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Abstract This work is devoted to the problem of
planning of freight railway transportation. We define a
special conflict graph on the basis of a set of acceptable
train routes. The investigation aims to solve the classical
combinatorial optimization problem in relation to the
maximum independent set of vertices in undirected graphs.
The level representation of the graph and its tree are
introduced. With use of these constructions, the lower and
upper bounds for the number of vertices in the maximum
independent set are obtained.

Keywords independent set, algorithm, planning of trans-
portation, two-sided estimate

1 Introduction

The problems that arise from managing transport processes
have a special scientific and practical actuality in view of
the importance of their effective solution for economic
development and ensuring the connections of territories.
Planning of freight railway transportation was investi-

gated in the context of scheduling theory in (Burdett and
Kozan, 2010; Gholami et al., 2012;. Gholami and Sotskov,

2014; Akimova et al., 2015; Gafarov et al., 2015;
Gainanov et al., 2016; Lazarev et al., 2018). In this case,
the schedules necessary for execution were built directly
under the current conditions of the availability of network
resources. Pei et al. (2017a, b) also developed several
hybrid algorithms in scheduling, where a number of
effective novel operators of variable neighborhood search
was proposed. The computational results showed the good
performance of these algorithms.
The development of railway network infrastructure is

conservative and requires large-scale investments. By
contrast, the demand for freight railway transportation is
characterized by significant dynamics in terms of total
traffic volume and the distribution of traffic across various
sections of railway networks. Under these conditions,
infrastructure resources or railway network capacity is
deficient. In this regard, developing methods of planning of
freight railway transportation, which will enable transpor-
tation without significant modernization of railway infra-
structure, is becoming increasingly important.
In this work, the problem under investigation obtains a

fundamentally new interpretation in terms of the classical
combinatorial optimization problem. The main concept of
the proposed approach is to form a set of potential train
routes whose executions do not contradict each other.
Thus, any subset of routes from this set can serve as a valid
schedule. In terms of graph theory, this problem aims to
explore the maximum independent set of vertices in
undirected graphs.
Identifying the maximum independent set is a classical

NP-hard problem. In this regard, developing algorithms
that are effective in terms of computational complexity is
actual. In other studies (Dasgupta et al., 2006; Korte and
Vygen, 2008; Skiena, 2008), general approaches to
developing exact, approximate, and heuristic algorithms
were explored. In another set of studies (Duarte A et al.,
2015; Todosijevic and Mladenovic, 2016; Hansen et al.,
2017), significant results were obtained in the field of
development of metaheuristic algorithms, such as solving
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applied problems of production control and transport
processes.
In this research, we propose an approach in which two-

sided estimates can be obtained for the number of vertices
in the maximum independent set. This approach mainly
aims to evaluate the accuracy of approximate solutions,
which can be obtained by any available method, such as
heuristic and metaheuristic algorithms. In addition,
implementing the approach for different root vertices
means that an exact solution can be expected when the
lower and upper bounds coincide.
The paper is organized as follows. Section 1 presents a

general formulation of the problem of planning of railway
freight transportation. We also formalize a method for
reducing the applied problem to finding the maximum
independent set. Section 2 describes the approximate
algorithm and its modification for the class of trees. In
Section 3, special graph constructions of the level
representation and its tree are introduced. These construc-
tions underlie the proposed approach. Section 4 provides
the lower and upper bounds for the number of vertices in
the maximum independent set. An approximate algorithm
and its modification for a class of trees are used to obtain
these estimates. Section 6 presents the conclusion, an
overview of the main results, and directions for further
research.

2 Planning of freight railway transportation

In this section, the formulation of the private problem of
planning of freight railway transportation is presented. In
general, a set of potential train routes is required for the
execution of a specific transportation plan. However, the
selected routes cannot often be performed due to their
intersections at stations and time of movement, which
entail significant economic and time costs to execute the
plan. In this connection, the problem of forming such a set
of potential routes, that is, selecting any of the routes does
not contradict the practical implementation, becomes
actuality.
Consider the directed graph of the railway transport

network

Γ
↕ ↓¼ ðS, EÞ,

where

S ¼ fs1, s2, :::, sng
is a set of stations and

E � [
i,j
ðsi, sjÞ

is a set of directed railroads that connect stations.
Definition 2.1. The normative thread of the train traffic

