularly interesting to research-
ers. Madni and Sievers (2014) pointed out that system
integration has become the core content of systems
engineering, especially in the fields of national defense
and aeronautics. In the context of such growing complex-
ity, the development and production cycle of projects are

extended along with the expansion of project scale, and the
elements in different phases of the project life cycle must
be integrated. Eslami and Lakemond (2016) studied
internal integration methods for complex products and
found complex network structures and diverse relation-
ships among HE innovative development tasks, as well as
overlaps, crossovers, and iterations. For the design and
development of complex products such as HE, task
networks can be represented by DSM, which plays an
important role in system integration and testing analysis,
internal organization integration, and process integration
and presents a wide range of application prospects
(Browning, 2016).
System verification and evaluation. Verification and

evaluation are important in the task management of large-
scale projects. The earliest verification of project manage-
ment relied on the experience of project administrators and
then on the approach of document-based systems engi-
neering. With the extensive practice of model-based
system engineering, model-driven validation and evalua-
tion are increasingly favored by large-scale manufacturing
companies. Model-driven executable models, discrete
event system simulation, and simulations based on
commercial software are the current mainstream methods.
An integrated system could be problematic due to the

complexity of HE innovative development tasks. Thus,
establishing an appropriate framework for task integration
systems is important. The proposed Bayesian method
integrates model validation and calibration activities into a
single entity and quantifies the uncertainty of different
types of engineering systems (Sankararaman and Maha-
devan, 2015). Evaluating the effectiveness of HE using a
single method is difficult given the unique complexity,
uncertainty, emergence, multi-interest, and other charac-
teristics of innovative development tasks. As a result, a
hybrid approach based on executable models, analytics,
expert knowledge, and other methods is important for the
task evaluation of HE.
In general, the cross-regional and cross-trade character-

istics of HEM are distinct in the new information era.
Existing system integration methods cannot cope with the
convergence and integration of HE innovative develop-
ment task networks. Most traditional offline system
integration processes cannot efficiently use the data and
information dynamically generated during the integration
of HE innovative development task networks. Moreover,
few theories and methods for the verification and
evaluation of dynamic behavior have overlooked know-
ledge, information, resources, organization, and technol-
ogy in the integration process.

5.5 Challenges and research opportunities

In summary, although existing studies have carried out
extensive related work in the areas of demand analysis and
management, task decomposition and resource allocation,
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network modeling and analysis, and system integration
verification, few systematic studies on the management of
HEM exist. Moreover, despite the preliminary achieve-
ments of the application of architectural frameworks and
“V” models, which are advocated by professional
organizations such as NASA, Boeing, and INCOSE,
related practice under new-generation IT is still in its
infancy. Therefore, in light of China’s national conditions
and development requirements in facing the internet and
big data environments, comprehensive work still needs to
be performed to systematically carry out the research on
the integrated management and innovative development of
HEIM. In this regard, user needs analysis, task decom-
position and resource configuration, task network analysis,
and task integration and verification have generated
research attention.

6 Operation optimization of smart factories
for HEIM

The new technology revolution represented by the internet
and big data greatly affects the operation optimization and
management of smart factories for HEIM. New challenges
include complicated production systems and their operation,
intensive use of innovative knowledge, dynamic and
uncertain manufacturing processes, and evident manufactur-
ing service value orientation. In response to these challenges,
much research has been carried out in the following aspects:
Smart factory modeling, knowledge discovery and manage-
ment, adaptive scheduling and optimization, operationmode,
and management innovation. These studies have laid a
theoretical and methodological basis for research on the
operation optimization of smart factories. In the following
sections, we discuss recent developments in these areas. The
relationships are shown in Fig. 5.

6.1 Modeling theory and smart factory method

A national strategy of the Chinese government, “China
Manufacturing 2025,” suggests that smart factories should
be considered an important vehicle to realize intelligent
manufacturing. Recent research on the analysis and
modeling of smart factories focuses mainly on four
aspects.
Building a smart factory model with the industrial

internet. Li et al. (2017) discussed a 5C architecture
composed of connection, conversion, cyber, cognition, and
configuration layers. With real-time data acquisition from a
physical space and feedback from cyber layers, the
intelligent decision making of factories can be implemen-
ted by data fusion and cloud computing. Taratukhin and
Yadgarova (2016) proposed an industrial internet-based
decentralized model benefited by a multi-agent and
service-oriented architecture.
Building a smart factory model with a cyber-physical

system (CPS). Shin et al. (2018) designed a dynamic
reconfigurable factory CPS, which is capable of self-
management, on the basis of support vector machines
(SVMs). Adamson et al. (2017) constructed an event-
driven manufacturing model on the basis of distributed
collaborative CPSs; this model achieves distributed control
and the adaptive matching of manufacturing resources and
tasks.
Building a smart factory model with cloud manu-

facturing. Xie et al. (2017) proposed a linked semantic
model. Distributed and isolated manufacturing information
resource services, processed by semantic matching algo-
rithms, are integrated and then shared in the manufacturing
cloud environment. Lin et al. (2017) proposed a global
optimization structure for cloud manufacturing. The multi-
centric model achieves a balance between manufacturing
resources and capabilities.

