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Abstract This study investigates an energy-aware flow
shop scheduling problem with a time-dependent learning
effect. The relationship between the traditional and the
proposed scheduling problem is shown and objective is to
determine a job sequence in which the total energy
consumption is minimized. To provide an efficient solution
framework, composite lower bounds are proposed to be
used in a solution approach with the name of Bounds-
based Nested Partition (BBNP). A worst-case analysis on
shortest process time heuristic is conducted for theoretical
measurement. Computational experiments are performed
on randomly generated test instances to evaluate the
proposed algorithms. Results show that BBNP has better
performance than conventional heuristics and provides
considerable computational advantage.

Keywords flow shop, energy-aware scheduling, learning
effect, nested partition, worst-case error bound

1 Introduction

Conventional scheduling problems with time-based
objectives have been widely investigated in the past few
decades. Conventional scheduling problems that are
usually embedded in a synthetic industrial information

system deal with the allocation of jobs on machines over a
given time period. The objective is focused on the
reduction of production time, which is related to turnover
rate and appropriate economic indicators. However, in
terms of sustainable development, the consumed energy in
scheduling has become a public economic benefit for
manufacturing companies with the continuous increase of
environmental issues and large amount of energy costs. By
contrast, the processing time of a job or an operation is
constantly fixed through the entire production for the
classical research on scheduling. However, there are many
realistic manufacturing environments, the labor or produc-
tion facility improves continuously over time and the
learning effect continuously improve over time, which
indicate that a job has a shorter processing time than that of
previously scheduled jobs that is an extremely important
factor to consider. This condition provides an accurate
estimation on energy consumption, which causes better
calculation of processing time of workers and machines.
Thus, integrating the learning effect to the energy-based
scheduling objective will aid in actual processing time
approximation and accurate estimation of total energy
consumption. For the close relationship between the
energy-aware scheduling and scheduling with learning
effects, an integrated research on the combined problem
should be conducted regardless of its immense complexity.
Despite various studies on the traditional flow shop

scheduling problem (FSS), the literature on scheduling
problems that consider sustainable factors is limited, and
the integrated scheduling problem with simultaneous
considerations of energy reduction and learning effects
has not been investigated due its high complexity. In this
study, we first propose an energy-aware FSS (EAFSS)
problem with a time-dependent learning effect. A new
efficient framework with bound-based selection, partition-
ing, and sampling-based strategy is designed to solve the
combined problem. This framework can be practically
extended to solve other combinatorial problems where
efficient bounds can be developed. A bound-based nested
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partition (BBNP) with a composite bound is proposed to
obtain an optimal solution. We also conduct a worst-case
analysis on a shortest processing time (SPT) algorithm for
theoretical measurement.
The remainder of this paper is organized as follows:

Section 2 presents a literature review in terms of FSS with
learning effect (FSSLE) and energy-aware scheduling
(EAS). Section 3 provides the notations and assumptions.
Section 4 shows the relationship between the traditional
and proposed problems. Section 5 develops a composite
bound for sustainable FSS with the exponential sum-of-
processing-time-based learning effects. Sections 6 and 7
describe the proposed composite solution and worst-case
analysis on SPT heuristic. Section 8 presents the detailed
experimental results and analysis. Section 9 summarizes
the conclusions.

2 Literature review

As a conventional topic, FSS has been intensively
investigated in the past few decades. Johnson (1954),
Gonzalez and Sahni (1978), Garey and Johnson (1979),
and Smutnicki (1998) investigated typical flow shop
models and their associated algorithms. Polynomial
solutions can be found in several certain cases (John-
son,1954). However, in most cases, it is not able to be
solved in polynomial time (Gonzalez and Sahni, 1978),
which leads to the study on approximation algorithms
(Garey and Johnson, 1979; Smutnicki, 1998). Many real
applications have supported Wright’s theory (1936) where
the processing time can be remarkably reduced with the
increase of production requirements (Webb, 1994). Biskup
(1999) and Cheng and Wang (2000) successfully intro-
duced Wright’s theory in scheduling. Considerable studies
have focused on FSSLE. Lee andWu (2004) investigated a
two-machine FSS with position-based learning effects.
They proposed heuristic and branch-and-bound methods to
minimize the total completion time. Recently, Pei et al.
(2017) evaluated a serial-batching scheduling problem
with position-based learning effect under single and
parallel machine environments, which minimizes the
total number of delayed jobs and maximizes the earliness.
They developed an optimization algorithm for a single
machine setting and proposed a hybrid BA-VNS algorithm
for a parallel machine setting. For a learning-based
scheduling environment, Wang and Xia (2005) investi-
gated FSS to minimize either the total flow time or
makespan. They determined polynomial time solutions in
several certain cases. They proposed a heuristic algorithm
and confirmed the worst-case error bound of the heuristic.
Koulamas and Kyparisis (2007) considered sum-of-
job-processing-time-based and position-based learning
effects in a two-machine FSS and showed that the SPT
sequence is optimal under several certain cases. On the
basis of the similar concept of Wang and Xia (2005), Xu

et al. (2008) implemented the worst-case analysis on SPT
for the FSSLE. Their objectives are all related to
completion time. Pei et al. (2017) assessed a serial-batch
scheduling problem in an environment where coordination
exists among multiple factories and resource-dependent
processing time and dual constraints of resources are
considered. They provided a polynomial-time scheduling
rule for the optimization of each single factory and
proposed an efficient BA-VNS algorithm to solve the
complex coordinate problem. Wu and Lee (2009), Rudek
(2011), Kuo et al. (2012), Sun et al. (2013), Wang et al.
(2013), Xu et al. (2016), and Gao et al. (2017) conducted
recent studies on FSSLE.
EAS is an area that has been rarely investigated in the