schedule is a sequence of the form

n :
�
si1ðnÞ, si2ðnÞ, Nomi1i2ðnÞ, tdepi1i2

ðnÞ, tarri1i2ðnÞ, gi1i2ðn, tÞ
�
,

�
si2ðnÞ, si3ðnÞ, Nomi2i3ðnÞ, tdepi2i3

ðnÞ, tarri2i3ðnÞ, gi2i3ðn, tÞ
�
, :::,

:::,
�
sik – 1ðnÞ, sikðnÞ,Nomik – 1ikðnÞ, tdepik – 1ik

ðnÞ, tarrik – 1ikðnÞ,gik – 1ikðn, tÞ
�
,

where
�
sij – 1ðnÞ, sijðnÞ

�
2 E and Nomij – 1ijðnÞ, tarrij – 1ijðnÞ,

tdepij – 1ij
ðnÞ, gij – 1ijðn, tÞ are given path number, arrival time,

departure time, and schedule of movement on the railroad�
sij – 1ðnÞ, sijðnÞ

�
, respectively.

sbegðnÞ ¼ si1ðnÞ, tbegðnÞ ¼ tdepi1i2
ðnÞ,

sfinðnÞ ¼ sik ðnÞ, tfinðnÞ ¼ tarrik – 1ik ðnÞ:
Any normative thread represents a potential train route,

which enables the execution of a certain transportation
from the given plan.
Definition 2.2. Let n1, n2 be such threads that a directed

railroad enters the sequence of each thread, and enable
them to pass this railroad in the same or opposite directions
yet remain on the same path.

ðsi, sjÞ ¼
�
skðn1Þ, skþ1ðn1Þ

�
¼
�
smðn2Þ, smþ1ðn2Þ

�
Nomijðn1Þ ¼ Nomijðn2Þ,

(

or

ðsi, sjÞ ¼
�
skðn1Þ, skþ1ðn1Þ

�
¼
�
smþ1ðn2Þ, smðn2Þ

�
Nomijðn1Þ ¼ Nomjiðn2Þ:

(

Then, if time moment t exists from the planning period
½T0, T � such that the distance between the trains following
the threads n1 and n2 at this moment becomes less than the
permissible distance d; that is,

jgijðn1, tÞ – gijðn2, tÞj£d,

or

jgijðn1, tÞ –
�
lij – gjiðn2, tÞ

�
j£d,

where lij is the given length ðlij ¼ ljiÞ of the railroad
ðsi, sjÞ, then normative threads n1 and n2 have unidirec-
tional or multidirectional conflict, respectively.
Let the set of all normative threads

N ¼ fnig, i ¼ 1, 2, :::,

be ordered with respect to the beginning time tbegðnÞ and
finishing time tfinðnÞ of the movement by threads.
The following construction is a mathematical model of

the applied problem under consideration, within the
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framework of which the research can be reduced to solving
the classical problem of combinatorial optimization.
Definition 2.3. An undirected conflict graph is a graph

whose vertices are normative threads. These vertices are
connected by edge if and only if a unidirectional or
multidirectional conflict exists for the respective normative
threads.

G ¼ ðN , εÞ : fni, njg 2 ε () there exists the conflict:

The problem of planning of freight railway transporta-
tion is that of selecting the maximum conflict-free subset
from an entire set of normative threads. Then, any subset of
conflict-free normative threads can serve as an acceptable
schedule for the organization of transportation.
Problem 2.1. For a given set of normative threads, the

maximum subset has to be identified. The conflict graph
generated by this subset must be empty; that is, it has no
edges.

N # � N :

jN #j ¼ max fjN $j : GhN $i ¼ ðN $, ÆÞg:
In terms of graph theory, the abovementioned problem is

that of the maximum independent set of vertices in an
undirected graph. In the following chapters, an approach is
developed, within which estimates can be obtained for the
number of vertices in the maximum independent set. Then,
the solutions found by approximate methods can be
characterized by their degree of closeness to the optimal
solution. Conflict graphs that arise during railway opera-
tion are typically highly sparse. However, when an exact
solution cannot be found, the proposed approach to
estimating the approximate solution becomes rather
actuality.