Fig. 5 Key research issues in operation optimization of smart factories for HEIM
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Building a smart factory model with a fractal
enterprise. Considering the self-similarity of structures
in factories, Pirani et al. (2016) introduced fractal theory
into the modeling of smart factories as a scalable tool to
promote production efficiency. Bider et al. (2017) put
forward a fractal enterprise model. The fractal factory
model created by the proposed method obtains clear
relationships among all parts of the enterprise.
Therefore, current research focuses on applying various

new IT in smart factory modeling theories and methods to
address the challenges of decentralized resources and
complex structures. However, the results show that the
deep integration of these types of technologies is
necessary.

6.2 Knowledge discovery and management methods based
on industrial big data analysis

With the gradual penetration of big data technology into
industrial fields, extracting potential knowledge from big
data in smart factories has become the key technology for
manufacturing management. This process also plays an
important role in production optimization, fault diagnosis,
and maintenance prediction.
Knowledge discovery. Xu and Hua (2017) summarized

the current status and research strategies of industrial big
data analysis in smart factories and proposed a knowledge
discovery method that is based on deep learning for
equipment fault diagnosis. Luca (2015) proposed a
modified predictive knowledge model to improve the
capability to handle large-scale process data and enhance
the reliability of production processes. Sun et al. (2016)
proposed a new type of deep neural network to implement
unsupervised learning for feature extraction. Maier et al.
(2017) proposed a machine learning-based fault correlation
and diagnosis method. Through offline analysis of fault
data, fault-related knowledge was obtained, and workshop
scheduling was optimized.
Knowledge modeling and management for smart

factories. Chen et al. (2015) proposed a multi-source
knowledge combination scheme for personal customiza-
tion and adopted an ontology-based complementary
knowledge combination mechanism to construct a product
knowledge ontology. Zhang et al. (2016) studied a
collaborative modeling method of performance prototypes
for aerospace products based on ontology. Dai et al. (2015)
proposed a process-oriented ontology knowledge network
to solve reliability modeling and verification problems in
manufacturing industries. Zhang et al. (2014) proposed a
knowledge management method for heterogeneous pro-
duct design/process knowledge.
Evidently, knowledge discovery for smart factories must

fully utilize big data and machine learning. People,
devices, and data of smart factories can be effectively
organized on the basis of knowledge. In the aspect of

knowledge management, ontology-based knowledge
modeling methods play an important role in the imple-
mentation of cross-domain integration and knowledge
reuse.

6.3 Adaptive scheduling and optimization of smart factories
for HEIM

Smart factories run in highly uncertain, random, and
unpredictable manufacturing environments. An efficient
production scheduling system for smart factories must
improve its capability to respond rapidly to dynamic
production processes. Related research includes the
following aspects.
Dynamic scheduling approach of manufacturing

systems. The three types of scheduling approach under
uncertainties include proactive scheduling (Xiong et al.,
2013), reactive scheduling (Priore et al., 2014), and hybrid
scheduling (Nugraheni et al., 2016). Xiong et al. (2013)
studied robust scheduling with random machine break-
downs to enhance their adjustable abilities based on
predictions. Priore et al. (2014) presented a machine
learning-based dynamic scheduling approach that adjusts
dispatch rules in real time. Rahmani and Heydari (2014)
proposed a proactive–reactive scheduling method while
considering unexpected arrivals of new jobs and uncertain
processing times.
Intelligent optimization algorithm for manufacturing

systems. The scheduling optimization problem of manu-
facturing is NP hard and is even more difficult in uncertain
environments. Intelligence-based methods are generally
adopted to obtain approximate optimal solutions under a
reasonable computational complexity (Laalaoui and Bou-
guila, 2014). Available intelligent algorithms for schedul-
ing include genetic algorithm, tabu search, ant colony
optimization, simulated annealing, particle swarm optimi-
zation (PSO), and various hybrid methods (Qiu and Lau,
2014).
Integrated scheduling structure of manufacturing

systems. A systematic scheduling solution with a reason-
able structure has been the focus of researchers in recent
years given that every scheduling model or method often
struggles to deal with dynamic scheduling of complex
manufacturing. GóMez-Gasquet et al. (2011) studied a
framework for improving planning–scheduling collabora-
tion and developed software set in an actual industrial
production environment. Tsai and Huang (2007) con-
structed a scheduling and rescheduling system that
integrates a real-time scheduler and rescheduling mecha-
nism on a simulation platform. Li and Qiao (2012)
discussed three-level scheduling architecture (production
planning, production dispatching, and rescheduling) and
two-level scheduling architecture (production planning
and real-time scheduling).
As indicated by the abovementioned research on

Shanlin YANG et al. Engineering management for high-end equipment intelligent manufacturing 435



scheduling approach, algorithms, and structures, prospects
for future research in this field could include closed-loop
optimal controls for smart factories, industrial big data-
driven scheduling algorithms, and multiple-level inter-
active adaptive scheduling structures.

6.4 Operation mode and management innovation of smart
factories for HEIM

As the typical carrier of smart manufacturing, smart
factories and their management innovation attract the
interest of many researchers, who mainly focus on the
following aspects.
Service-oriented manufacturing (SoM) mode. In SoM

mode, the full life cycle value creation is realized through
the efficient collaboration of productive service, manufac-
turing service, and customer participation. Mendes et al.
(2012) proposed an integration method for the design,
analysis, validation, simulation, and process execution in
SoM systems. Lee et al. (2014) introduced manufacturing
service innovation and smart analytics for industry 4.0 in
big data environment. Guo (2015) put forward new
manufacturing values of “customer-, service-, and
customer-centric” instead of the old ideas of “producer-,
product-, and data-centric.”
Data and model-driven smart production. Fink et al.

