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Abstract The NP-hard scheduling problems of semi-
conductor manufacturing systems (SMSs) are further
complicated by stochastic uncertainties. Reactive schedul-
ing is a common dynamic scheduling approach where the
scheduling scheme is refreshed in response to real-time
uncertainties. The scheduling scheme is overly sensitive to
the emergence of uncertainties because the optimization of
performance (such as minimum make-span) and the
system robustness cannot be achieved simultaneously by
conventional reactive scheduling methods. To improve the
robustness of the scheduling scheme, we propose a novel
slack-based robust scheduling rule (SR) based on the
analysis of robustness measurement for SMS with
uncertain processing time. The decision in the SR is
made in real time given the robustness. The proposed SR is
verified under different scenarios, and the results are
compared with the existing heuristic rules. Simulation
results show that the proposed SR can effectively improve
the robustness of the scheduling scheme with a slight
performance loss.

Keywords semiconductor manufacturing system, uncer-
tain processing time, dynamic scheduling, slack-based
robust scheduling rule*

1 Introduction

The research on production scheduling started in the 1950s
with the development of operational research (Pinedo and
Hadavi, 1992). Most conventional scheduling methods

only consider the deterministic environment and empha-
size the precise modeling of scheduling problems.
However, real manufacturing systems, which can be
modeled by Petri nets (Murata, 1989; Wang et al., 2017),
are usually in such a dynamic and indeterministic
environment where several types of uncertainties may
disturb the execution of production schedules. Examples of
such uncertainties include machine failure, rush order
arrival, due-time change, uncertain processing time, and so
on. New technology revolutions, such as Internet of Things
and Big Data, give rise to the development of smart
manufacturing (Zhang et al., 2017). Smart factories, as a
key approach to smart manufacturing, are now in a
dynamic, uncertain, and unpredictable environment both
internally and externally.
Uncertainties that affect the production scheduling can

be divided into two categories:
(1) In the internal environment:
� Resource-related: Machine failure, load limitation,

tool unavailable or damaged, delayed material arrival,
material defect, etc.
� Job-related: Rush order arrival, due-time change,

uncertain processing times, etc.
(2) In the external environment: Product demand,

product price, energy, raw materials supply, etc.
In response to these challenges brought by uncertainties,

the anti-interference and quick response capability of the
scheduling scheme must be improved, and an efficient
production scheduling system must be established. The
scheduling problem in the presence of uncertain and
dynamic environment is referred to as dynamic scheduling.
A semiconductor manufacturing system (SMS) is a

complicated manufacturing system characterized by re-
entrant flows, uncertain production interruption, urgent
orders, rework, scrap, etc.(Chiang, 2013). The research on
semiconductor manufacturing scheduling problems started
in 1988 (Wein, 1988). This study assesses the influence of
scheduling on the performance of an SMS. The concept of
the SMS as a re-entrant manufacturing system was
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proposed by Kumar (1993). Since then, vast amounts of
research efforts have been devoted to developing schedul-
ing approaches for SMS (Yugma et al., 2015). In most
research efforts, the production parameters were assumed
to be deterministic in SMS scheduling. Few studies
investigated semiconductor manufacturing scheduling in
an indeterministic environment (Jamrus et al., 2017).
Regardless of the business background, dynamic schedul-
ing has three approaches: Completely reactive, predictive–
reactive, and robust proactive (Ouelhadj and Petrovic,
2009).
In completely reactive scheduling, no decided schedule

is available in advance, and the decisions are made in real
time. Heuristic SR is a completely reactive dynamic
scheduling method where the order in which the operation
is processed is determined by the priority of jobs. The job
with the highest priority is selected to be processed next
from a set of jobs. The priority of a job is determined based
on job and machine attributes. Therefore, heuristic
scheduling rules are responsive to the real-time state of
the production line. However, the existing heuristic
scheduling rules aim to optimize performance indices,
such as cycle time and delivery time. Owing to the
complexity of SMSs, scheduling based on heuristic rules is
commonly used to solve scheduling problems (Chiang and
Fu, 2012).
Predictive–reactive scheduling refers to the decision