3 Algorithms for finding the maximum
independent set

A previous study (Gainanov and Rasskazova, 2016)
provided an algorithm for inferring a monotone Boolean
function that is generated by an undirected graph; this
algorithm can be interpreted in terms of independent sets of
vertices. The following are necessary definitions.
Definition 3.1. For an integer k 2 ½n – 1�, we call a

vertex v 2 V of the graph G ¼ ðV , εÞ a k -vertex, if
jN ðvÞj ¼ k and the induced subgraph GhN ðvÞi of the
graph G is complete.
The algorithm described in the previous study (Gaina-

nov and Rasskazova, 2016) is based on the above-
mentioned concept of k -vertices. That is, k -vertices are
included at each step in the independent set being
constructed. If the algorithm converges (that is, the current
set of vertices of the graph becomes empty at certain steps),
then the independent set found is the maximum.

Following the source, we denote the neighborhood of
vertex v in the induced subgraph GhV i using
N ðv, V Þ � V .

Isolated vertices can appear after excluding from the
current parent set the vertex selected for inclusion in the
maximum independent set being constructed.
Consider an example of the implementation of the

algorithm IndSetTreeðGÞ.
Example 3.1 Let the tree G ¼ ðV , EÞ be given (Fig. 1).

Algorithm AðG, V0Þ: Finding the maximum independent set of vertices in
the undirected graph.

Input data: G ¼ ðV0, εÞ
Output data: V0, S - independent set of vertices

S  ←f g
For v 2 V0 do

If v is a k -vertex in the subgraph GhV0i then
S  ←S [fvg

V0←V0 – fvg –N ðv, V0Þ
AðG, V0Þ

If V0 ¼ fg, then the independent set found is the maximum. This condition is
guaranteed if the original graph is a tree.

Indeed, k -vertices consistently exist in the tree, whereas the current set of
vertices is not empty. These vertices are tree leaves (hanging vertices) or
isolated vertices at certain steps of the algorithm. Thus, Algorithm AðG, V0Þ
can be modified for a special class.

Algorithm IndSetTreeðGÞ: Finding the maximum independent set of vertices
in the tree.

Input data: tree G ¼ ðV , EÞ
Output data: maximum independent set of vertices S

V0   ←  V

S    ←  f g
While V0 ¼ f g do
For all v 2 V0 do

If v - is a leaf or isolated vertex then

S     ←  S   [   fvg
V0    ←  V0 – fvg –N ðv, V0Þ

Fig. 1 Tree steps of the algorithm
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1. S ¼ f g
V ¼ fv1, v2, v3, v4, v5, v6, v7, v8, v9, v10g
v1 — is not a leaf or an isolated vertex

v2 — is a leaf

S ¼ fv2g

V ¼ fv3, v4, v5, v6, v7, v8, v9, v10g
2. v3 — is an isolated vertex

S ¼ fv2, v3g

V ¼ fv4, v5, v6, v7, v8, v9, v10g
3. v4, v5 — is not a leaf or an isolated vertex

v6 — is a leaf

S ¼ fv2, v3, v6g

V ¼ fv4, v7, v8, v9, v10g
4. v4, v7 — is not a leaf or an isolated vertex

v8 — is a leaf

S ¼ fv2, v3, v6, v8g

V ¼ fv4, v9, v10g
5. v4 — is an isolated vertex

S ¼ fv2, v3, v4, v6, v8g

V ¼ fv9, v10g
6. v9 — is a leaf

S ¼ fv2, v3, v4, v6, v8, v9g

V ¼ f g
End of the algorithm
At each step, either a leaf or an isolated vertex is

included in the independent set. That is, the k -vertices for
k ¼ 1 and k ¼ 0. Thus, the independent set S ¼
fv2, v3, v4, v6, v8, v9g is the maximum.
The problem of the maximum independent set of

vertices in a tree can be effectively solved using dynamic
programming. However, structural differences remain in
these approaches.
Let us consider the case when the current set of vertices

at certain steps of Algorithm AðG, V0Þ does not have a k -
vertex.
Definition 3.2. For integers k, m 2 ½n – 1�, we call a

vertex v 2 V of the graph G ¼ ðV , EÞ a ðk, mÞ -vertex, if
k ¼ jN ðvÞj and m ¼ C2

k – E \ N ðvÞ
2

 !�����
�����.

