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Abstract Non-convex optimization can be found in
several smart manufacturing systems. This paper presents
a short review on global optimization (GO) methods. We
examine decomposition techniques and classify GO
problems on the basis of objective function representation
and decomposition techniques. We then explain Kolmo-
gorov’s superposition and its application in GO. Finally,
we conclude the paper by exploring the importance of
objective function representation in integrated artificial
intelligence, optimization, and decision support systems in
smart manufacturing and Industry 4.0.

Keywords global optimization, decomposition techni-
ques, multi-objective, DC programming, Kolmogorov’s
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1 Global optimization (GO) methods

Global non-convex programs can be solved using several
approaches according to recent advances in GO literature
(Pardalos and Rosen, 1986; Pardalos, 1991; Bomze et al.,
1997; Pardalos and Wolkowicz, 1998; Horst et al., 2000;
Nowak, 2005; Floudas and Pardalos, 2013; Horst and
Pardalos, 2013; Floudas and Pardalos, 2014). These
approaches can be divided into exact methods that can
find and verify global solutions and heuristic methods,
which only seek global solutions without checking
optimality. Heuristics achieve a critical function in the
optimization of large-scale non-convex problems and can
be applied to provide upper bounds for global optimum,
generate cuts and relaxations, and partition feasible sets.

Approximation algorithms are kinds of heuristics, wherein
performance guarantee is considered estimated error
(Fisher, 1980; Hochbaum et al., 1999; Ausiello et al.,
2012; Vazirani, 2013). MIP approximation techniques
work by approximating univariate functions to piecewise
linear function with a performance guarantee for MINLP
method. Goemans and Williamson (1995) solved a
quadratic binary program using the MaxCut heuristic as
first approximation algorithm.
In GO, an algorithm is called finite if it obtains and

verifies a global solution in a finite number of step. The
exact methods are finite in finding and verifying solution.
Moreover, simplex, active set, and enumeration methods
are finite for solving LPs, convex QPs, and bounded
integer or concave problems. However, interior point and
solution methods for SQP as a nonlinear convex program
are not finite.
All GOmethods create a rough model of the program for

finding global solutions. A GOmethod is called a sampling
heuristic if the method uses a crude model based on a finite
set of points. The considered regions of interest in
sampling heuristic methods are bounded set. The distribu-
tion of points in this region is usually denser and should
consider random behavior to obtain all possible solutions.
In the continuous feasible region, the possible random
sample is infinite, and a GO solution is not guaranteed.
Moreover, the sample can prove that the method converges
with probability that is arbitrarily close to 1. A GO method
is called a relaxation-based method if the method uses
relaxation as a crude model, such as a mathematical model,
which is easier to solve than the original problem. The
crude model influences the problem description. Modeling
the problem in an aggregated form is efficient for sampling
heuristics with few variables and a simple, feasible set in a
disaggregated form for relaxation-based method with
objective functions and constraints that can be relaxed.
Relaxation-based heuristics are classified into three

relaxation-based methods classes, which include branch-
and-bound methods. This method divides the GO problem
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into subproblems based on partitioning of the feasible set.
Successive relaxation methods successively improve an
initial relaxation without dividing it into subproblems.
Heuristics retrieve potential solutions from a given
relaxation without modifying the relaxation.
The MINLP solver technology should be further

developed, and additional details on GO (Pardalos and
Rosen, 1987; Pintér, 1996; Horst et al., 2000; Neumaier,
2004; Schichl, 2010; Horst and Pardalos, 2013; Horst and
Tuy, 2013;), MINLP methods (Floudas et al., 1989;
Grossmann and Kravanja, 1997; Grossmann, 2002;
Tawarmalani and Sahinidis, 2002; Floudas, 2013), and
sampling heuristics (Torn and Zilinskas, 1989; Boender
and Romeijn, 1995; Strongin and Sergeyev, 2000) should
be identified. In summary, GO methods can be classified as
follows:
� Sampling heuristics: 1) Ultistar (Strongin and Ser-