(2014) studied the model-based decision support problem
in manufacturing and service networks. Chen (2015)
proposed a manufacturing servitization engineering meth-
odology for the creation of manufacturing services and
service systems. Quintanilla et al. (2016) presented a
design methodology for product-driven applications of
customizable product–process specifications based on
manufacturing services.
Collaborative service configuration, management,

and optimization methods. Zhang et al. (2013) proposed
a methodology that combines social network and colla-
borative filtering techniques for personalized manufactur-
ing service recommendations. Guo et al. (2012) proposed
the concept of resource service composition (RSC) and
studied the measurement method of RSC flexibility in SoM
systems. Zhang et al. (2016) proposed a novel method for
multi-criteria decision making and the evaluation of
manufacturing services based on collaborative filtering
and interval-valued intuitionistic fuzzy theory.
In addition to SoM mode, data and model-driven

production, and service collaborative management, future
research can explore service configuration models, service-
driven smart production and its operation framework, and a
collaborative optimization method for complex business
processes in smart factories.

6.5 Challenges and research opportunities

In the internet and big data era, new technologies provide
challenges and opportunities for smart factories and their

operation management. For operation optimization issues
in smart factories, the focus of innovation should be on
enhancing self-learning, self-organization, and self-
adaptation capabilities. Related research is still in progress,
and possible future research directions are identified as
follows.
� Smart factory modeling theory and method for

advanced equipment manufacturing. With the back-
ground of a cyber-physics system and the industrial
internet, the future research in this field should aim to
realize the adaptive organization of distributed manufac-
turing resources, form flexible factory organizations
combined with fractal theory, and provide an intelligent
cloud service model driven by industrial data and
customized requirements.
� Knowledge discovery and knowledge management

methods based on industrial big data analysis. The
focus of future research of knowledge discovery and
management lies in knowledge ontology modeling and
machine learning-based algorithms to deal with cross-
domain, multi-source, heterogeneous, and dynamic indus-
trial big data. Such focus will help realize the extraction,
reasoning, and application of knowledge in manufacturing
operation management.
� Adaptive scheduling and optimization of smart

factories for HEIM. With an adaptive scheduling
structure for smart factories, the industrial, big data-driven
intelligent scheduling algorithm and closed-loop optimiza-
tion control methods should be studied to provide a
theoretical and technological foundation for the production
optimization of smart factories for HEIM.
� Operation mode and management innovation of

smart factories for HEIM. Future research work should
build the architecture of operation mode and management
method for smart factories from the following two aspects:
i) data and service-driven operations and organization
modes of smart factories and ii) collaborative service
configuration, management, and optimization methods of
smart factories.

7 Quality and reliability management for
HEIM

High-tech equipment usually has complicated structures,
requires large investments, and fulfills important tasks. It
has a long service life with high reliability requirements.
High-tech equipment is manufactured by customization in
small batches and involves multiple research units and
disciplines. Failure data are often limited or absent due to
the high reliability of high-tech equipment, resulting in
difficulties in reliability and quality management. Given
that many research units and suppliers are involved in the
development of high-tech equipment, ensuring adherence
to the requirements of reliability and quality control
presents challenges for the general unit and various
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research units involved. High-tech equipment produces
massive amounts of data related to quality and reliability in
the development, test, production, and usage stages of its
life cycle. In the environment of the industrial internet and
new generation of IT, a large amount of quality and
reliability data can also be collected at different stages from
various departments and levels of research units, e.g.,
monitoring data collected in the manufacturing process and
usage. All these findings motivate the research into data-
driven based quality and reliability management for high-
tech equipment intelligent manufacturing.
In the environment of the industrial internet, researchers

are making full use of big data from different stages in the
life cycles of different equipment and various enterprises
and departments. Breakthroughs are made in data-driven
quality control for high-tech equipment, and big data are
based on high-tech equipment life predictions and
prognostics health management. These research practices
provide technical support to improve the quality and
reliability management of high-tech equipment.
Figure 6 shows the relationships between the main

research topics in quality and reliability management
research for HEIM.

7.1 Big data-based quality control technology of high-tech
equipment intelligent manufacturing

Statistical process control (SPC) technology is the most
commonly used process quality control tool. However,
for complex manufacturing processes (such as high-
dimensional multivariate processes with multiple inputs
and outputs), SPC can neither effectively analyze complex
multidimensional information or quantify process status
and visualization nor can it efficiently identify process
failure sources. Process quality control methods have

evolved from SPC to statistical process adjustment through
statistical process diagnosis (Castillo, 2006). The intelli-
gent learning technologies widely used in manufacturing
process quality control realize intelligent process quality
control and automation, such as the automation of data
acquisition and process monitoring and diagnosis, process
knowledge extraction, and process adjustments. Despite
these advantages, the integration of artificial learning
technologies with SPC is still necessary to achieve efficient
intelligent process quality control. Hence, the integrations
and applications of SPC and artificial intelligence attract
considerable research attention.
Artificial intelligence algorithms, such as artificial neural