In other words, a vertex is called a ðk, mÞ -vertex if it has
degree k and m edges are loosed in the neighborhood to be
a complete induced subgraph.
Proposition 3.1. Let two graphs G1 ¼ ðV1, E1Þ and

G2 ¼ ðV2, E2Þ have the same set of vertices V1 ¼ V2 such
that E1 � E2. Then, the following inclusion holds:

Smax ðG2Þ � SðG1Þ,
where SðGÞ is the set of all independent sets of the graphG
and Smax ðGÞ is the set of all maximum independent sets of
the graph G.
The relation between the maximum independent sets of

two undirected graphs follows from Proposition 3.1. Let us
define the quantity max SðGÞ ¼ jSj, where S 2 Smax ðGÞ.
That is, the cardinality of the maximum independent set of
graph G.
Corollary 3.1. Let G1 ¼ ðV , ε1Þ and G2 ¼ ðV , ε2Þ be

graphs such that ε1 � ε2. Then,

max SðG1Þ³max SðG2Þ:
Thus, if no applicants are to be included in the

independent set under construction at certain steps of
Algorithm AðG, V0Þ, then the neighborhood of any vertex
for complete subgraphs can be artificially increased by
consideration of the relation between the initial and new
graphs. The following statement shows the details of the
relation established in Corollary 1.1.
Proposition 3.2. Let G ¼ ðV ðGÞ, EðGÞÞ be a graph in

which vertices vi and vj are not adjacent. Let G# ¼�
V ðG#Þ, EðG#Þ

�
be a graph in which the set of vertices is

the same V ðG#Þ ¼ V ðGÞ and that of edges is such that
EðG#Þ ¼ EðGÞ [ fðvi, vjÞg. Hence, vertices vi and vj are
adjacent in this graph. Then,

max SðGÞ³max SðG#Þ³max SðGÞ – 1:
The case where the neighborhood of any vertex is

increased by unique edges can be continued for a larger
number of edges.
Corollary 3.2. For graph G ¼ ðV , EðGÞÞ let e1, :::, ek

=2EðGÞ be a subfamily of k vertex pairs that are not edges

of graph G: In addition, let graph G#¼
�
V , EðG#Þ

�
,

where EðG#Þ ¼ EðG#Þ[ fe1, :::, ekg. Then,
max SðGÞ³max SðG#Þ³max SðGÞ – k:

According to Corollary 3.2, at each step of Algorithm
AðG, V0Þ, an arbitrary vertex of the graph can be included
into the independent set under construction. With con-
sideration of the value of the parameterm of this vertex, the
value of the deviation of the obtained approximate solution
from the optimal one can be calculated. Let us consider the
following approximate algorithm.
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Algorithm BðG, V Þ operates with several functions.
Function Calculateðk, vÞ is used to calculate the values of
parameter k for each vertex v. Function Calculateðm, vÞ is
similarly used for calculating the values of parameter m for
each vertex v. Function MinMaxParamðvÞ executes the
choice of the vertex with minimal values of parameter m
and choice of the vertex with the maximum value of
parameter k among all previously selected vertices. If the
unique vertex exists with the minimum value of parameter
m, then selecting the vertex with the maximum value of
parameter k is unnecessary. Thus, following Proposition
3.2, we obtain the next feature that is related to Algorithm
BðG, V Þ.
Proposition 3.3. Let S and Est be found by BðG, V Þ.

Then

jSj³jmax SðGÞj –Est:
Let us consider an example of using Algorithm BðG, V Þ

for finding an independent set of the arbitrary undirected
graph. We also demonstrate the accumulation of the
deviation estimate of the approximate solution from the
optimal one.
Example 3.2. Let the undirected graph G ¼ ðV , EÞ be

given by the following list of adjacency vertices.

Thus, we conclude that the maximum independent set of
the initial graph contains less than 8 vertices. That is, j
max SðGÞj£jSj þ Est ¼ 8:
Section 1 states that the applied problem of planning

freight railway transportation can be solved in the frame of
the problem of the maximum independent set of undirected
conflict graphs. Graphs that arise in such applied areas are
sparse. In this connection, the approximate algorithm
BðG, V Þ acquires special interest for solving the applied
problem under consideration.