geyev, 2000), 2) Clustering method (Becker and Lago,
1970; Dixon and Szegö, 1974; Torn and Zilinskas, 1989),
3) Evolutionary algorithm (Forrest, 1993), 4) Simulated
annealing (Metropolis et al., 1953; Kirkpatrick et al., 1983;
Locatelli M, 2002), 5) Tabu search (Glover and Laguna,
1997; Mart et al., 2018), 6) Statistical GO (Mockus J,
2012), 7) Greedy randomized adaptive search procedure
(Resende and Ribeiro, 2003; Hirsch et al., 2007)
� Branch-and-bound methods: 1) Branch-and-bound

(Smith and Pantelides, 1996; Vaidyanathan and El-
Halwagi, 1996; Smith and Pantelides, 1999; Horst and
Tuy, 2013), 2) Branch-and-cut (Padberg and Rinaldi,
1991), 3) Branch-and-reduce (Sahinidis, 1996), 4) Branch-
and-price, 5) Branch-cut-and-price, 6) Branch-and-infer
(Van Hentenryck et al., 1997; Bliek, 1998; Boddy and
Johnson, 2002; Sellmann and Fahle, 2003; Hooker, 2011).
� Successive approximation method: 1) Extended

cutting-plan method (Westerlund and Pettersson, 1994,
1995; Westerlund et al., 2001), 2) Generalized bender
decomposition (Geoffrion, 1972; Floudas et al., 1989;
Paules and Floudas, 1989), 3) Outer approximation (Duran
and Grossmann, 1986; Kocis and Grossmann, 1987;
Viswanathan and Grossmann, 1990; Fletcher and Leyffer,
1994; Zamora and Grossmann, 1998a, 1998b; Grossmann,
2002; Kesavan et al., 2004), 4) Logic-based approach
(Türkay and Grossmann, 1996; Vecchietti and Grossmann,
1999), 5) Generalized cross decomposition (Holmberg,
1990), 6) Successive semidefinite relaxation (Lasserre,
2001; Henrion and Lasserre, 2002; Kojima et al., 2003),
7) Lagrangian and domain cut method (Li et al., 2009).
� Relaxation-based heuristics: 1) Rounding heuristics

(Mawengkang and Murtagh, 1986; Goemans and
Williamson, 1995; Burkard et al., 1997; Zwick, 1999),
2) Lagrangian heuristics (Holmberg and Ling, 1997;
Nowak and Römisch, 2000), 3) Deformation heuristics
(Moré and Wu, 1997; Schelstraete et al., 1999; Alperin and
Nowak, 2005), 4) MIP approximation (Neumaier, 2004),
5) Successive linear programming (Palacios-Gomez et al.,
1982).

2 Decomposition theory

Large-scale problems can be solved by splitting them into
subproblems, which are coupled by a master problem
either in parallel or in sequence. The Dantzig–Wolfe
decomposition employs separability to decompose a GO
problem to subproblems; this method is one of the first
decomposition approaches for linear programming that
could be optimized in parallel (Dantzig and Wolfe, 1960).
This method considers dual problem as a master problem,
which coordinates the solutions and iterative modifications
of the subproblems. The extension of Dantzig–Wolfe
decomposition was applied to the nonlinear convex
problem, and the Lagrangian dual is solved by using
the cutting plane method. Details regarding
decomposition methods in convex and non-convex GO
problems are found in (Kelly et al., 1998; Bertsekas, 1999;
Horst et al., 2000; Babayev and Bell, 2001; Svanberg,
2002; Palomar and Chiang, 2006; Zhang and Wang, 2006;
Boyd et al., 2007; Chiang et al., 2007; Zheng et al.,
2013; Rockafellar, 2016; Rahmaniani et al., 2017;
Nowak et al., 2018). In general, decomposition techniques
can be classified into dual and primal decomposition
methods.