making after unexpected events or disturbances occur. The
reaction generally takes the form of either repairing the
existing schedule or generating a completely new one
(Vieira et al., 2003). For semiconductor production
scheduling problems, some researchers have been studying
reactive scheduling. The rescheduling framework of SMSs
is presented as a series of layered scheduling strategies
with an optimization rescheduling decision mechanism
(Zhang et al., 2014). The rescheduling decision model
based on the fuzzy neural network can choose an
optimized rescheduling strategy according to current
system states. The rescheduling method can hardly ensure
the global performance indices of the system.
Robust proactive scheduling considers uncertainties

when designing the initial schedules. Such scheduling
method also considers future disturbances during the
generation of initial schedules. This type of approach tries
to produce a schedule or a family of schedules that are
relatively insensitive to uncertain factors (Kouvelis et al.,
2000). Aydilek et al. (2015) studied the two-machine flow
shop scheduling problem where processing and setup
times are uncertain and bounded to minimize makespan.
Fuzzy theory is generally used in such approaches.
Uncertain factors are described as scenarios, whereas the
uncertain scheduling problem is approximated by several
certain problems. In addition, robust scheduling models are
developed based on scenario planning approaches. Feng,
Choi, and Chung (2016) considered the min–max regret
version of a single-machine scheduling problem with

uncertain processing time to determine which job to be
processed by outsourcing.
After analysis of the current research status, the current

research methods have the following limitations:
(1) For completely reactive scheduling, the order in

which the operation is processed is determined by the
priority of jobs, and decisions are made in real time.
Therefore, heuristic scheduling rules are responsive to the
real-time state of the production line. In addition, they are
quick, concise, and easy to implement relative to other
intelligent algorithms. However, the existing heuristic
scheduling rules only aim to optimize performance indices,
such as cycle time and delivery time.
(2) Predictive–reactive scheduling is designed to adjust

the scheduling scheme to the current production line state
when disturbances occur. However, the target of schedul-
ing adjustment is still the optimal or approximate optimal
performance index, and the anti-interference capability of
the scheduling scheme is not considered. The adjusted
scheduling scheme is not a robust one. When new
disturbance occurs, the scheduling scheme must be further
adjusted. Frequent scheduling changes can cause instabi
lity in production lines, which may result in unnecessary
system cost.
(3) Robust proactive scheduling is designed to generate

a robust initial scheduling scheme with certain endurance
to disturbances. The initial scheduling scheme is static, and
it cannot be adjusted in real time during production
execution. The scheduling scheme will fail if the in-
coming disturbance exceeds its anti-interference capability.
Therefore, this paper proposes a novel real-time

scheduling scheme that also considers robustness. The
rest of this paper is organized as follows. Section 2
describes and analyzes the problem. Section 3 discusses
the existing robustness measure methods and proposes a
new robust SR based on the analysis. Section 4 provides
case studies and discusses the results. Finally, Section 5
concludes the paper and identifies the possible directions
for future research.

2 Problem formulation

In this section, the dynamic scheduling problem for the
semiconductor system is introduced. The jobs are placed
into the production line according to a certain release
strategy. Each job i has j operations. Denotes the operation
j of job i. p*i,j is the expected processing time of operation j
for job i. These operations are carried out according to a
predefined route named the scheduling scheme. In practice,
the actual processing time pi,j in the manufacturing system
deviates from the expected value. The following assump-
tions are made about dynamic scheduling for SMS:
� Constant release interval is the release policy. Not all

the jobs are available at the initial time.
� Machines are re-entrant.
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� Each machine is available at the initial time and never
breaks down.
� Each machine cannot simultaneously process more

than one job.
� Processing times of operations are uncertain, and their

expected values are given.
� Operations of a job are independent of each other.
� Operations of a job are independent of those of other

jobs.
� No semi-finished production is scrapped.
� No job needs to be reworked.
Cycle time (CT), on-time delivery rate (ODR), and

movement (MOV) are some of the scheduling objectives
considered in the SMS. However, scheduling schemes that
are established based on optimizing performance indices
are overly sensitive to uncertainties. In the presence of
uncertainty, the performance loss using the scheduling
scheme under uncertainty should be measured. The
performance loss is defined as the deviation between the
expected value of the performance index in deterministic
environment and the value of the actual performance index
with disturbances:

δðSÞ ¼ PðSÞ –P0ðSÞ, (1)

where P0(S) is the value of the expected performance index
for scheduling scheme S and P(S) is the value of the actual
performance index.
To avoid the dimension problem caused by different

types of performance indices, we represent the scheduling
loss using the relative deviation:

δ
0 ðSÞ ¼ PðSÞ –P0ðSÞ

P0ðSÞ
: (2)

The expected value of the scheduling loss can be written
as follows:

E½δ0 ðSÞ� ¼ E½PðSÞ –P0ðSÞ�
P0ðSÞ

; (3)

E½δ0 ðSÞ� is applied to indicate the robustness of the
scheduling scheme. The smaller the value of E½δ0 ðSÞ� is,
the better the robustness of the scheduling scheme is.
According to the analysis above, the scheduling

objectives of the dynamic scheduling problem for SMS
has two aspects:

min f 1 ¼ P0ðSÞ;
min f 2 ¼ E½δ0 ðSÞ�:

(4)

3 Slack-based robust scheduling rule

3.1 Robustness measure

The calculation of the robustness measure f2 is difficult.

Scenario-based and slack-based methods are the most
common in the literature.
The scenario-based method is often applied to schedul-

ing problems with uncertainties, especially robust proac-
tive scheduling, as shown in Fig. 1. The uncertainty can be
represented by a set of scenarios. A scenario is used to
express one actual situation. Thus, the robustness measure
given in Eq. (3) can be calculated as follows:

RM1 ¼
abs

1

M

XM

m¼1
PmðSÞ –P0ðSÞ

� �

P0ðSÞ
, (5)

where M is the scenario count, and Pm(S) is the actual
performance index of the scheduling scheme S in the
scenario m. For Eq. (5), the scheduling scheme is operated
in each scenario, and the corresponding robustness
measure of the scheduling scheme can be calculated.
Likewise, the robustness measures of all alternative
scheduling schemes can be obtained, and the best one is
selected. This robustness measurement method relies on
the description of the uncertainty by the scenario set. The
size of the scenario set M is usually large to express the
uncertainty completely. This leads to complex calculation
and high time cost. However, the characteristics of a robust
scheduling scheme cannot be reflected through the
scenario-based robustness calculation method, that is, the
mechanism characteristics of the robust processing
sequence cannot be summarized from this method.
The slack time between jobs can absorb disturbances

and uncertainties in the production process, reduce the
influence of uncertainties on the scheduling scheme, and
improve the robustness of scheduling. The experiment
shows a strong correlation between the scheduling
robustness and the slack time between jobs (Leon et al.,
1994). Therefore, for the same scheduling problem, slack
time can be applied to the qualitative analysis on the
robustness of different scheduling schemes. Thus, it can be
used to indicate the robustness measurement. Two types of
slacks, i.e., total slack and free slack, have been commonly

Fig. 1 Scenario-based method
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discussed for robust scheduling (Hazır et al., 2010). Total
slack is the difference between the earliest start time and
the latest start time of an operation. Free slack is the
maximum time that an operation can be delayed if the start
of the next operation is not delayed. Let us consider an
example of the four jobs and four machines given in
Table 1. Figure 2 shows an example of slack times.

The gray part in the figure represents the free slack time
of the operation, FSij. For example, the free slack time of
operation O3,3 is , whereas operation O4,3 does not have
free slack time. The total free slack time is used to measure
the robustness of the scheduling scheme. This type of
robustness measure is denoted as RM2, which is calculated
as follows:

RM2 ¼
XK

i¼1

Xki

j¼1
FSij, (6)

where K indicates the number of jobs, ki represents the
number of operations of the job i, and FSij represents the
free slack time of the operation Oi,j.
Different from free slack time, total slack time is defined

as the difference between the earliest start time and the
latest start time of an operation. The operation O4,3 in the
Fig. 2 is taken as an example. This operation has no free
slack time, but it has a total slack time of three. The

robustness measure based on total slack is denoted as RM3
and is calculated as follows:

RM3 ¼
XK

i¼1

Xki

j¼1
TSijXK

i¼1
ki

, (7)

where K indicates the number of jobs, ki represents the
number of operations of the job i, and TSij represents the
total slack time of the operation Oi,j.

3.2 Design of the slack-based robust scheduling rule

Heuristic scheduling rule is a completely reactive dynamic
scheduling method. In this scheduling, the order in which
the operation is processed is determined by the priority of
jobs, and decisions are made in real time. The job with the
highest priority is selected to be processed next from a set
of jobs. The priority of a job is determined based on job
and machine attributes. Therefore, heuristic scheduling
rules are responsive to the real-time state of the production
line. In addition, they are quick, concise, and easy to
implement relative to other intelligent algorithms. How-
ever, the existing heuristic scheduling rules aim to optimize
performance indices, such as cycle time and delivery time.
We analyze the structural characteristics of the robust
scheduling scheme (processing sequence) according to the
slack-based robustness measurement and propose a new
scheduling rule considering robustness called SR.