4 Level representation of the graph

Consider an undirected connected graph G ¼ ðV , EÞ. Let
v, v 2 V be an arbitrary vertex of the graph G ¼ ðV , EÞ.
Definition 4.1. The sequence of subsets of vertices of

graph G ¼ ðV , EÞ is called level representation with the
root vertex v.

V ðG, vÞ : V1ðG, vÞ, V2ðG, vÞ, :::, VkðG, vÞ
if it is constructed as follows:

V1ðG, vÞ ¼ fvg,

V2ðG, vÞ ¼ N
�
V1

�
–V1ðG, vÞ,

Algorithm BðG, V Þ: Finding the independent set of vertices in the
undirected graph.

Input data: G ¼ ðV , EÞ
Output data: S, Est - the estimate of the deviation of the approximate

solution

S  ←f g; V0  ←  V ; Est  ←  0

While V0≠fgdo
For v 2 V0 do

k½v�←Calculateðk, vÞ
m½v�←Calculateðm, vÞ
v0  ← MinMaxParamðvÞ

S  ←  S   [   fv0g
Est  ←  Est þ m½v0�

V0  ←  V0 – fv0g –N ðv0, V0Þ

v1 : v2,v3,v4,v6,v8,v9 v12 : v2,v3,v4,v6,v11,v17

v2 : v1,v3,v4,v6,v12 v13 : v11,v14,v15

v3 : v1,v2,v4,v7,v12 v14 : v11,v13,v15

v4 : v1,v2,v3,v5,v6,v8,v9,v10,v12 v15 : v11,v13,v14,v16

v5 : v4,v6,v7,v9,v10 v16 : v15,v17

v6 : v1,v2,v4,v5,v7,v8,v9,v12 v17 : v12,v16,v18,v19,v21,v22

v7 : v3,v5,v6 v18 : v10,v17,v19,v21,v22

v8 : v1,v4,v6,v9 v19 : v17,v18,v21,v22

v9 : v1,v4,v5,v6,v8,v10 v20 : v10,v21,v22

v10 : v4,v5,v9,v11,v18,v20 v21 : v17,v18,v19,v20

v11 : v10,v12,v13,v14,v15 v22 : v17,v18,v19,v20

Table 1 Steps of Algorithm BðG,V Þ
V0 S Est

1 fv1,v2,v3,v4,v5,v6,v7,v8,v9,v10,v11,v12,v13,v14,v15,v16,v17,v18,v19,v20,v21,v22g f g 0

2 fv2,v3,v5,v7,v10,v11,v12,v13,v14, v15,v16,v17,v18,v19,v20,v21,v22g fv8g 0

3 fv2,v3,v5,v7,v10,v12,v16,v17,v18,v19,v20,v21,v22g fv8,v13g 0

4 fv5,v7,v10,v16,v17,v18,v19,v20,v21,v22g fv2,v8,v13g 0

5 fv10,v16,v17,v18,v19,v20,v21,v22g fv2,v7,v8,v13g 0

6 fv10,v18,v19,v20,v21,v22g fv2,v7,v8,v13,v16g 0

7 fv10,v20g fv2,v7,v8,v13,v16,v19g 1

8 f g fv2,v7,v8,v10,v13,v16,v19g 1
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::::::,

VkðG, vÞ ¼ N
�
Vk – 1

�
–Vk – 2ðG, vÞ,

Vkþ1ðG, vÞ ¼ f g,
where a neighborhood of a subset of vertices pertains to a
union of neighborhoods of vertices entering this subset.
That is,

N ðViÞ ¼ [fN ðvÞ : v 2 ViðG, vÞg:
For definiteness, we assume that for any level in the

representation V ðG, vÞ, the following holds:

V ðG, vÞ ¼ fvi1 , vi2 , :::, vik : i1 < i2 < ::: < ikg,

ij 2 ½1, n�,
where n is the number of vertices of the original graph. In
other words, the vertices of any level in the representation
VðG, vÞ are ordered by increasing indexes.
Suppose that the level representation V ðG, vÞ of the

graphG ¼ ðV , EÞwith root vertex v has k levels. Consider
the adjacent levels VnðG, vÞ and Vn – 1ðG, vÞ, where
n 2 ½2, k þ 1�. Let

E
�
vi, VnðG, vÞ

�
¼ fðvi, vjÞ : vj 2 Vn – 1ðG, vÞg

be the set of between-level edges incident to the vertex
vi 2 VnðG, vÞ. The edges incident to the vertices of level
Vnþ1ðG, vÞ for n 2 ½2, k – 1� are not considered at this
stage.
For each vertex vi 2 VnðG, vÞ, we order the set

E
�
vi, VnðG, vÞ

�
by increasing the indexes of vertices vj.