2.1 Primal decomposition

The following program with objective function is
considered:

maxy,xi
X
i

fiðxiÞ; subject to : xi 2 Xi

( )
, (1)

where 8i Aixi£y, and y 2 Y . Primal decomposition can
be applied wherever a coupling variable is set to a fixed
value. Thereafter, the GO problem is decoupled into
several subproblems for each i as:

fmaxxi fiðxiÞ; subject to : xi 2 Xi, Aixi£yg: (2)

The master problem updates the coupling variable by
solving:

maxy
X
i

f *i ðyÞ; subject to : y 2 Y

( )
, (3)

where l,f *i ðyÞ is the optimal objective value in (2).
Therefore, Problems (2) and (3) are convex optimization
problems if Problem (1) is convex. The gradient method
solves Problem (3). Therefore, the optimal Lagrange
multiplier, l*i ðyÞ in (2), the subgradient for each f *i ðyÞ
obtained by siðyÞ ¼ l*i ðyÞ), and Problem (2) can be solved
by y, where sðyÞ ¼

X
i
siðyÞ ¼

X
i
l*i ðyÞ is the global

subgradient.
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2.2 Dual decomposition

Dual decomposition is suitable when a coupling constraint
and its relaxation exist. The GO problem is divided into
several subproblems.

maxxi
X
i

fiðxiÞ;   subject  to : xi 2 X i, 8i
X
i

hiðxiÞ£c

( )
:

(4)

The following equation is obtained by applying
Lagrangian relaxation to the coupling constraint in
Problem (4):

maxxi
X
i

f iðxiÞ – lT
X
i

hiðxiÞ-c
 !

;

(

subject to : xi 2 Xi 8i ): (5)

The Lagrangian subproblem for each i decouples
Problem (5)

fmaxxi f iðxiÞ – lTðhiðxiÞc）; subject to : xi 2 Xig:
(6)

The dual variables are updated from the master dual
problem as follows:

minl ¼
X
i

giðlÞ þ lTc; subject to : l³0

( )
, (7)

where giðlÞ is the dual function obtained as the maximum
value of the Lagrangian solved in Problem (6) for a given
l. Thus, a gradient method can solve Problem (7), and the
subgradient for each giðlÞ obtained by siðlÞ ¼ – hiðx*i ðlÞÞ,
where iðlÞ is the optimal solution of Problem (6) for a
given l. The global subgradient is sðlÞ ¼

X
i
siðyÞ þ c ¼

c –
X

i
hðx*i ðlÞÞ . Problem (6) can be independently and

locally solved with knowledge of l.

3 Objective function representation based
on decomposition methods

3.1 Separable optimization

The choice of decomposition (of objective function)
influences the choice of the algorithm for solving the
corresponding mathematical program.
Definition 1: Separable optimization Problem (Horst

et al., 2000)

fminx2ℜnF0ðxÞ   subject   to : FiðxÞ£bi, li£xi£ui,

  i ¼ 1,:::,mg, (8)

where FiðxÞ ¼
Xn

j¼1
FijðxjÞ, i ¼ 0,1,:::,m.

3.2 Factorable optimization

McCormick (1983, 1974, 1976) introduced factorable
programming. A factorable program takes the following
form

fminx2ℜnX LðxÞ   subject   to : li£X iðxÞ£ui, i ¼ 1,:::,L – 1g,
(9)

where X i : ℜn↦ℜ
Xi(x) = xi for i = 1,...,n and Xp(x), p = 1,...,i – 1, function

X i i s X iðxÞ ¼
Xi-1

p¼1
Ti
pðX pðxÞÞ þ

Xi – 1

p¼1

Xp

q¼1
V i
q,p

ðX pðxÞÞ:Up,q ðX qðxÞÞ, where T’s, U’s, and V’s are the
transformation functions of a single variable. The lower
and upper bounds li£ui are given constants. The function
X iðxÞ,i ¼ 1,:::,L can be written as factorable functions.
McCormick (1974) developed a factorable programming
language integrated with SUMT (Mylander et al., 1971)
for NLPs. The functions X iðxÞ, i ¼ 1,:::,L are called
concomitant variable functions (cvfs). The cvfs includes
separable and quadratic terms.