scheduling domain regardless of its importance. Liu et al.
(2001), Artigues et al. (2009), Lee and Zomaya (2010),
Chan et al. (2013), and Agrawal and Rao (2014) conducted
previous studies associated on EAS. Liu et al. (2001)
considered power-aware scheduling under timing-
constraints. Artigues et al. (2009) investigated a scheduling
problem with energy constraints. Tree searches are applied
to provide schedule solutions. Lee and Zomaya (2010)
evaluated a scheduling framework that incorporates
various factors related with energy-efficient operation.
Chan et al. (2013) introduced a scheduling problem with
weighted flow time and energy graphs. Algorithms with
the basic concept of removing certain tasks and maintain-
ing the optimality are developed. Agrawal and Rao (2014)
conducted a systematic study on EAS of a distributed
system. They proved that total energy consumption
minimization is equivalent to makespan minimization for
several special cases. In addition, several heuristics are
developed for the solution. Liu et al. (2017) considered
an EAS problem with processing-speed-dependent
processing times and proposed a three-stage decomposi-
tion approach to minimize energy consumption.

3 Notations and assumptions

The investigated problem here includes n jobs
J ¼ fJ1, J2, :::, Jng, where each job in the system should
be sequentially processed on each of m machines M ¼
fM1, M2, :::, Mmg and without preemption. The sequence
of the job remains the same for each machine, which
indicates that each job joins the queue of the next machine
after its completion on its own machine and all the queues
are assumed to follow a first in first out principle. Similar to
the study of Agrawal and Rao (2014), the energy
consumption in the working and idle states for each
machineMi are denoted as �ðMiÞ and k�ðMiÞ, respectively,
where 0£k£1. Each job Jj consists m operations
O1j, O2j, :::, Omj, and these operations should be sequen-
tially processed on each machine. pij denotes the (original)
processing time of operation Oij.
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A previous study on the learning effect assumed that the
learning curve is position-based, which is a log-linear
learning curve pjr ¼ pjr

a where a is a constant index and is
positionin a schedule. The processing time exponentially
decreases with the increase of position r when a < 0. An
exponential model of learning effect pjr ¼ pjα

r – 1, where
0£α£1, is proposed by Wang and Xia (2005). The effect
is constant for a given job because pj,rþ1pj,r ¼ α. With this
approach, the processing time decreases at a reasonably
slow rate when α is close to 1. This condition is suitable for
several manufacturing environments where the learning
effect is slow.
Motivated by this condition, we consider an exponential

time-dependent learning effect in this study, and actual
processing time pijr is defined as follows:

pijr ¼ pijðαa
Pr – 1

l¼1
pi½l� þ βÞ, i ¼ 1,2,:::,m;

r,j ¼ 1,2,:::,n, (1)

where 0 < α£1 is the learning rate, α³0, β³0, and
αþ β ¼ 1.
For a given schedule π, the completion time of operation

Oij is denoted by CijðπÞ ¼ Cij, i ¼ 1,2,:::,m; j ¼ 1,2,:::,n,
and CjðπÞ ¼ Cj ¼ Cmj represents the completion time of
job Jj. τcðMiÞ denotes the total working time on machine
Mi, and τdðMiÞ represents the total idle time on machine
Mi. Thus, τdðMiÞ ¼ Cmax – τcðMiÞ. This condition aims to
determine a schedule to minimize the total energy
consumption, which is expressed as E ¼

Xm

i¼1
½�ðMiÞτc

ðMiÞ þ k�ðMiÞτdðMiÞ�. The problem can be written as Fm

jpijr ¼ pijðαa
Pr – 1

l¼1
pi½l� þ βÞj

Xm

i¼1
½�ðMiÞτcðMiÞ þ k�ðMiÞ

τdðMiÞ�ðm³3Þ and it is well known that this problem is
NP-complete.

4 Analysis on minimum energy
consumption scheduling with learning
effects

Considering that τdðMiÞ ¼ Cmax – τcðMiÞ, total energy
consumption E can also be expressed as

E ¼
Xm
i¼1

½�ðMiÞτcðMiÞ þ k�ðMiÞτdðMiÞ�

¼ ð1 – kÞ
Xm
i¼1

�ðMiÞτcðMiÞ þ k
Xm
i¼1

�ðMiÞCmax,

where k and �ðMiÞ are fixed constants. The traditional
assumption on the objective of the scheduling problem
focuses on the time reduction of tasks and usually includes
the minimization of makespan, maximum delay, total
completion time, and total tardiness. This assumption is

further related to overall turnover rate or customer
satisfaction, which are important economic and manage-
ment factors. The objective considered in this study
provides such a sustainable way of scheduling where the
total energy consumption is kept low.
On the basis of the above equation, when the learning

effect is ignored (processing time is assumed to be
constant) and power consumption rates �ðMiÞ are equal
for all the machines, that is, �ðM1Þ ¼ �ðM2Þ ¼ ::: ¼
�ðMmÞ ¼ �ðMÞ, we can have

E ¼ ð1 – kÞ
Xm

i¼1
�ðMiÞτcðMiÞ þ k

Xm

i¼1
�ðMiÞCmax

¼ ð1 – kÞ�ðMÞ
Xm

i¼1
τcðMiÞ þ k

Xm

i¼1
�ðMiÞCmax:

Considering that k, �ðMiÞ, and
Xm

i¼1
τcðMiÞ are all

fixed constants, the problem will be reduced to the
minimization of makespan. For the general case, the
objective is the addition of two factors, namely, minimum
working energy consumption and minimum makespan.
The setting of different energy consumption rates for
different machines lead to the tradeoffs between economic
and sustainable factors because makespan is used as an
important corporate economic indicator. In addition, the
entire consumed time can be controlled within a reasonable
limit by reducing the energy consumption although the
minimum energy consumption cannot guarantee the
minimum makespan.
Hence, the sustainable perspective does not conflict with

the corporate economic profits or management level in
terms of EAS for the operation management of manufac-
turers. On the contrary, a good control of consumed energy
can have a remarkable impact on the reduction of
production time and costs. The benefit of energy-aware
objective is that it is a generalization of minimizing
production time, which can lead to a better balance. The
different settings of energy consumption rates provide
opportunities in configuring the problem based on various
preferences.

5 Composite lower bounds (LBs)

In this section, we propose a composite bound on partial
solutions under three different perspectives, namely,
LBð1Þ, LBð2Þ, and LBð3Þ, which is applied to reduce the
total nodes searched in a branch-and-bound framework.
Let π ¼ ðPS,USÞ be a schedule of jobs where PS and US
represent the scheduled and unscheduled parts, respec-
tively.
Lemma 1. (Wang et al. (2009)) For problem 1jpjr ¼

pjðαa
Pr – 1

l¼1
p½l� þ βÞjCmax, an optimal schedule can be

obtained by sequencing the jobs in non-decreasing order
of pj (i.e., the SPT rule).
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5.1 LB 1

First, we consider an LB for the term Cmax. For a partial
schedule with k scheduled jobs, the completion time of the
ðk þ 1Þ th job on machine Mi can be written as

Ci½kþ1�ðπÞ ¼ maxfCi – 1,½kþ1�ðπÞ,Ci½k�ðπÞg

þ pi½kþ1�ðαa
Pk

l¼1
pi½l� þ βÞ

³Ci½k�ðπÞ þ pi½kþ1�ðαa
Pk

l¼1
pi½l� þ βÞ:

Similarly,

Cm½kþ1�ðπÞ³Ci½k�ðπÞ þ
Xm
u¼i

pu½kþ1�ðαa
Pk

l¼1
pu½l� þ βÞ,

Cm½kþj�ðπÞ³Ci½k�ðπÞ þ
Xm – 1

u¼i

pu½kþ1�ðαa
Pk

l¼1
pu½l� þ βÞ

þ
Xj
h¼1

pm½kþh�ðαa
Pk

l¼1
pm½l�þ

Ph – 1

l¼1
pm½kþl� þ βÞ,

where 1£j£n – k.
Hence, the makespan is

Cmax ¼ C½n�ðπÞ³Ci½k�ðπÞ þ
Xm – 1

u¼i

pu½kþ1�ðαa
Pk

l¼1
pu½l� þ βÞ

þ
Xn – k
h¼1

pm½kþh�ðαa
Pk

l¼1
pm½l�þ

Ph – 1

l¼1
pm½kþl� þ βÞ: (2)

The first term is a constant, and an LB can be obtained
by minimizing the last two terms. From Lemma 1, the termXn – k

h¼1
pm½kþh�ðαa

Pk

l¼1
pm½l�þ

Ph – 1

l¼1
pm½kþl� þ βÞ can be mini-

mized by sequencing the jobs in non-decreasing order of
pm½j�. Thus, the LB for Cmax concerning machine Mi is

LBiðCmaxÞ ¼ Ci½k�ðπÞ þ
Xm – 1

u¼i

pu½kþ1�*ðαa
Pk

l¼1
pu½l� þ βÞ

þ
Xn – k
h¼1

pm½kþh�ðαa
Pk

l¼1
pm½l�þ

Ph – 1

l¼1
pm½kþl� þ βÞ,

(3)

where ½k þ 1�* ¼ arg  min
½kþ1�

Xm – 1

u¼i
pu½kþ1�.

For the term
Xm

i¼1
�ðMiÞτcðMiÞ, we can easily show

that

Xm
i¼1

�ðMiÞτcðMiÞ³�min

Xm
i¼1

Xk
j¼1

pi½j�ðαa
Pj – 1

l¼1
pi½l� þ βÞ

þ�min

Xn – k
h¼1

LðkþhÞðαamin
m

i¼1

Pk

l¼1
pi½l�þ
Ph – 1

l¼1
LðkþlÞ þ βÞ,

where �min is the minimum value among �ið1£i£mÞ, and
Lðkþ1Þ£Lðkþ2Þ£⋯£LðnÞ is a nondecreasing order of total
normal processing times of unscheduled jobs.
In addition,Xm

i¼1
�ðMiÞτcðMiÞ³�min

Xm

i¼1

Xk

j¼1
pi½j�

ðαa
Pj – 1

l¼1
pi½l� þ βÞ þ

Xm

i¼1

Xn – k

h¼1
piðkþhÞ

ðαa
Pk

l¼1
pi½l�þ
Ph – 1

l¼1
piðkþlÞ þ βÞ:

Thus, the LB for the term
Xm

i¼1
�ðMiÞτcðMiÞ is

LB1 ¼ min �min

Xm
i¼1

Xk
j¼1

pi½j�ðαa
Pj – 1

l¼1
pi½l� þ βÞ

 