Thus, if

em1in
¼ ðvi, vj1Þ, em1in

2 E
�
vi, VnðG, vÞ

�
and

em2in
¼ ðvi, vj2Þ, em2in

2 E
�
vi, VnðG, vÞ

�
,

then the following holds:

m1in < m2in if and only if j1 < j2:

Indexes min of edges in the ordered set E
�
vi, VnðG, vÞ

�
are called relative indexes of edges, that is, edges incident
to vertex vi from level VnðG, vÞ and a few vertices from the
previous level Vn – 1ðG, vÞ in the representation VðG, vÞ.
Definition 4.2. The tree of level representation

TrVðG, vÞ is a construction obtained from VðG, vÞ by
the removal of all edges in each level and between-level
edges whose relative indexes are more than 1.

TrV1ðvÞ ¼ fvg,

TrV2ðvÞ ¼ fvi : vi 2 V2ðvÞg,
and

TrVkðvÞ ¼ fvi : vi 2 VkðvÞg:
We note that the removal of multiples between-level

edges is designed to preserve the tree structure, that is, the
elimination of cycles.
Example 4.1. Figure 2 shows an undirected graph

G ¼ ðV , EÞ, its level representation with root vertex v1,
and the corresponding tree of the level representation.
By definition, the tree of the level representation

contains the same number of levels as does the level
representation itself.

5 Estimates for the number of vertices in
the maximum independent set

On the basis of the level representation, the lower and
upper bounds for the number of vertices in the maximum
independent set are obtained in this section. In addition, the
section illustrates that AlgorithmsAðG, V0Þ, BðG, V Þ and
modified algorithm IndSetTreeðGÞ can be used to obtain
these bounds as well as any other effective algorithm.

Fig. 2 From left to right: Undirected graph, level of representation, and tree of level representation

504 Front. Eng. Manag. 2018, 5(4): 499–506



5.1 Lower bound

Let the undirected connected graph G ¼ ðV , εÞ be given
and its level representation for an arbitrary vertex v.
Let SðGÞ be the maximum independent set of vertices in

graph G ¼ ðV , εÞ, and S
�
V ðG, vÞ

�
is the maximum

independent set of vertices in the subgraph generated by
the vertices of a certain level V ðG, vÞ. For brevity, we
denote

SðV Þ ¼ S
�
V ðG, vÞ

�
,

which pertains to the maximum independent set of vertices
in the corresponding level.
Let I be the set of indexes of non-adjacent levels in the

level representation V ðG, vÞ.

I ¼ fi : for any i1, i2 holds ji1 – i2j>1g, (1)

where i 2 ½1, k�. We denote the set of all maximal by
inclusion sets of the form (1)

I ¼ fI : for any  i =2 I   one can find  j 2 I  

such that  ji – jj ¼ 1g: (2)

The lower bound for the maximum independent set of
vertices of the graph G ¼ ðV , EÞ given in the form of the
level representation with the root vertex v, v 2 V is the
quantity

jSj ³ max
X
i2 I

jSðViÞj, I 2 I

( )
, (3)

All levels with indexes from any set I 2 I are not
adjacent to each other by construction. Consequently, the
maximum of the sums (4) is an independent set in the
graph G ¼ ðV , εÞ.
In each level, the maximum independent set of vertices

SðViÞ, i ¼ ½1, k� can be found by either algorithms AðG,
V0Þ and BðG, V Þ or for each level, an analogous lower
bound can be obtained. Then, the lower bound for the
maximum independent set of vertices of the original graph
will be no less than the greatest of the sums of the lower
bounds obtained.
Thus, either a lower bound will be obtained for the

maximum independent set of vertices of the original graph
(if one can find the maximum independent sets of vertices
for each level) or a substantial reduction in the dimension
of the original problem will be achieved by moving to a
series of simpler problems. The sets of indexes of even and
odd non-adjacent levels and subsequent choice of the
maximum of the sums of the form (3) can be naturally
considered.

