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Abstract The multi-wave algorithm (Glover, 2016)
integrates tabu search and strategic oscillation utilizing
repeated waves (nested iterations) of constructive search or
neighborhood search. We propose a simple multi-wave
algorithm for solving the Uncapacitated Facility Location
Problem (UFLP) to minimize the combined costs of
selecting facilities to be opened and of assigning each
customer to an opened facility in order to meet the
customers’ demands. The objective is to minimize the
overall cost including the costs of opening facilities and the
costs of allocations. Our experimental tests on a standard
set of benchmarks for this widely-studied class of
problems show that our algorithm outperforms all previous
methods.

Keywords discrete optimization, UFLP, multi-wave
optimization, strategic oscillation, tabu search*

1 Introduction

Recently, Glover (2016) introduced a new multi-wave
algorithm (MWA) that embraces both (1) iterated con-
structive methods and (2) iterated neighborhood search
methods (see Algorithm 1). An iterated constructive search
starts from a null solution and employs moves that add

elements until a complete solution is constructed, and an
iterated neighborhood search starts from a given solution
and employs improving moves to reach a local optimum.
In this paper, we focus on iterated improvement

neighborhood search (which only accepts moves that are
improving) as a natural analog of iterated constructive
search.
To describe the method in overview, let N(x) = the set of

solutions that are neighbors of x, and M(x) = the set of
moves that lead to these neighbors; i.e.M(x) = {m =m(x) 2
N(x)}. Let CL denote a candidate list of moves extracted
from M(x). For problems with large neighborhoods we
assume M(x) has been screened to reduce its size using a
candidate list approach as described in Glover and Laguna
(1997).
In the following, we use the term boundary solution to

refer to both a completely feasible solution obtained by a
constructive algorithm and to a local optimum obtained by
a neighborhood search algorithm. We denote a best
solution by x*, which begins as a dummy solution with f
(x*) = + 1, and f(x) denotes the objective function to be
minimized, as identified below the progression from a
starting solution x° to a boundary solution xwill be called a
wave of the solution process.MaxPass andMaxWave refer
to selected iteration limits. The reference to generating a
null starting solution at the start of the “Pass loop” applies
to constructive search. We assume MaxPass = 1 for this
form of search, for reasons elaborated later.
Algorithm 1. Multi-Wave Algorithm (Overview)
1) x* = Æ ; f(x*) = + 1;
2) For Pass = 1 to MaxPass do
3) Generate a starting solution x°;
4) For Wave = 1 to MaxWave do
5) x = x°;
6) While x is not a boundary solution do x = m(x)

where m is a move in CL;
7) x* = argmin{f(x), f(x*)};
8) Update relevant search parameters for the nextWave;
9) EndFor
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10) Update relevant diversification parameters for the
next Pass;
11) EndFor
12) Return x*
The Uncapacitated Facility Location Problem (UFLP).
Our following development focuses on the design and

implementation of a simple multi-wave algorithm for
solving the Uncapacitated Facility Location Problem
(UFLP).
A variety of facility location problems arise in supply

chain management and most of them are combinatorial in
nature (Blum and Roli, 2003; Ardjmand et al., 2014; De
Corte and Sörensen, 2015; Cerrone et al., 2017; De Armas
et al., 2017). The location problems have several industrial
applications. For example, determining the number of
facilities to be installed and their locations has become an
important issue for manufacturing and industrial compa-
nies (Melo et al., 2009; Chen et al., 2014). The
determination of the best facilities to be implemented, by
solving location problems, can significantly reduce the
management cost and increase the performance of
manufacturing and industrial companies (Cheung et al.,
2001; Melo et al., 2009; Amin and Zhang, 2013).
The Uncapacitated Facility Location Problem (UFLP) is

one of the most widely studied discrete location problems
from this class, and consists of choosing a subset of
facilities to be opened from a set of potential candidates,
and of assigning each customer to an opened facility in
order to meet the customers’ demands. The objective is to
minimize the overall cost which is the sum of the costs of
opening facilities and allocating customers to them. An
UFLP can be defined on a bipartite graph G = (P [ Q, A)
with p+ q vertices and pq arcs where p = |P| is the number
customers and q = |Q| is the number of candidate facilities.
The cost of opening a facility is fi and the cost of serving
customer j from facility i is cij. The UFLP is to find a subset
O ⊆ Q of facilities to open to minimize the function

f ðOÞ ¼
X

i2O
f i þ

X
j2P

min
i2O

ci,j:

Since the only combinatorial part of the problem is the
selection of open facilities, it is natural to represent a
solution by a binary vector x 2 {0, 1}q where xi equals 1 if
facility i is open and equals 0 otherwise. We use the
notation Q1 = Q1(x) = {i 2 Q: xi = 1} to represent the
facilities that are opened in a solution x. Hence, the
optimization problem of interest may be expressed in the
form

Minimize f ðxÞ ¼
X

i2Q1ðxÞ
f iþ

X
j2P

min
i2Q1ðxÞ

ci,j: x2 f0,1gq – f0g:

Note that all binary vectors in f0,1gq are feasible
solutions except for 0.
In recent decades, many methods have been proposed

for solving the UFLP, including heuristic methods, exact
methods and hybrid methods. Several state-of-the-art

surveys on location problems and their applications can
be found in Hale and Moberg (2003), Klose and Drexl
(2005), ReVelle and Eiselt (2005). Among exact algo-
rithms that have been developed to solve UFLP problems
optimally are the branch and bound algorithm of
Khumawala (1972), a dual-based approach by Erlenkotter
(1978) and its improved version by Körkel (1989), a three-
stage algorithm by Galvão and Raggi (1989) and the
branch and PEG algorithms of Goldengorin et al. (2003).
In addition, Posta et al. (2014) recently introduced a
cooperative exact method for solving UFLP integrating
tabu search and branch and bound with the aim of finding
an optimal solution.
A variety of methods have also been proposed based on