þ�min

Xn – k
h¼1

LðkþhÞðαamin
m

i¼1

Pk

l¼1
pi½l�þ
Ph – 1

l¼1
LðkþlÞ þ βÞ,

�min

Xm

i¼1

Xk

j¼1
pi½j�ðαa

Pj – 1

l¼1
pi½l� þ βÞ þ

Xm

i¼1

Xn – k

h¼1
piðkþhÞðαa

Pk

l¼1
pi½l�þ
Xh – 1

l¼1
piðkþlÞ þ βÞ !:

Accordingly, LBð1Þi ¼ ð1 – kÞLB1 þ k
Xm

i¼1
�ðMiÞLB

ð1ÞiðCmaxÞ. We select the maximum value of LBð2Þi to
obtain a tight LB, and LBð1Þ is denoted as follows:

LBð1Þ ¼ maxfLBð1Þ1, LBð1Þ2,:::, LBð1Þmg: (4)

5.2 LB 2

Following the similar perspective that each certain
machine generates an LB is taken, we consider all the
remaining operations of a job in the calculation of Ci½kþ1�
ðπÞ compared with LB 1. Thus, we have

Ci½kþ1�ðπÞ³Ci½k�ðπÞ þ pi½kþ1�ðαa
Pk

l¼1
pi½l� þ βÞ:

Similarly,
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Cm½kþ1�ðπÞ³Ci½k�ðπÞ þ
Xm
u¼i

pu½kþ1�ðαa
Pk

l¼1
pu½l� þ βÞ,

Cm½kþj�ðπÞ³Ci½k�ðπÞþ
Xj
h¼1

pi½kþh�ðαa
Pk

l¼1
pi½l�þ
Ph – 1

l¼1
pi½kþl� þβÞ

þ
Xm
u¼iþ1

pu½kþj�ðαa
Pk

l¼1
pu½l�þ

Xj – 1

l¼1
pu½kþl� þ βÞ,

where 1£j£n – k.
Hence, the makespan is

Cmax ¼ C½n�ðπÞ³Ci½k�ðπÞ

þ
Xn – k
h¼1

pi½kþh�ðαa
Pk

l¼1
pi½l�þ
Xh – 1

l¼1
pi½kþl� þ βÞ

þ
Xm
u¼iþ1

pu½n�ðαa
Pn – 1

l¼1
pu½l� þ βÞ: (5)

The first term is a constant, and the minimization of the
last two terms will lead to a low bound. From Lemma 1,

the term
Xn – k

h¼1
pi½kþh�ðαa

Pk

l¼1
pi½l�þ
Xh – 1

l¼1
pi½kþl� þ βÞ can

be minimized by sequencing the jobs in non-decreasing
order of pi½j�. Thus, the LB for machine Mi is

LBiðCmaxÞ ¼ Ci½k�ðπÞ

þ
Xn – k
h¼1

pi½kþh�ðαa
Pk

l¼1
pi½l�þ
Xh – 1

l¼1
pi½kþl� þ βÞ

þ
Xm
u¼iþ1

pu½n�*ðαa
Pn – 1

l¼1
pu½l� þ βÞ, (6)

where ½n�* ¼ arg  min
½n�

Xm

u¼iþ1
pu½n�* .

Accordingly, LBð2Þi ¼ ð1 – kÞLB1 þ k
Xm

i¼1
�ðMiÞLB

ð2ÞiðCmaxÞ. We select the maximum value of LBð2Þi to
obtain a tight LB, and LBð2Þ is denoted as follows:

LBð2Þ ¼ maxfLBð2Þ1, LBð2Þ2,:::, LBð2Þmg: (7)

5.3 LB 3

We take a new perspective for each job in the calculation of
LB 3. Ci½kþ1�ðπÞ is calculated based on the arbitrary
position of a certain job.

Ci½kþ1�ðπÞ ¼ maxfCi – 1,½kþ1�ðπÞ, Ci½k�ðπÞg

þ pi½kþ1�ðαa
Pk

l¼1
pi½l� þ βÞ

³C1½k�ðπÞ þ
Xi
u¼1

pu½kþ1�ðαa
Pk

l¼1
pu½l� þ βÞ:

Similarly,

Cm½kþ1�ðπÞ³C1½k�ðπÞ þ
Xm
u¼1

pu½kþ1�ðαa
Pk

l¼1
pu½l� þ βÞ,

Ci½kþj�ðπÞ³C1½k�ðπÞ þ
Xj – ðwþ1Þ

h¼1

pi½kþwþhþ1�ðαa
Pk

l¼1
pi½l�þ
Pwþ1

l¼1
pi½kþl�þ

Ph – 1

l¼1
pi½kþwþlþ1� þ βÞ

þ
Xw
h¼1

p1½kþh�ðαa
Pk

l¼1
p1½l�þ

Ph – 1

l¼1
p1½kþl� þ βÞ

þ
Xi
u¼1

pu½kþwþ1�ðαa
Pk

l¼1
pu½l�þ

Pw

l¼1
pu½kþl� þ βÞ

where 1£j£n – k, 1£w£j – k.