networks (ANNs) (Venkatesan et al., 2009), SVMs
(Chinnam, 2002), and fuzzy algorithms (Wang and Chen,
2002), have been successfully applied to the quality
control of manufacturing processes. ANN is one of the
most attractive tools in the study of the application of
artificial intelligence in quality control. Characterized by
nonlinearity, parallel processing, noise tolerance, and good
learning properties, ANNs present good prospects in the
field of quality control, and they have been applied in
monitoring and diagnosis for the application of three
typical manufacturing processes: Single variable discrete
processes, auto-correlated processes, and multivariate
processes (Cheng and Cheng, 2011). However, the
applications of neural networks entirely depend on user
experience due to the lack of strict theoretical systems.
Although Hornik et al. (1989) have proven that feedfor-
ward networks with one nonlinear hidden layer can
approximate any complex nonlinear function with any
precision, finding a suitable neural network configuration
is an NP problem (Judd, 1987).
For a complex manufacturing or chemical industrial

process, principal component analysis (PCA) (Lin et al.,

Fig. 6 Key research issues in quality and reliability management research for HEIM
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2000) is often required to compress or project interrelated
process variables into a few principal components to
monitor processes in low dimensional spaces. Statistical
process monitoring methods, such as PCA, are linear
modeling methods, whereas many manufacturing pro-
cesses are nonlinear in nature. In these cases, process data
are analyzed by nonlinear analysis methods, such as
ANNs, the main element curve method (Zhang et al.,
1997), or the kernel learning method (Lin et al., 2000).
Yang et al. (2012) proposed independent component
analysis to separate multiple signals in process control
and extract independent components hidden in stochastic
variables.
With the rapid development of computer and commu-

nication technologies, as well as the vast amounts of data
produced in complex equipment manufacturing processes,
quality control methods have evolved from manual data
acquisition and analysis to the automation and intellectua-
lization of all stages of the integrated quality system, such
as automatic data acquisition, intelligent monitoring,
intelligent fault diagnosis processes, intelligent knowledge
extraction, and process adjustment. Moreover, the intelli-
gent manufacturing of high-tech equipment has been used
in various production modes with small batches. There-
fore, under this mode of production, the implementation of
intelligent and automatic process monitoring and abnormal
diagnosis and adjustments will continue to be key research
directions in the future.

7.2 Life prediction technologies of complex equipment in
the industrial internet

Life prediction, frequently quoted as residual life predic-
tion or remaining useful life prediction, is critical for
complex equipment. Over the years, the residual life of
complex equipment sets, such as aerospace, marine, and
weapon equipment sets, has been analyzed from single
components to the system level. Comprehensive and
systematic investigations have been conducted according
to various materials, theories, and experiments, yielding a
variety of residual life prediction methods. Corresponding
residual life prediction methods are varied due to the
different characteristics of complex equipment. However,
most of the methods use historical data to verify the chosen
life prediction model. The monitoring data are then applied
to predict residual life, perform parameter calibration, and
update data to achieve online condition monitoring and
residual life prediction. According to the use of monitoring
data, the methods of residual life prediction can be
classified into three types: Physics of failure (PoF)-based
methods, data-driven methods, and methods based on the
fusion of the two (Pecht, 2009).
PoF-based methods. These methods establish residual

life prediction models on the basis of failure mechanisms
of different physical characteristics of systems in the
process of degradation (creep, fatigue, corrosion, and

wear). Zhu et al. (2016) studied the fatigue life prediction
of aircraft engine turbine disks on the basis of PoF analysis.
Gu et al. (2007) adopted a finite element model and
vibration fatigue failure model by means of PoF analysis
and investigated the prediction method for the residual life
of electronic products under vibration load. Such methods
truly reflect equipment failure, but the modeling and
analysis process is usually complicated due to the intricate
nature and varied performance of equipment in different
environments, thus requiring specific modeling by asso-
ciated failure mechanisms.
Data-driven methods. These methods mainly include

the prediction methods based on artificial intelligence and
those based on probability statistics. Prediction methods
based on artificial intelligence include neural networks
(Qian and Yan, 2015), SVMs (Moura et al., 2011),
proportional hazards model (Wu and Ryan, 2011), hidden
Markov models (Tobon-Mejia et al., 2012), and stochastic
filtering models, particularly the Kalman filtering method
(Baraldi et al., 2012) and the particle filter method
(Orchard et al., 2005). These methods do not need an
assumption of lifetime distribution; they adopt training
models built from training information to fuse new
observation data to conduct life prediction. However, the
excellent performance of these methods requires a large
amount of failure data, which are unavailable for highly
reliable equipment. Unlike interval estimation, which can
describe the uncertainty of residual life prediction,
prediction methods based on artificial intelligence gen-
erally obtain the results of point estimation. The other
methods based on probability statistics, such as regression
model (Caesarendra et al., 2011), the Wiener process
(Wang et al., 2014), the gamma process (Wang et al.,
2015), and Bayesian theory (Jia et al., 2017), establish
degradation models on the basis of degradation data to
derive the probability distribution of residual life under the
framework of probability theory. Thus, the methods not
only obtain the mean residual life but also consider the
uncertainty of the external environment and internal
products, indicating their wide application in the field of
mechanical and electrical engineering. Wang et al. (2014)
studied the skewed normal random effects of a univariate
nonlinear Wiener degradation process model correspond-
ing to nonlinear degradation, along with the uncertainty on
the timeline and the differences between products, to
predict residual life. Wang et al. (2015) also investigated
the degradation of bivariate non-stationary gamma degra-
dation process modeling and residual life calculation
methods. In the cases of multiple performance parameters
of degradation, Wang et al. (2015) proposed a multivariate
Wiener process to describe the degradation and calculate
the degradation model parameters on the basis of the EM
algorithm. Zhang et al. (2015) introduced a multi-kernel
relevance vector machine (MKRVM) method based on a
PSO algorithm to establish multiple monitoring parameters
and the relationship between key performance parameters.
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A hybrid MMKRVM method that can facilitate the
collection of lithium batteries with an additional indirect
health index is presented to predict battery capacity (Zhang
et al., 2017). Given that multi-source information, such as
performance data, lifetime data, and similar product data,
can be collected in the life cycle, methods based on multi-
source information can be used to predict the residual life
of equipment and solve the small sample of life prediction
of highly reliable equipment. Liu et al. (2017) fused
degradation and lifetime data using Bayesian methods to
predict the residual life of products. Han et al. (2014)
presented the reliability data of similar products by
Bayesian method fusion to obtain the interval estimation
of the residual life of current products.
Life prediction methods based on the integration of