5.2 Upper bound

Consider the graph G ¼ ðV , EÞ given by its level
representation VðG, vÞ with an arbitrary root v. The tree
of this level representation is TrVðG, vÞ.
The maximum independent set of vertices in the tree

TrVðG, vÞ can be found using the modified algorithm In
dSetTreeðGÞ (or any other algorithm, such as dynamic
programming method). Then, the upper bound for the
maximum independent set of vertices in the original graph is

jSðGÞj£ S
�
TrVðG, vÞ

���� ���: (4)

The relation (4) easily follows from Proposition 3.1. By
construction, the tree of the level representation TrVðG, vÞ
has the same vertices as the original graph. However, its set
of edges is evidently smaller. Hence, inequality (4) holds
under Proposition 3.1.

5.3 Two-sided estimate

Considering (3) and (4), we obtain a two-sided estimate for
the maximum independent set of vertices in an undirected
graph.
Proposition 5.1. Let G ¼ ðV , EÞ be an undirected

connected graph defined by its level representation
VðG, vÞ for an arbitrary vertex v. Then,

max
X
i2 I

jSðViÞj, I 2 I

( )
£jSðGÞj£ S

�
TrVðG, vÞ

���� ���:
(5)

Proof. The proof follows from the arguments presented as
comments on the validity of the relations (3) and (4).
An important feature of the two-sided estimate obtained

is the possibility of using it for any level representation of
the original graph.
We denote LowBðvÞ and UpBðvÞ as the lower and upper

bounds, respectively, of the form that is obtained for level
representation with root vertex v. Then, using the above-
mentioned approach for each vertex of the graph, we
obtain

max fLowBðvÞ, v 2 Vg£jSðGÞj£min fUpBðvÞ, v 2 Vg:
Let us consider the example of using the approach

described above for the undirected graph on the basis of
Example 3.2.
Example 5.1. For each vertex of the graph as a root,

level representations of the graph, and corresponding trees
of level representations are constructed. To find the
maximum independent set in each level Vi Algorithm
BðG, V Þ is used. For finding the maximum independent
set of the tree, Algorithm IndSetTreeðGÞ is used. Hence, in
particular, from the level representation with the root
vertex v1, a two-sided estimate of the maximum indepen-
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dent set of form 8 £ jSðGÞj £ 13 is obtained. Among
all upper bounds, we obtain the minimum one from the
level representation with root vertex v4, and this bound is
equal to 12. Similarly, the maximum of the lower bounds is
equal to 8, and this bound is obtained from the level
representation with root vertex v8. Thus, we obtain

max fLowBðvÞ, v 2 Vg ¼ LowBðv8Þ ¼ 8£jSðGÞj£ 12

¼ UpBðv4Þ ¼ min fUpBðvÞ, v 2 Vg:
According to the results obtained in Example 3.2, the

cardinality of the maximum independent set of the initial
graph is equal to 8.
Conflict graphs that arise in railway operation are

usually sparse. In this connection, the implementation of
the approach described above for solving applied problems
means that an exact solution that is a coincidence of the
upper and lower bounds can be expected for the maximum
independent set of vertices.

6 Conclusions

This work investigates the applied problem of management
of transport processes at the planning stage of freight
railway transportation. Within the framework of the graph
model, the investigation focuses on solving the problem of
finding the maximum independent set of vertices in the
undirected graph. To solve this problem, special graph
constructions are introduced to the level representation and
tree of the level representation. On the basis of the
approximate algorithm and its modification for the class of
trees, the lower and upper bounds for the number of
vertices in the maximum independent set are obtained. The
implementation of the approach is closely related to the
abovementioned graph constructions. In particular, the
upper bound is obtained using a modified algorithm for the
tree of level representation.
The direction of further research is mainly connected

with computational experiments and using the developed
approach to solve the applied problem of planning of
freight railway transportation.
Another aspect of further research concerns the excess

normative threads in the conflict-free set; these threads are
an important feature of the developed approach. In general,
this case is sufficient for the execution of an arbitrary
transportation plan. However, the normative threads are
unsuitable for the execution of transportation. Thus, an
adapted model where each vertex of the undirected conflict
graph corresponds to a certain priority must be developed.
Thus, further studies of the authors’ team will be devoted
to the development of such a model and effective
algorithms for solving the planning problem while

considering the given transportation plan.
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