Cm½kþj�ðπÞ³C1½k�ðπÞ þ
Xj – ðwþ1Þ

h¼1

pm½kþwþhþ1�ðαa
Pk

l¼1
pm½l�þ

Pwþ1

l¼1
pm½kþl�þ

Ph – 1

l¼1
pm½kþwþlþ1� þ βÞ

þ
Xw
h¼1

p1½kþh�ðαa
Pk

l¼1
p1½l�þ

Ph – 1

l¼1
p1½kþl� þ βÞ

þ
Xm
u¼1

pu½kþwþ1�ðαa
Pk

l¼1
pu½l�þ

Pw

l¼1
pu½kþl� þ βÞ,

where 1£j£n – k, 1£w£j – k.
Hence, the makespan is

Cmax ¼ C½n�ðπÞ³C1½k�ðπÞ þ
Xn – ðkþwþ1Þ

h¼1

pm½kþwþhþ1�ðαa
Pk

l¼1
pm½l�þ

Pwþ1

l¼1
pm½kþl�þ

Ph – 1

l¼1
pm½kþwþlþ1� þ βÞ

þ
Xw
h¼1

p1½kþh�ðαa
Pk

l¼1
p1½l�þ

Ph – 1

l¼1
p1½kþl� þ βÞ

þ
Xm
u¼1

pu½kþwþ1�ðαa
Pk

l¼1
pu½l�þ

Pw

l¼1
pu½kþl� þ βÞ, (8)

where 1£w£n – k. The first term is a constant, and the
minimization of the last three terms will lead to an LB.
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Moreover, the second term is minimized by sequencing all
jobs in a non-decreasing order of pminðjÞ ¼ minfp1½j�,pm½j�g
based on Lemma 1, except for the ðk þ wþ 1Þth job. By
contrast, the actual processing time can be minimized by
increasing the accumulated learning effect. Hence, we take
pmaxðjÞ ¼ minfp1½j�, pm½j�g as the processing time of the past
position. Consequently, the LB for job Jj is

LBjðCmaxÞ¼C1½k�ðπÞþ
Xm
u¼1

pujðαa
Pk

l¼1
pu½l�þ

Pn – k – 1

l¼1
pu½kþl� þ βÞ

þ
Xn – k – 1
h¼1

pminðkþhÞðαa
Pk

l¼1
p1½l�þ

Ph – 1

l¼1
pmaxðkþhÞ þ βÞ, (9)

where k£j£n – k, k£h£n – k.
Accordingly, LBð3Þj ¼ ð1 – kÞLB1 þ k

Xm

i¼1
�ðMiÞLB

ð3ÞjðCmaxÞ. We use the maximum value of LBð2Þi to
obtain a tight LB, and LBð1Þ is denoted as follows:

LBð3Þ ¼ maxfLBð3Þ1, LBð3Þ2,:::, LBð3Þn – kg: (10)

Three LBs are derived from different perspectives, and
these LBs form the composite bound by using their
maximum value. Thus, the composite bound is denoted as

LB ¼ maxfLBð1Þ, LBð2Þ, LBð3Þg: (11)

6 Algorithms

6.1 Two heuristic algorithms

Considering that the proposed problem on m-machine
(m³3) flow shop is NP-complete, heuristic algorithms can
be constructed to solve it within a limited amount of time.
In this study, we use two heuristics, namely, Oðmn2Þ
NEH heuristic of Nawaz et al. (1983) and Oðmn4Þ FL
heuristic of Framinan and Leisten (2003) to solve Fmjpijr =
pijðαa

Pr – 1

l¼1
pi½l� þ βÞj

Xm

i¼1
½�ðMiÞτcðMiÞ þ k�ðMiÞτdðMiÞ�

ðm³3Þ. They are widely applied and shown to be efficient
in solving FSS. Now, we provide the modified NEH and
FL algorithms with time complexity of Oðmn3Þ and
Oðmn4Þ, respectively.
NEH algorithm
Step 1. Calculate total normal processing time Lj of each

job Jj.
Step 2. Denote the SPT sequence π, where all jobs are

sorted in non-decreasing order of Lj, and let πk be job in the
kth position of π.
Step 3. Select π1, π2 from π, switch their positions,

calculate the energy consumption of the two possible
sequences, and select the better one. The relative positions
of the two jobs will not change in the remaining steps. Set
j ¼ 3.

Step 4. Use πj, insert it in j possible positions of the
partial sequence in the previous steps and result in j
sequences, and calculate the energy of these sequences to
find the best sequence. Keep the relative positions of jobs
in the current best sequence unchanged.
Step 5. If j ¼ n, STOP; otherwise set j ¼ jþ 1 and go to

Step 4.
FL algorithm
Step 1. Calculate total normal processing time Lj of each

job Jj.
Step 2. Denote the SPT sequence π, where all jobs are

sorted in non-decreasing order of Lj, and denote πk the job
in the kth position of π.
Step 3. Set k ¼ 2. Pick π1, π2 from π, switch their

positions, calculate the energy consumption of the two
possible sequences, and select the better one. The relative
positions of the two jobs will not change in the remaining
steps.
Step 4. Set k ¼ k þ 1. Pick πj, insert it in k possible

positions of the partial sequence found in the previous
steps and result in k sequences, calculate the energy of
these sequences to find the best sequence, and go to Step 5.
Step 5. Interchange jobs in all possible positions i and j

of the above best sequence, where 1£i < k, i < j£k. This
process will result in kðk – 1Þ=2 sequences, and select the
one with minimum energy consumption as the best partial
sequence.
Step 6. If k ¼ n, STOP; otherwise, go to Step 4.