3.3 Almost block separable optimization

The following problem is considered:

minx2Rn f ðxÞ ¼ f1ðu,yÞ þ f2ðv,yÞ, (10)

where x ¼ ðu,v,yÞ 2 ℜn and u 2 ℜn1, v 2 ℜn2, y 2 ℜn3,
n1 þ n2 þ n3 ¼ n, and y are called complicated variables
½usually n1,n2 � n3�
Let φ1ðyÞ ¼ minuf1ðu,yÞ, φ2ðyÞ ¼ minvf2ðv,yÞ. The

problem is equivalent to:

minyφ1ðyÞ þ φ2ðyÞ: (11)

If f1 and f2 are convex, then φ1ðyÞ and φ2ðyÞ are convex.

3.4 DC optimization problems

3.4.1 Continuous DC programming

One of the special non-convex programs is DC program-
ming. DC function and dual DC programming are defined
as follows:
Definition 2: DC function (Horst et al., 2000; Wu et al.,

2018)
A real-valued function f : ℜn↦ℜ [ fþ1, –1g

subject to:

ff ðxÞ ¼ gðxÞ – hðxÞ, 8x 2 ℜng, (12)

where g, h : ℜn↦ℜ [ þ1 is a convex function and is a
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DC function for any h and g.
Definition 3: DC program (Horst et al., 2000; Wu et al.,

2018)
The following model is called a DC program

fmin f0ðxÞ subject to : fiðxÞ £ 0, 8i ¼ 1,2:::,ng, (13)

if fiðxÞ are DC functions (i = 0,1,2,...,n) and it is the same as
the following DC program. Then,

infx2<ℜn f ðxÞ ¼ gðxÞ – hðxÞ: (14)

Hartman Theorem 1. The following DC programs are
equal:

sup f ðxÞ : x 2 C, f , C : convex

inf gðxÞ – hðxÞ : x 2 ℜn, g, h : convex

inf gðxÞ – hðxÞ : x 2 C, f1ðxÞ – f2ðxÞ
£0, g, h, f1, f2, C : all convex

8>>>><
>>>>:

Hartman Theorem 2. A function f is locally DC if an 2
-ball on which DC exists. Every function that is locally DC
is considered a DC proposition. Let fi be DC functions for

i ¼ 1,:::,m: Thus,
X

i
lifiðxÞ  for  li 2 ℜ

n o
;   fmaxifiðxÞg;

fminifiðxÞg; fΠifiðxÞg; and ffig are twice continuously
differentiable DC. Moreover, (gof) is DC if f is DC and
g is convex, and every continuous function on C (convex
set) is the limit of a sequence of uniformly converging DC
functions.
Definition 4: Subgradient of convex function (Horst

et al., 2000; Wu et al., 2018)
A vector x* is a subgradient of a convex function h at a

point x if hðzÞ³hðxÞ þ hx�,z – xi, where hx,yi ¼
Xn

i¼1
xi

yi is the inner product of two vectors with the same
dimension. The subdifferential of h(x) is the set of all
subgradients.
Definition 5: Conjugate functions (Horst et al., 2000;

Wu et al., 2018)
A conjugate function h� : ℜn↦ℜ [ þ1 of a

convex function h : ℜn↦ℜ [ þ1 is:

h*ðpÞ :¼ supy2ℜnhy,xi – hðxÞ: (15)

Theorem 3: The conjugate function h�ðyÞ of h(x) is
convex. If hðxÞ is a closed proper convex function, then the
bi-conjugate of h is itself, that is, h�� ¼ h.
Theorem 4 (Toland–Singer duality): Given closed

convex functions g, h : ℜn↦ℜ[ þ1, then:

infx2ℜnfgðxÞ – hðxÞg ¼ infp2ℜnfh�ðpÞ – g�ðpÞg: (16)

Definition 6: DC algorithm (Horst et al., 2000; Wu et al.,
2018)
The following algorithm is used for obtaining a local

optimal solution for the DC program.