SR� ¼ ωα⋅α� þ ωβ⋅β� þ ωg⋅g�, (8)

where SR� expresses the processing priority of operation
O� in the buffer. Assume l jobs to be processed in the
buffer. ωα, ωβ, and ωg are the adjustable coefficients
between interval [0,1] used to adjust the proportion of three
rules. α�, β�, and g� are the priorities calculated by the
three simple rules.
Simple rule α considers the urgency of the job. First,

Table 1 Example of four jobs and four machines

Job
Operation (Processing time)

Machine 1 Machine 2 Machine 3 Machine 4

Job 1 O1,1(6) O1,2(6) O1,3(7) O1,4(5)

Job 2 O2,2(4) O2,3(4) O2,4(5) O2,1(4)

Job 3 O3,3(3) O3,1(3) O3,4(5) O3,2(9)

Job 4 O4,4(6) O4,2(6) O4,1(5) O4,3(5)

Fig. 2 Example of the slack-based robust measure
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whether the remaining processing time of the job exceeds
the difference between due time and current time is
determined. If D� –NOW£RPT�, then the job is of the
highest priority. If D� –NOW>RPT�, then the priority of
the job is calculated as follows:

α� ¼
Prioity processing, D� –NOW£RPT�

1þ RPT�
1þ D� –NOW

, D� –NOW>RPT�
,

8><
>:

(9)

where D� is the due time of the job �, NOW is the current
time, and RPT� is the remaining processing time of the job.
Simple rule β aims to increase the slack time of the

operation O�.

β� ¼ NO�Xl

�¼1
NO�

, (10)

where NO� means the sum of operation processing times in
front of the machine on which the next operation of the job
� will be processed.
Simple rule g aims to increase the slack time of the

previous operation of the job.

g� ¼ WT�Xl

�¼1
WT�

, (11)

where WT� is the waiting time of job � in front of the
machine.

3.3 Implementation of the proposed SR

The flowchart of the proposed SR is shown in Fig. 3. When
the machine becomes available, the priority of every job in
the queue of the machine is computed iteratively. Before
computing the priority of each job, whether or not it is a hot
job is first determined. If yes, the job is selected to be
processed on the machine first; otherwise, the priorities
based on SR are computed for each job in front of the
machine, and the job with the highest priority is selected to
be processed on the machine first.
The SR is applied to the example of four jobs and four

machines in Section 2. Given no due time constraint, the
coefficients in this example are ωα ¼ 0, ωβ ¼ 1, and
ωg ¼ 1. The Gantt chart of the scheduling result of this
problem is given in Fig. 4. The robustness measures RM2,
RM3, and makespan are calculated and listed in Table 2.

The makespan of the scheduling scheme applying the
proposed SR is slightly longer than that of the original
scheduling scheme because the relative deviation is only
6.25%. Both the free slack time and total slack time are
extended. The increase rates of RM2 and RM3 are 3.03%
and 16.01%, respectively. Hence, the proposed SR can
improve the robustness of the scheduling scheme with a
slight performance loss.

4 Case study

The MiniFab model, which is a simplified yet typical

Fig. 3 Flowchart of the proposed SR

Table 2 Robustness measures and makespan of the example applying

SR

Scheduling
scheme

RM2 RM3 Makespan

Existing one 33 3.56 32

SR 34 4.13 34
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semiconductor production line model that contains five
machines and three work areas, is selected as the
experimental object. The jobs have the same production
flow as shown in Fig. 5. The experiment runs in the
computer with Intel Core i7 CPU and a memory of 8.00
GB. Plant Simulation is selected as the simulation
platform.

4.1 Design of the experiment

To demonstrate the effectiveness of the proposed slack-
based robust SR, we compared it with existing heuristic
rules, including Earliest Due Date (EDD), Smallest
Remaining Processing Time (SRPT), and Critical Ratio
(CR). We selected three groups of coefficients for SR.
The RM1 is applied to indicate the robustness of the SR

owing to the numerous operations in the MiniFab model.
The uncertain processing times on Me should be
considered because the machine Me is generally the
bottleneck of the system. We assume that the processing
time of operation Oi,j is any value within the interval
½pLij,pHij �, where pLij ¼ p�ij – δ; p

H
ij ¼ p�ij þ δ; and δ ¼ 0:1p�i .