PoF and data-driven methods. These methods combine
PoF models with the results of data mining applications,
along with available information fused by elaborately
selected approaches, to predict residual life. An et al.
(2015) summarized the selection approaches to combine
data-driven methods with PoF-based methods. Zio and Di
Maio (2012) studied the damage expansion mechanism
using relevance vector machines combining data- and
model-driven methods to predict the residual life of
cracked components. Zhao et al. (2013) applied a finite
element model to analyze the stress of gears, calculated the
gear dynamic load using a dynamics model, used the Paris
method for a crack propagation model, and applied a
Bayesian method to fuse condition monitoring data and
update the remaining life prediction.
Given that highly reliable products usually undergo a

few failures, researchers studied the method using an
accelerated test to advance product degradation or failure
through the obtained data and to predict products’ residual
life under normal stress. According to product failure
modes, accelerated tests can be divided into the accelerated
life test (ALT) and accelerated degradation test (ADT). In
ALT, the failure mode of the test object is mostly traumatic
failure, and the data obtained from the test are the failure
times. In ADT, the failure mode of the test object is
degradation failure, and the test results include product
performance degradation data. Thiraviam et al. (2009)
indicated that the difficulties of ALT research mainly
concentrate on the accelerated stress, acceleration model,
failure mechanism, data acquisition, and environmental
conditions, as well as the economics, statistics, and
physics. The research on ADT mainly focuses on the
statistical analysis and modeling of degenerate data,
experiment design, and optimization research. Lu et al.
(1996) proposed the use of the ADT method to solve the
problem of the application of traditional test methods to
highly reliable products to derive their life span; the
authors also employed maximum likelihood estimation to
handle accelerated degradation data. The simulation
method was suggested to calculate the confidence intervals
of reliability characteristics (Meeker et al., 1998).

Shocks during operation are not rare for industrial
systems and often cause irreversible damage to system
health. Given that shock durations are usually short, they
can be considered instantaneous events compared with
relatively long operation cycles. This phenomenon exhibits
discontinuous non-differentiable characteristics in mathe-
matical properties, which are difficult to characterize using
traditional stochastic process models. Fan et al. (2000)
considered that the impacts of random shocks on systems
cause more damage than system degradation and then
proposed the life prediction method. Li and Pham (2005)
and Lin et al. (2015) recognized the impacts of shocks on
the reliability of systems during degradation, divided the
health status of a system into different discrete states, and
further integrated impact damages to predict the residual
life of systems.
The traditional method of predicting residual life

through historical failure data are no longer applicable
due to the increasing reliability of complex equipment.
Related research mainly focuses on the big data collected
in the life cycle of complex equipment, with performance
degradation data attracting particular interest. The PoF,
data-driven method, and the method combining the two are
also applied to predict the residual life of equipment.
However, most prediction models consider degradation as
a relatively smooth continuous process, making them
inapplicable when the equipment life cycle has more than
two stages of degradation. In addition, a few life prediction
methods regard the joint impact of discrete shocks and
continuous degradation and that of incomplete mainte-
nance on system reliability. The construction of residual
life prediction models through the degradation of complex
systems with different characteristics and various types of
information has become a promising topic for the future.

7.3 Complex equipment PHM technology

Prognostic health management (PHM) through the inspec-
tion of component degradation, judgment of failure type,
and prediction of failure time is the technology used to
avoid system failure and maintain system health through
preventive maintenance. PHM originated from NASA
practices of integrated vehicle health management (IVHM)
in the 1970s (Figueroa and Schmalzel, 2006). The
proposed IVHM framework by NASA and Boeing
provides 11 onboard management function modules to
realize complete vehicle management. These modules not
only enhance vehicle safety and mission success rate but
also facilitate efficient operations. In the 21st century,
driven by the new generations of launch programs, a joint
team composed of several centers has committed to the
research on the health management of integrated systems.
The US Navy initiated the research on open system
architecture condition-based maintenance), which repre-
sents the future development direction of the integrated
health management of complex systems (Kacprzynski
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et al., 2002). Boeing and Lockheed Martin integrated
predictive and health management capabilities in their
designs for the next generation of joint strike fighter
aircraft (Millar, 2007).
Traditional PHM technology research began on single