3.4.2 Continuous relaxations for discrete DC programming

The positive support of x 2 Zn is presented as follows:
suppþðxÞ :¼ fi 2 f1,2,:::,ng : xi > 0g.
The indicator vector χS is defined by:

χSðiÞ ¼
1 i 2 S

0 i =2 S

( )
:

M♮-convex and L♮-convex are two common discrete
functions:
1)M♮-convex functions are defined as 8x,y 2 ℤnand i 2

suppþðx – yÞ, function h: ℤn↦ℤ þ1 is M♮-convex if it
satisfies:

hðxÞ þ hðyÞ³minfhðx – χiÞ þ hðxþ χiÞg, (17)

minj2 suppþðx – yÞhðx – χi þ χjÞ þ hðyþ χi – χjÞ: (18)

2) L♮-convex functions are defined as 8x, y 2 ℤn, h :
ℤn↦ℤ[ þ1 is L♮ -convex if it satisfies:

hðxÞ þ hðyÞ³h
xþ y

2

l m� �
þ h

xþ y

2

j k� �
: (19)

Consider the following discrete DC program:

fInf f ðxÞ ¼ gðxÞ – hðxÞ subject to : x 2 ℤng: (20)

The four kinds of discrete DC programs include
M♮ – L♮, M♮ –M♮, L♮ – L♮, and L♮ –M♮, wherein the first

three are NP-hard, and the last one on {0,1}n is in P, can be
defined on the basis of M♮ and L♮-convex function
definitions (Kobayashi, 2014; Maehara et al., 2018) .
We assume functions g,h : ℤn↦ℜ[fþ1g: The effec-

tive domain of g is domZg :¼ fx 2 ℤn : gðxÞ < þ1g.
The convex closure gðxÞ : ℜn↦ℜ[fþ1g of g is:

gðxÞ ¼ supfsðxÞ : s is an af f ine function,

sðyÞ£gðyÞðy 2 ℤnÞg: (21)

A convex extension ĝ : ℜn↦ℜ[fþ1g of g is a
convex function with the same function value on x 2 ℤn .
We assume

~f ðxÞ :¼ gðxÞ – ĥðxÞ: Then ~f ðxÞ :¼ gðxÞ – hðxÞ, 8x 2 ℤn:

Thus:

infx2ℤnfgðxÞ – hðxÞg ¼ infx2ℤn~f ðxÞ³infx2ℜn~f ðxÞ: (22)
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Theorem 5: For convex extensible functions g, h :
ℤn↦ℜ[ þ1with domZg bounded and domzg 2 domZh:

infz2ℤnfgðzÞ – hðzÞg ¼ infx2ℜn gðxÞ – ĥðxÞ
n o

, (23)

where gðxÞ is the linear closure of g(x), and ĥðxÞ is any
convex extension of h(x).
We found that the discrete DC programming (20) is

equivalent to the corresponding continuous relaxation DC
programming based on Theorem 5.

3.5 DI optimization problems

Total and partial monotonicity are related to monotonicity
for all and some variables with many GO applications. The
d.i. monotonic optimization with increasing functions in
ℜnþ can be generally described as follows:

fmin f ðxÞ – gðxÞ subject to : fiðxÞ – giðxÞ£0, i ¼ 1,:::,mg:
(24)

Let g(x) = 0, and,

8i,fiðxÞ – giðxÞ£0()max1£i£mffiðxÞ – giðxÞg£0

() FðxÞ –GðxÞ£0, (25)

with increasing F, and G
�
FðxÞ ¼ maxiffiðxÞþX

i≠j
gjðxÞg, GðxÞ ¼

X
i
giðxÞ

�
.