The attainable probability of each scenario is equal. We
create 30 scenarios to represent 30 types of actual
production conditions.

4.2 Experiment results and discussions

We apply each scheduling rule on the MiniFab model in 30
scenarios for 50 days. The performance indices, including
CT, ODR, and MOV, are collected. We also obtain 180
groups of raw data on performance. The scenario-based
method is used to calculate the robustness measure RM1 of
each scheduling rule according to Eq. (5), and the results
are shown in Table 3. RM1 indicates the robustness
measures of the rules. The better the robustness of the
scheduling rule, the smaller the value of RM1. Min, Max,
and Avg represent the minimum, maximum, and the
average of performance indices (CT, ODR, and MOV) in
30 scenarios, respectively.
The results of simulation in various scenarios validate

that the proposed SR is superior to the traditional heuristic
rules in robustness. For further and clear analysis, the data
in the table are illustrated in Figs. 6–8. The charts show that
the proposed SR has very good robustness compared with
the traditional heuristic rules. The proposed SRmethod can
also guarantee satisfactory production performance.
The results of performance index MOV (Fig. 8) verify

the effectiveness of our method. The upper part of the
graph is a comparison of robustness, and the lower part is a
comparison of performance indices. In the upper line chart,
the horizontal coordinate represents SRs, whereas the

Fig. 4 Gantt chart of the scheduling scheme applying SR

Fig. 5 Production flow of MiniFab model
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vertical coordinate represents the robustness in terms of
MOV, which is noted as RM1_MOV. Compared with an
existing heuristic SR, the SR method proposed in this
paper can achieve better robustness in terms of MOV.
Therefore, the proposed SR is superior to the three other
traditional heuristic rules in terms of robustness.
The fluctuation ranges of the performance index MOV

using SRs are very small in the lower part of the graph. The
SR1 rule (the performance index MOV is the worst) and
the EDD rule (the performance index MOV is the best) are
selected for comparison. The relative deviation of MOVof
SR1 and EDD is only -1.27%. Hence, the proposed SR
can effectively improve the robustness of the scheduling
scheme and guarantee the performance optimization.

5 Conclusions

SMS scheduling is confronted with uncertainties in
practical production. In this paper, we analyzed the

Table 3 Robustness and performance measure of SR and other heuristic rules

SR
CT ODR MOV

RM1 Min Max Avg RM1 Min Max Avg RM1 Min Max Avg

SR1 0.0016 90.95 124.49 106.44 0.0016 91.71% 92.41% 92.04% 0.0001 5024 5116 5062

SR2 0.0024 44.65 45.58 45.07 0.0012 91.60% 92.16% 91.86% 0.0012 5056 5172 5116

SR3 0.0024 44.65 45.58 45.07 0.0004 90.57% 91.25% 90.98% 0.0011 5057 5174 5117

EDD 0.0025 44.65 45.58 45.08 0.0016 91.69% 92.60% 92.04% 0.0016 5024 5190 5127

SRPT 0.0029 44.54 45.58 45.08 0.002 90.73% 91.82% 91.31% 0.0013 5057 5172 5116

CR 0.005 92.92 124.14 107.37 0.0067 90.50% 91.70% 91.32% 0.0042 4946 5152 5060

Fig. 6 Robustness and performance measure of SR and other
heuristic rules in terms of CT

Fig. 7 Robustness and performance measure of SR and other
heuristic rules in terms of ODR

Fig. 8 Robustness and performance measure of SR and other
heuristic rules in terms of MOV
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dynamic scheduling approaches. Basing from the analysis
of the robustness measures, we propose a novel slack-
based robust SR for an SMS with uncertain processing
time. The decision in the SR is made in real time with
consideration of robustness. The proposed SR was verified
under different scenarios, and the results were compared
with the existing heuristic rules. The results illustrate that
our SR is superior to other rules in terms of robustness.
SR has three adjustable coefficients. The SR with

constant coefficients may be inapplicable when the
production environment changes dramatically. How to
adjust the coefficient in a more complex and changeable
production environment needs further study. Therefore,
future research work should focus on the relationship
between coefficient and production state, as well as
coefficient adjustment strategies.
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