component systems in static working conditions, such as
bearings with fixed rotational speeds and loads. Wu et al.
(2012) and Zhou et al. (2012) respectively predicted the
residual life of bearings working at a constant load and
fixed temperature to realize maintenance decision. Given
that most components and systems, such as car bearings or
gears, are working under changing environmental condi-
tions (Zhao et al., 2015), prediction models that can provide
a satisfactory performance in varying working environ-
ments have been applied in many fields, such as network
monitoring, network mining, and financial data manage-
ment. The difficulties of PHM technology are twofold: i)
analyzing mass data and establishing failure prediction
models and ii) making maintenance decisions. Given that
the data will drift during collection in varying environments
and that the randomness of data are unpredictable,
conducting corresponding studies is difficult due to the
continuously changing relationships between the inputs and
outputs of models (Elwell and Polikar, 2011). Some
methods that can adapt to varying environments to update
online have been developed to cope with the problem
(Dries and Rückert, 2009). For example, algorithms with
domain-adaptive kernels and semi-supervised learning can
extract information from drift data while some active
learning algorithms can reduce training costs by choosing
the drift data of the most important information (Žliobaitė et
al., 2011). Another key to PHM implementation is the
selection of appropriate decision-making targets for
preventive maintenance. Feldman et al. (2009) proposed
return on investment (ROI) as an economic performance
indicator to evaluate PHM. Through ROI analysis, the best
PHM solution can be selected, or the current maintenance
strategy can be optimized.
The PHM technology of complex equipment is

essentially based on the technology of state monitoring
and preventive maintenance decisions, which is widely
used in high-tech equipment, such as aircraft and high-
speed trains. The application of PHM technology can
increase reliability and availability, prolong life, ensure
safety, and reduce the negative impacts of failure on
environments (Kadry, 2013). The future challenges of
PHM technology include the adaptation to modern
complex systems, maximization of the health status of
complex systems and the big data generated by main-
tenance, and development of efficient PHM technology.
The efficiency of PHM technology lies in its capability to
effectively handle complex systems in the detection,
diagnosis, and prediction of different levels of uncertainty,
provide maintenance decisions for different constraint
conditions, and develop distributed and intelligent
dynamic maintenance management systems to adapt to

different levels of information exchange in complex
systems, integration, and coordination.

7.4 Challenges and research opportunities

The rapid development of the industrial internet and IT
profoundly affects the quality and reliability management
of high-tech equipment manufacturing. The traditional
mass production quality control methods, large sample-
based reliability analytical methods, and life prediction
methods are no longer suitable for the life cycle manage-
ment of high-tech equipment. Therefore, the features of
high-tech equipment intelligent manufacturing and the
characteristics of life cycle data should be first considered.
Next, quality management mechanisms for high-tech
equipment intelligent manufacturing should be estab-
lished. The quality control and evaluation methods for
high-tech equipment should then be investigated on the
basis of the life cycle of big data. High-tech equipment life
prediction methods and life extension strategy optimiza-
tion techniques should be developed, and the applications
of PHM for high-tech equipment health management
should be exercised. The main opportunities are as follows.
� Intelligent manufacturing quality management

mechanism of high-tech equipment under the indus-
trial internet environment. High-tech equipment is
usually complex and involves various research units.
Therefore, mechanisms for deriving quality and reliability
requirements from equipment mission requirements,
methods, and tools are limited, and a comprehensive
demonstration of equipment performance and reliability
indexes is insufficient. Different units for demonstration,
development, and use are independently working without
sufficient interactions. Effective standards, processes, and
division of responsibilities to coordinate quality manage-
ment are lacking. Under the condition of the industrial
internet and intelligent manufacturing, each stage of
equipment design, manufacture, supply, use, and service
produces a large amount of data. Such data are scattered in
different stages and units, which lack mechanisms and
standards for life cycle data collection and sharing.
Relevant mechanisms are required to improve the quality
of the intelligent manufacturing of high-tech equipment.
� Quality control and evaluation of HE under the

condition of “internet plus.” By fusing modern manu-
facturing technology, artificial intelligence, statistics, SPC,
and various intelligent algorithms, signal processing
methods establish intelligent manufacturing process qual-
ity control systems to implement online intelligent
monitoring and diagnosis and recovery process adjustment
to handle the quality of high-tech equipment manufactur-
ing. The integrated use of equipment life cycle data in
quality assessment, including the establishment and
optimization of an index system, an index weight system,
and a quality assessment algorithm, should be studied to
evaluate control efficiency.
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� Prediction of high-tech equipment life and the
optimization technology of life extension strategies
under the condition of the industrial internet. Under
the condition of the industrial internet for high-tech
equipment such as satellites, design data, test data,
manufacturing data, field data, and data of similar products
can be collected during their life cycle. Therefore, the
fusion of multi-source data to develop life prediction
methods and life extension strategy optimization methods
is a promising research direction. This research identified
the equipment reliability weakness, improved equipment
designs, and provided optimal operation strategies, thereby
prolonging the service life of equipment and guiding
subsequent productions and launch plans. Thus, this
research has important theoretical significance and appli-
cation in the future.
� Integrated PHM platform and application for high-

tech equipment under the condition of the industrial
internet. The research and demonstration application of a
PHM integrated platform for aerospace equipment in the
industrial internet environment is of considerable impor-
tance for the innovation and advancement of PHM theory
and technology.