6.2 BBNP algorithm

On the basis of the abovementioned studies, we propose
the BBNP algorithm in this subsection. We combine the
above composite LB with Nested Partition algorithm. Shi
and Ólafsson (2000) proposed the NP algorithm, where
they optimized the allocation of computational effort
during searching and sustained the global view, in which
considerable computational efforts are allocated to the
most promising region. The NP algorithm has been
successfully applied in a wide range of combinatorial
and large-scale optimization problems (Shi et al. 2001; Wu
et al. 2010)
For each iteration of a general NP framework, the most

promising region is divided into small subregions
(partitioning) and the remaining parts are aggravated as
surrounding regions. Then, samples are randomly selected
from subregions and surrounding regions (random sam-
pling). Subsequently, the promising index is calculated for
each region, and this promising index will serve as the
guidance direction for the next iteration. Finally, the
movement is performed based on the promising index.
However, good implementation of the partition and

sampling procedure is difficult for the NP method. For the
mitigation and improvement of the performance of the
algorithm, we introduce the LB and upper bound (UB) in
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the solution, which can provide a mathematical-based
strategy of partitioning and sampling and a good guide for
the implementation.
Bounds-based-partitioning (BBP)
Partitioning is a key step used in BBNP. For partitioning,

the promising region is divided into several small
subregions. Given a huge feasible solution space, the
underlying problem is that the computational effort should
not be wasted in the subregions that are not able to
contribute to optimum searching. By contrast, BBNP trims
the subregion that cannot generate the optimal solution and
reduces the searching region to a small scale. To achieve
this condition, a good UB should be determined, calculate
the LB for

Xm

i¼1
½�ðMiÞτcðMiÞ þ k�ðMiÞτdðMiÞ� of the

unfathomed partial schedules, and trim the useless regions
with the UB smaller than LB. The sampling procedure is
only implemented in the remaining subregion. Figure 1
illustrates the BBP procedure.
BBP procedure
Step 1. Obtain the UB of BBNP by implementing the

heuristic algorithms and select the best solution generated.
Step 2. In the k th level, divide promising region � into

n – k subregions by partitioning.
Step 3. Calculate the LB for unfathomed partial sche-

dules or Cmax of the completed schedules for each obtained
subregion.
Step 4. Trim the useless subregions with UB smaller

than LB and obtain M�ðkÞ subregions. Denote �1ðkÞ,�2ðkÞ
,:::,�M�ðkÞ ðkÞ as the final subregions to be investigated.

Bound-based-sampling (BBS)
Sampling should be implemented for each subregion

acquired in the above procedure. An efficient sampling
strategy provides an actual reflection of the subregion
and has a direct impact on the performance of BBNP.
The solution obtained from the sampling can be used as
the evaluation factor and the new UB when it is
smaller than the current UB. Similar to the previous
procedure, we introduce bounds to trim the nodes that are
unlikely to lead to optimum. The BBS procedure is shown
in Fig. 2.
BBS procedure
Step 1. For subregion �jðkÞ to be sampled, the (k þ 1)th

level node is fixed by BBP procedure. Calculate the LB for
each of the rest n – k – 1 levels.
Step 2. In the ðk þ 2Þth level, trim its subregion with

UB smaller than LB, and implement a random selection in
the remaining subregions to allocate job on the (k þ 2)th
level node.
Step 3. repeat Step 2 in ðk þ 3Þth, ðk þ 4Þth,:::,ðn – 1Þth

level.
To avoid duplicate sampling, construct a new archive to

store history sample nodes in each BBS procedure, and this
archive is used to compare with new samples.
Estimating the promising index and backtracking
This procedure is the same with conventional NP

framework and the promising index is calculated by the
best objective value determined in a particular region.
The full BBNP algorithm is described as follows:
BBNP algorithm
Step 1. Denote d as the algorithm level, t as the run time,

and set d ¼ 1 and t ¼ 0.
Step 2. If d > n or t > TIMELIM IT, then STOP.
Step 3. Implement BBP procedure to divide root region

� into n initial subregions without generating any
surrounding region.
Step 4. Use the BBS procedure in every current region.
Step 5. Calculate the promising index. If the best

promising index exists in a subregion �*, go to Step 6;
otherwise, go to Step 7.
Step 6. Select �* as the next promising region. Generate

the surrounding region with other solution space. Set d ¼
d þ 1 and t ¼ CURRENTTIME.
Step 7. Backtrack to the parent region of the

current promising region. Set d ¼ d – 1 and
t ¼ CURRENTTIME.

7 Worst-case bounds

On the basis of Lemma 1, we can build an approximate
solution by using the SPT rule to solve Fmjpijr =
pijðαa

Pr – 1

l¼1
pi½l� þ βÞj

Xm

i¼1
½�ðMiÞτcðMiÞ þ k�ðMiÞτdðMiÞ�.

Theorem 1. Let π* be an optimal schedule and π be an

Fig. 1 BBP procedure
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SPT schedule for Fmjpijr = pijðαa
Pr – 1

l¼1
pi½l� þ βÞj

Xm

i¼1

½�ðMiÞτcðMiÞ þ k�ðMiÞτdðMiÞ� problem. Then,Xm

i¼1
½�ðMiÞτcðMiÞ þ k�ðMiÞτdðMiÞ�ðπÞXm

i¼1
½�ðMiÞτcðMiÞ þ k�ðMiÞτdðMiÞ�ðπ*Þ

£
m

ðαaPmax þ βÞ
�maxð1 – kÞ þ k

Xm

i¼1
�ðMiÞ

�minð1 – kÞ þ k
Xm

i¼1
�ðMiÞ

, (12)

where Pmax ¼ max
Xn

l¼1
pil – piminji ¼ 1,2,:::,m

n o
, Pimin

¼ minfpijjj ¼ 1,2,:::,ng, �max ¼ maxmi¼1�ðMiÞ, and �min ¼
minmi¼1�ðMiÞ.
Proof. Similar to the proof in Wang J B and Wang J J