Then, the problem is reduced to:

fminf ðxÞ; subject to : FðxÞ þ t£FðbÞ, GðxÞ þ t³FðbÞ,

0£t£FðbÞ –Fð0Þ, x 2 ½0,b� � ℜn
þg: (26)

For any x, x#where x#£x, if x 2 G, then x# � G, a
set G � ℜnþ is normal.
Many GO problems, including polynomial, multiplica-

tive, Lipschitz optimization problems, and non-convex
quadratic programming, can be considered monotonic
optimization problems.

3.6 Decomposition and multi-objective optimization

We consider the following problems:

P1 : minx2D�ℜn FðxÞ ¼ f1ðxÞ þ :::þ fkðxÞ, (27)

P2 : minx2D�ℜn f ðxÞ ¼ ðf1ðxÞ,:::,fkðxÞÞ: (28)

Objective function F(x) in many GO problems can be
represented by the summation of k relatively simple
functions as FðxÞ ¼ f1ðxÞ þ f2ðxÞ þ :::þ fkðxÞ: P2 is a
multi-objective optimization problem. Let Eðf ,DÞ � D be
the set of all Pareto optimal solutions in D. We obtain the
following theorems for optimal solutions of P1 and the

optimal Pareto frontier of P2.
Theorem 6: If x is an optimal solution of P1,

then x 2 Eðf , DÞ of P2.
Theorem 7: Let hi(t) be a monotonic increasing function

for i ¼ 1,:::,k: We consider the multi-objective optimiza-
tion problem minx2D�ℜnhðxÞ ¼ ðh1ðf1ðxÞÞ,:::,hmðfkðxÞÞÞ.
Then, Eðf , DÞ ¼ Eðh, DÞ. (Miettinen, 1999; Chinchu-
luun and Pardalos, 2007; Pardalos et al., 2008; Du and
Pardalos, 2013; Migdalas et al., 2013; Pardalos et al.,
2017)
Theorems 1 and 2 show that the extended Pareto optimal

frontier set E(h,D) can be obtained by solving P2 and
searching for the optimal x of P1 from E(h,D).
P2 can be a multi-objective optimization problem

(MaOP). The algorithms for solving MaOPs can be
classified as: 1) Algorithm adaptation methods, which
modify/extend the classical EMO algorithms for solving
MaOPs, including preference-based MOEA (PICEA;
PBEA), Pareto-based MOEA (NSGA-II; SPEA2),
indicator-based MOEA (HypE; SMSEMOA), decomposi-
tion-based MOEA (MOEA/D; M2M); and 2) Problem
transformation methods, which transform the MaOP into
a problem with few objectives, including objective
selection (s-MOSS; k-EMOSS; L-PCA) and objective
extraction (Gu, 2016) . Refer to Gu (2016) and Mane and
Rao (2017), for a review of solution algorithms and real-
world applications of MaOPs, such as flight control
system, engineering design, data mining, nurse scheduling,
car controller optimization, and water supply portfolio
planning.
MOEA/D is a mostly used method for solving P2. Its

goals can be categorized as: 1) convergence to detect
solutions close to the Pareto frontier; 2) diversity to
determine well-distributed solutions; and 3) coverage to
cover the entire Pareto frontier. Several MOEAs for these
goals are found in literature, which can be broadly
categorized under three categories, namely, 1) domina-
tion-, 2) indicator-, and 3) decomposition-based frame-
works (Ehrgott and Gandibleux, 2000; Trivedi et al.,
2017).
In MOEA/D literature, three decomposition methods,

including the weighted sum (WS), the weighted Tcheby-
cheff (TCH), and penalty based boundary intersection
(PBI) approaches.
The ith subproblem of the WS approach is given as:

min gwsðxjliÞ ¼
Xm
j¼1

l
j
ifjðxÞ: (29)