8 Information management and intelligent
decision making for HEIM

The world has entered the information age. The rampant
growth of a new generation of IT has infiltrated all aspects

of the HEM industry, pushing it toward digitization,
intellectualization, networking, and servitization. Such
growth has profoundly affected the information manage-
ment and decision-making modes of the HEM industry. In
recent years, domestic and foreign scholars have con-
ducted a body of research and exploration around sensor
technology and artificial intelligence technology applica-
tions, information collection and processing for HEM,
information service semantic integration and sharing for
HEIM, and service-oriented collaborative service plat-
forms for HEM. Scholars have designed innovative
information systems and intelligent decision-making
methods for HE manufacturers under the internet and big
data environments. Complex intelligent decision support
systems have also been constructed to provide enterprises
with efficient decision support.
Figure 7 shows the relationships between the main

research topics in information management and intelligent
decision-making for HEIM.

8.1 Information management method for equipment man-
ufacturing

The internet and big data are driving the transformation of
information management modes, requiring enterprises to
improve management abilities toward massive informa-
tion. For the collection, transmission, and integration of
data from different sources, Li et al. (2015) introduced the
concepts of data portal and collaboration agency and
proposed a data integration-oriented network integration

Fig. 7 Key research issues in information management and intelligent decision-making for HEIM
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information management method. Papakostas et al. (2016)
designed a cloud computing-based hybrid assembly line
preparation and design method and introduced a multi-
agent data integration framework and a data storage
warehouse information management method with the
participation of multiple stakeholders. For the management
and utilization of massive data generated under the IoT
environment, Abu-Elkheir et al. (2013) proposed an
information management method that is based on basic
design elements. Zhang et al. (2015) designed an
information management method under abnormal manu-
facturing conditions. The designed system monitors
production sites in real time, combining technologies of
complex event processing, data cleaning, and data mining.
To improve enterprises’ production information manage-
ment level for torque converters, Yang et al. (2017)
presented a real-time data acquisition system framework
that is based on OPC and database technologies according
to the actual demands of MES in the digital assembly
workshop. The framework can actually support the
demands of real-time MES monitoring system and the
production of business information processing.
Thus, in the information management research of

equipment manufacturing processes, the existing literature
mainly focuses on the collection, processing, and manage-
ment of manufacturing process information. In future
research work, establishing a manufacturing enterprise
information management model under the internet and big
data environment and designing an information manage-
ment system for the entire life cycle of high-end
manufacturing products are also necessary to achieve
rapid and effective integration of internal and external data.

8.2 Semantic integration and interaction of HEM informa-
tion services

The semantic construction of manufacturing information
services is the consensus of researchers and developers
around the world and is critical for the development of
manufacturing servitization. Cai et al. (2011) proposed the
concept of “manufacturing hub” based on semantic
networks to illustrate and manage distributed manufactur-
ing services. Xie et al. (2017) established a semantic model
of semantic resource-based information resource service
modeling. The model uses semantic links to realize
automatic integration and distributed updating of resource
service cloud. Jiao et al. (2017) proposed a service
discovery method and service description based on
ontology web service semantics due to a lack of semantic
models in current service discovery. Khalfallah et al.
(2016) presented and utilized the ontology model based on
public standards to transform private information of
enterprises into data integration standards for the aviation
industry, which were shown to effectively increase
the interoperability of product development in the
aviation industry. For the existing mature manufacturing

standards, scholars have conducted studies on the cross-
organizational interactions of manufacturing information
services. Wasmer et al. (2011) proposed an engineering
change management standard for large equipment manu-
facturing on the basis of the exchange standards of product
model data and the initialization graphics exchange
specification. In the joint product development process,
Houshmand and Valilai (2013) developed a new platform
called “Distributed-LAYMOD,” which facilitates product
data exchange through the XML structure.
In terms of the semantic integration and interaction of

manufacturing information services, the existing research
focuses on the semantic integration and data sharing
models of cloud manufacturing services and on the
manufacturing sharing information standards. Future
studies should concern the design of matching standard
systems and interaction mechanisms for resource descrip-
tion and modeling methods of HEM service integration.

8.3 Design method of service-oriented cloud manufacturing
information system structure

A cloud manufacturing information system enhances the
efficiency of HEM enterprises by scientifically matching
and monitoring the information, knowledge, and resources
involved in manufacturing service parties. The structural
design of a service-oriented information system is the key
to a manufacturing service and resource matching process.
Ameri and McArthur (2013) proposed a multi-agent
information system structure design method in a “digital
manufacturing market” in the cloud computing environ-
ment and designed an internal search and discovery
algorithm based on semantic similarity to connect the
providers and requestors of manufacturing services. Helo
et al. (2014) presented a next-generation network MES
system architecture design method to support information
access by different types of enterprises. For the cloud
manufacturing service modes of large equipment manu-
facturing enterprise alliances, Yang et al. (2014) designed a
coalition resource coordination logic framework and a
multi-level coordination mechanism. Modekurthy et al.
(2015) introduced a cloud-based service broker system for
cloud additive manufacturing that considers the prefer-
ences of consumers and the tradeoffs on service attributes,
such as price, material, and accuracy, in the ranking
process. Xu et al. (2015) proposed a design method for
capacity information sharing systems on the basis of
dynamic real-time device data to solve the problem of
dynamic information and knowledge sharing in cloud
manufacturing. This system comprises the ontology
construction of manufacturing resources, a unified descrip-
tion framework, and the mapping relationship between
real-time condition data and the model of manufacturing
equipment capability ontology.
Thus, in the design of a service-oriented cloud

manufacturing information system structure, the existing
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research concentrates on cloud manufacturing services,
resource matching algorithms, and the distributed manu-
facturing unit coordination framework. Future research
should build collaborative service platforms for HEM with
high levels of compatibility and openness to integrate
cross-domain and cross-subject cloud manufacturing
resources.