(2014) for an SPT schedule π, where L1£L2£:::£Ln, we
have

CjðπÞ£L1 þ L2ðαapmin,1 þ βÞ þ L3ðαapmin,1þpmin,2 þ βÞ þ :::

þ Ljðαapmin,1þpmin,2þ:::þpmin,j – 1 þ βÞ

£
Xj
l¼1

Ll, (13)

where Pmin,j ¼ minfpijji ¼ 1,2,:::,mg. Thus,

CmaxðSÞ£
Xn
j¼1

Lj: (14)

Denote π* ¼ ðJ½1�,J½2�,:::,J½n�Þ as the optimal schedule,

where ½j� is job that is sequenced at the jth position of π*,
we have

C1½j� ¼ p1½1� þ p1½2�ðαap1½1� þ βÞ þ :::

þp1½j�ðαap1½1�þp1½2�þ⋯þp1½j – 1� þ βÞ,

C2½j�³p2½1� þ p2½2�ðαap2½1� þ βÞ þ :::

þp2½j�ðαap2½1�þp2½2�þ⋯þp2½j – 1� þ βÞ,

:::

Cm½j�³pm½1� þ pm½2�ðαapm½1� þ βÞ þ :::

þpm½j�ðαapm½1�þpm½2�þ⋯þpm½j – 1� þ βÞ:
Hence,

C½j� S
*� �
£

1

m

Xj
l¼1

L½l� αa
pmax þ βð Þ, (15)

where

Pmax ¼ max
Xn

l¼1
pil – piminji ¼ 1,2,:::,m

n o
and Pimin ¼ minfpijji ¼ 1,2,:::,ng. Thus,

Cmax S*
� �

£
1

m

Xn
l¼1

Ll αa
pmax þ βð Þ

¼ 1

m

Xn
l¼1

Ll αa
pmax þ βð Þ: (16)

Consequently, from Eqs. (14) and (16), we have

Fig. 2 BBS procedure
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Xm

i¼1
½�ðMiÞτcðMiÞ þ k�ðMiÞτdðMiÞ�ðπÞXm

i¼1
½�ðMiÞτcðMiÞ þ k�ðMiÞτdðMiÞ�ðπ*Þ

£
�maxð1 – kÞ

Xn

j¼1
Lj þ k

Xm

i¼1
�ðMiÞ

Xn

j¼1
Lj

�max 1 – kð Þ
Xn

j¼1
Lj

m

ðαaPmax þ βÞ þ k
Xm

i¼1
�ðMiÞ

Xn

j¼1
Lj

m

ðαaPmax þ βÞ

£
m

ðαaPmax þ βÞ
�maxð1 – kÞ þ k

Xm

i¼1
�ðMiÞ

�minð1 – kÞ þ k
Xm

i¼1
�ðMiÞ

:

8 Computational experiments

For the evaluation of the heuristics and BBNP, computa-
tional experiments are conducted in this section. The
algorithms are coded in C++ and run on a Pentium 4 with
2 GB RAM personal computer. The test problems are
generated based on Li et al. (2013) and Wang and Wang
(2014), and their specifications are shown as follows:
� learning rate: a ¼ f0:7,0:8,0:9g;
� processing time: pij 2 U ½1,100�;
� energy consumption in the working state:

�ðMiÞ 2 ð1,2Þ;
� factors: α ¼ β ¼ 0:5, k 2 ð0,1Þ.
Medium size instances:
� machine number: m ¼ 3,5;

� job number: n = 9,10,11,12,13,14;
� time limit of BBNP approach: 900 s.
Large size instances:
� machine number: m ¼ 5;
� job number: n = 20,50,100,150,200;
� time limit of BBNP approach: 1800 s.
For each combination of n-a-m, 20 random instances are

generated.
Tables 1 and 2 show the computation results of medium-

size problems. The average and maximum error gaps are
used to reflect the performance of heuristic algorithms. The
error gap of the solution is calculated as follows:

ðVHeur –VoptÞ=Vopt � 100%,

where VHeur is the value
Xm

i¼1
½�ðMiÞτcðMiÞ þ k�ðMiÞτdð

MiÞ� of the solution generated by the heuristic algorithms,

Table 1 Error gap (%) of BBNP and heuristic algorithms for m ¼ 3

n a
SPT NEH FL BBNP

mean max mean max mean max mean max

9 0.7 13.8 40 2.25 9.15 0.1 1.73 0 0

9 0.8 13.2 30.3 3.13 17.6 0.076 0.626 0 0

9 0.9 13.6 34.6 2.81 13.2 0.058 0.777 0 0.01

10 0.7 15.8 34.9 2.19 10 0.16 2.74 0 0.01

10 0.8 16.9 38.8 2.49 16.9 0.099 1.62 0 0.015

10 0.9 16.6 37 1.63 8.35 0.141 1.57 0 0

11 0.7 15.8 34.4 3.82 11.4 0.104 1.15 0.067 1.246

11 0.8 13.7 30.2 2.38 9.24 0.281 2.36 0 0.015

11 0.9 14.8 31.9 1.68 6.43 0.403 3.67 0.133 1.617

12 0.7 15.6 34.2 1.84 6.33 0.153 2.23 0.011 0.124

12 0.8 16.9 39.2 1.81 5.41 0.347 3.12 0.084 1.016

12 0.9 15.6 31.9 2.21 8.28 0.356 3.87 0.104 1.246

13 0.7 17.7 35.4 2.38 13.7 0.385 4.15 0.184 2.039

13 0.8 16.6 31.5 2.41 7.08 0.359 2.18 0.101 0.998

13 0.9 16.8 29.3 2.69 8.52 0.254 2.97 0.125 1.028

14 0.7 11.9 24.5 1.84 7.47 0.105 1.23 0.092 0.926

14 0.8 13.4 21.7 2.28 8.6 0.296 2.27 0.104 1.638

14 0.9 13.3 21.5 2.29 8.12 0.187 2.16 0.067 0.102
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and Vopt is the value
Xm