This method is efficient for solving convex Pareto
solutions with min objective function.
The ith subproblem of the TCH approach is defined as

follows:

min gteðxjli,z*Þ ¼ max1£j£mfljijfjðxÞ – z*j jg, (30)
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where z* ¼ ðz*1,:::,z*mÞT is the ideal reference point with
z*j < minffjðxÞjx 2 Ωg for j ¼ 1,2,:::,m.
The ith subproblem of the PBI approach is defined as

follows:

min gpbiðxjli,z�Þ ¼ d1 þ �d2, (31)

where d1 ¼
∥ððFðxÞ – z*ÞTli∥

∥li∥
and d2 ¼ kFðxÞ –

z* – d1
li

∥li∥

� �k. z� is the reference point shown in (32),

and q is a penalty parameter that should be tuned properly.

4 Kolmogorov’s superposition

Kolmogorov (1956) presents the following theorem as
Kolmogorov’s superposition:
Theorem 8: Continuous real functions ψp,qðxÞ (for any

integer n≥2) on the closed unit interval E1 = [0,1] exists
similar to continuous real function f ðx1,:::,xnÞ on the n-
dimensional unit cube En, which can be shown as:

f ðx1,:::,xnÞ ¼
X2nþ1

q¼1

χq
Xn
p¼1

ψpqðxpÞ
" #

, (32)

yq ¼
Xn
p¼1

ψpqðxpÞ, (33)

where cq(y) is a continuous real function (refer to (Arnol’d,
1959; Tikhomirov, 1991) for a brief proof of the
theorem). The following equation is obtained for n = 3,
by setting, φqðx1, x2Þ ¼ ψ1qðx1Þ þ ψ2qðx2Þ and hqðy, x3Þ
¼ χqyþ ψ3qðx3Þ: f ðx1, x2, x3Þ ¼

X7

q¼1
½φqðx1, x2Þ, x3�.

The application of Kolmogorov theorem in GO in space-
filling curve is an example of its efficient optimizing
functions based on their projection from n dimensions to
one dimension (Goertzel, 1999; Lera and Sergeyev, 2010;
Sergeyev et al., 2013). Sprecher (Sprecher and Draghici,
2002; Sprecher, 2013; Sprecher, 2014) explored the link
between the aforementioned theorem and the space-filling
curves from computational algorithms for real-valued
continuous functions.

5 Conclusions

This paper reviewed different GO and decomposition
methods on the basis of objective function representation.
Many GO methods are derived from the branch and bound
method, which are inefficient for finding a remarkable
solution. This paper provides opportunity for additional
research on decomposition techniques based on objective

function representation, multi-objective optimization, and
Kolmogorov’s superposition. The development of other
parallel decomposition-based GO methods based on the
objective function representation for MINLP, such as
Decogo solver (Nowak et al., 2018), can be a challenging
area in MINLP solver development. Kolmogorov theorem
in GO will be discussed in future studies.
Industry 4.0 is known as the future of smart manufactur-

ing and industrial revolution. Making decentralized
decision is critical in Industry 4.0 (Marques et al., 2017).
Horizontal and vertical integrations are two principal
characteristics in Industry 4.0. Decentralized decision
support systems are needed depending on the different
types of decisions, including operational, tactical, real-
time, and strategic. Many optimization problems are
integrated with artificial intelligence in Industry 4.0, in
which decision makers (DMs) should make a decentralized
decision. This paper will help DMs in Industry 4.0
represent their objective function based on different GO
techniques, such as Kolmogorov’s superposition and DC
programming, which can be solved separately. Finally,
Khakifirooz, Pardalos, et al. (2018) and Khakifirooz,
Chien, et al. (2018) reported that applications of non-
convex optimization in decision support system develop-
ment for smart manufacturing and Industry 4.0 can be a
challenging direction for future research.
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