8.4 Intelligent decision-making method and decision sup-
port system

Global manufacturing companies have imperious demands
on production visualization and improvement of intelligent
decision-making methods in the internet and big data
contexts. Ahmad et al. (2017) proposed a knowledge-
based intelligent decision system for conventional multi-
axis machining. Zampou et al. (2014) constructed a general
architecture for the manufacture of energy-aware systems
to achieve energy management and provide intelligent
decision support. Doukas et al. (2014) proposed an
intelligent configuration method for global manufacturing
networks for mass-customized production and designed an
intelligent decision support system on the basis of an
alternative multi-objective evaluation. The implementation
of internet technology has promoted the wide utilization of
electronic manufacturing technologies. Manupati et al.
(2018) studied the World Wide Web collaborative model
and proposed a web-based service system architecture to
achieve the effective integration of distributed process
planning and scheduling. Teran et al. (2014) introduced a
decision support system for electronic manufacturing that
integrates performance measurement and Web+ service
architecture. In response to the planning and scheduling
decisions of large and heavy machinery enterprises, Ding
et al. (2018) constructed an RFID-based social manufac-
turing system to enable the real-time monitoring and
dispatch of production and transportation tasks among
enterprises. Guo et al. (2015) proposed an RFID-based
intelligent decision support system architecture to handle
production monitoring and scheduling in a distributed
manufacturing environment.
Thus, the current research on intelligent decision-

making methods and decision support systems mainly
focuses on the application of artificial intelligence and
sensor technology at the enterprise workshop level. In the
future, conducting in-depth research on collaborative
optimization decision-making methods and decision
support systems for the real-time manufacturing resources
of HE in a new-generation IT environment is also necessary
to achieve efficient collaborative decision making.

8.5 Challenges and research opportunities

HEM under the internet and big data environment involves
extensive cooperation among suppliers, manufacturers,
enterprise business departments, and users, constituting a

complex big data environment. To give full credence to the
value of resources for big data manufacturing and realize
the optimization and cooperation of HEM service
processes, future studies should explore the basic theore-
tical issues, such as the information processing of HEM
under the internet and big data environment, cross-
platform interactions of information systems, and colla-
borative decision making; data resource management
methods for product life cycles; HEM information service
standards and open structures; and intelligent decision-
making methods and decision support systems.
� Data resource management method oriented to

product life cycle. From the perspective of analyzing the
characteristics of manufacturing big data, a semantic-based
manufacturing life cycle data collaboration model, a data
availability analysis theory model, and pre-processing and
form conversion mechanisms for multi-source heteroge-
neous manufacturing data are constructed to achieve the
full life cycle of manufacturing-oriented intelligence.
� HEM information service standard system and

information organization mechanism. Starting from the
HE information service, this study establishes a standard
description structure of HE product information service
and a semantic-based manufacturing service information
organization method and constructs a product service
information model on the basis of spatio-temporal
relationship combinations from the perspective of spatio-
temporal correlations.
� Open-structure design method for cloud-based

information service systems. On the basis of the basic
architecture of cloud computing, this study focuses on a
cross-level information organization mechanism and
system integration architecture and constructs an open
information service system architecture using the value
chain collaboration mechanism of HEM systems.
� Multi-level dynamic intelligent decision-making

methods and decision support system structure. Starting
from the network structure of manufacturing units, this
study explores the environmental perception patterns and
decision-making modes of manufacturing units distributed
in multiple layers in a real-time manufacturing model and
uses data visualization-related technology to construct the
intelligent decision support system architecture for con-
textual visualization.

9 Conclusions

The industrial internet, cloud computing, big data, and
artificial intelligence technologies constitute a major
technical support for solving current engineering manage-
ment problems and provide new historical opportunities
for the research and development of engineering manage-
ment theories for HEM. Under the new generation of IT
environment, HEM is moving toward digitization, inte-
llectualization, networking, and servitization. The novel
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theoretical and technical challenges in intelligent manu-
facturing engineering management include cross-lifecycle
management, network collaboration management, task
integration management of innovative developments,
operation optimization of smart factories, quality and
reliability management, information management, and
intelligent decision making for HEIM.
Scientifically sound EM on HEIM can comprehensively

integrate the multiple targets of natural, social, economic,
scientific and technological, talent target, and cultural
values from the level of strategic coordination. Providing
attention and consideration to the management activities of
intelligent manufacturing engineering from a high dimen-
sion is necessary to examine problems in the management
of intelligent manufacturing engineering from a dialectical
thinking level to drive the deep integration of EM
philosophy and techniques, the coordination and unity of
EM systems and details, the mutual promotion of EM
standards and innovation, and the joint improvement of
EM talent teams and regimes in the circulative progress of
EM theory and practice.
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