i¼1
½�ðMiÞτcðMiÞ þ k�ðMiÞτdðMi

Þ� of the optimal schedule. From the results, FL is more
efficient than SPT and NEH. The performance is enhanced
when the new framework BBNP is applied.
The frequency of maximum value, which indicates the

dominating frequency of one LB for the partial schedule, is
recorded in Table 3 when the composite bound method is
applied. The maximum value is defined asMNi=TN where
MNi is the number in which LB i dominates the others and
TN is total number of iterations for one run. For the
composite bounds, the frequency of domination of each
LB on the evaluation of the partial schedule is almost equal
through the results of frequency of maximum value.
Hence, no superiority is observed among the domination of
each LB in the composite strategy.
Table 4 shows the computation results of large-sized

problems. In this experiment, the average and maximum

ratios
EðHeurÞ
EðARBÞ are used as the indicator on the performance

of heuristic algorithms, where E is the total energy, Heur 2
fSPT , NEH , FL, BBNPg and ARB is any busy schedule
(Smutnicki 1998). The ARB algorithm is selected as the
reference value because it is a simple and arbitrary
algorithm. From the results, the BBNP algorithm is more
efficient than FL and FL is the most efficient among all the
heuristics for large-scale instances.

Table 2 Error gap (%) of BBNP and heuristic algorithms for m ¼ 5

n a
SPT NEH FL BBNP

mean max mean max mean max mean max

9 0.7 14.8 40.8 2.5 10.5 0.49 3.32 0.308 3.31

9 0.8 13.8 27.5 4.26 12.1 0.762 4.62 0.314 2.05

9 0.9 15.3 36.2 3.45 12.1 0.773 2.94 0.284 2.12

10 0.7 17.4 29.5 3.5 16.4 0.75 3.07 0.454 3.31

10 0.8 17.6 34.4 3.19 11.1 0.976 5.28 0.402 3.2

10 0.9 16.6 28.3 3.18 11.5 0.447 3.44 0.333 2.98

11 0.7 18 38.3 4.11 19 0.733 3.06 0.438 2.39

11 0.8 16.8 31.7 2.48 9.07 0.964 4.51 0.698 4.9

11 0.9 17.9 42.2 2.77 8.06 0.648 3.31 0.276 1.39

12 0.7 18.9 29 3.28 10.9 1.26 5.48 1.1 5.31

12 0.8 20.1 38.8 5.39 12.3 1.03 6.01 0.585 2.79

12 0.9 15.8 32.4 3.57 11.5 0.558 2.35 0.322 1.86

13 0.7 19.7 42.9 3.46 14.1 1.15 3.7 0.542 2.63

13 0.8 18.9 38.8 2.83 8.68 0.172 1.78 0.132 1.51

13 0.9 16.5 34.6 2.15 9.69 0.576 4.15 0.299 2.07

14 0.7 18.9 30.6 2.9 9 0.866 4.62 0.774 3.7

14 0.8 19.6 38.2 4.21 9.38 1.33 8.43 0.99 4.34

14 0.9 16.7 30.9 2.9 12.8 0.559 2.68 0.392 2.4

Table 3 Results of domination of different LB calculations for partial

schedule (m ¼ 3)

n a
Frequency of maximum

LB (1) LB (2) LB (3)

9 0.7 0.36 0.37 0.27

9 0.8 0.39 0.33 0.28

9 0.9 0.33 0.34 0.33

10 0.7 0.34 0.31 0.35

10 0.8 0.29 0.35 0.36

10 0.9 0.35 0.31 0.34

11 0.7 0.25 0.41 0.34

11 0.8 0.42 0.35 0.23

11 0.9 0.31 0.33 0.36

12 0.7 0.27 0.35 0.38

12 0.8 0.33 0.25 0.42

12 0.9 0.4 0.36 0.24

13 0.7 0.35 0.27 0.38

13 0.8 0.32 0.36 0.32

13 0.9 0.35 0.35 0.3

14 0.7 0.41 0.3 0.29

14 0.8 0.31 0.35 0.34

14 0.9 0.21 0.42 0.37
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9 Summary

In this study, an EAFSS problem with an exponential time-
dependent learning effect is investigated. As shown in
Section 4, the conveyed message is scheduling of
minimizing energy consumption is a generalization of
minimizing makespan for the proposed problem, and the
perspective of economics and environment are highly
related in this scope. For the solution, the newly proposed
solution framework BBNP is found to be effective and
shows a better performance in the numerical experiment.
SPT is shown to have a tight bound with the worst-case
analysis. Composite bounds are developed and shown to
provide considerable computational advantages. However,
no superiority is observed among the different LBs.
For future research, many complicated manufacturing

environments, such as job shop and flexible job shop can
be introduced and investigated. Multi-objective optimiza-
tion can be conducted to investigate the relationship
between different factors.
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