Lagrangian relaxation. Within this class, Beasley (1993)
developed several Lagrangian heuristics for solving
location problems including the UFLP. Later, Beltran-
Royo et al. (2012) and Jörnsten and Klose (2016) used
Semi-Lagrangian relaxation to solve the UFLP drawing on
the notion of Semi-Lagranian relaxation introduced in
Beltran et al. (2006) for solving the p-median problem.
Of particular relevance to our current work, a wide range

of algorithms have been developed for UFLP using a
metaheuristic framework. Basu et al. (2015) present a
review on the application of metaheuristics for solving
discrete location problems including the UFLP, in which
they focus on four methods: scatter search, tabu search,
particle swarm optimization and genetic algorithms.
Specifically addressing the UFLP, Ghosh (2003) studied
several neighborhood search methods including tabu
search and a complete local search with memory. Resende
and Werneck (2006) proposed a multistart hybrid algo-
rithm (called HYBRID) for UFLP which is based on the
algorithm introduced in Resende and Werneck (2004) for
solving the p-median problem, and which combined
efficient procedures such as path-relinking (used in tabu
search and scatter search) together with notions from
genetic algorithms. In addition to these approaches, many
different variants of tabu search have been successfully
applied to UFLP (Al-Sultan and Al-Fawzan, 1999; Michel
and Van Hentenryck, 2004; Sun, 2005; Sun, 2006) and
Genetic Algorithms (Kratica et al., 2001; Homberger and
Gehring, 2008; Tohyama et al., 2011). Other types of
approaches include those of Greistorfer and Rego (2006))
who used a simple filter-and-fan method to deal with UFLP
and Yigit et al. (2006) who proposed an evolutionary
simulated annealing algorithm for solving UFLP. The
study of Arostegui et al. (2006) presented a comparison
study between simulated annealing, tabu search and
genetic algorithms for location problems, in which tabu
search obtained particularly promising results. A multi-
population particle swarm optimization (MPSO) algorithm
was applied by Wang et al. (2008) which included a
parallel implementation. Tseng and Wu (2009a) developed
a novel hybrid algorithm called multiple trajectory search
(MTS) and the same authors also presented a multi-start

452 Front. Eng. Manag. 2018, 5(4): 451–465



drop-add-swap heuristic to deal with UFLP in Tseng and
Wu (2009b). Other multi-start approaches for the UFLP
include those of Cura (2010) and Ardjmand et al. (2014).
The latter multi-start heuristic was dubbed discrete
unconscious search and obtained highly promising results.
Employing a synthesis of several of the preceding ideas,
De Armas et al. 2017 have proposed a method for the
stochastic instance of UFLP (SUFLP), using a simheuristic
(simulation optimization) approach that first embeds a fast
heuristic inside the metaheuristic framework of iterated
local search (ILS) for the deterministic version of UFLP
and then integrates this procedure with Monte Carlo
simulation techniques. Additional recent investigations of
UFLP have been carried out by Albareda-Sambola et al.
(2017), Atta et al. (2018), Galli et al. (2018), Sahman et al.
(2017), Tsuya et al. (2017). There also exist several recent
studies of variants and extensions of UFLP, including
Akbaripour et al. (2017), Chalupa and Nielsen (2018), Han
et al. (2018), Jiang et al. (2018), Pearce and Forbes (2018),
Todosijević et al. (2017), An and Svensson (2017). Also
quite recently, Ortiz-Astorquiza et al. (2017a, 2017b)
respectively provide formulations and approximation
algorithms for Multilevel Uncapacitated Facility Location
and a comprehensive review on multi-level facility
location problems that extend several classical facility
location problems.
The remainder of the paper is organized as follows. The

next section presents the principles that underlie the Multi-
Wave Algorithm and Section 3 exposes the general design
of the algorithm. Our comparative experimental study is
presented in Section 4 and concluding observations are
provided in Section 5.

2 Multi-wave metaheuristic principles

The Multi-Wave Algorithm is based on combining tabu
search and strategic oscillation to exploit three chief
components: (1) a candidate list (CL) for exploring the
neighborhood of the current solution; (2) an active move
record (AMR) to capture the conditional effects of
sequential decisions; (3) intensification and diversification
strategies founded on the notion of persistent attractive-
ness. The following subsections present a brief description
of each component, but for our present simple version of
MWA we only make use of components (1) and (2). As
shown in Section 4, even without component (3), our
method outperforms all previous methods on the set of
benchmark problems standardly used for comparative
testing in the literature.

2.1 Candidate list

Let ðmÞ to be the evaluation of the move m, i.e. the change
in the objective function that results when performingm on
x. We focus attention on a candidate list that contains

improving moves with higher evaluations, hence CL =
{m1, m2,…, ms} so that D(m1)≥...≥D(ms)≥max{D(m): m
2 M(x) - CL}. Often the size s = |CL| is determined by a
threshold T (Glover, 1989, 1995), i.e. CL = {m 2 M(x):
D(m)≥T} where in the present work, the value of T is
chosen as

T ¼ Δmin þ lðΔmean –ΔminÞ, (1)

T ¼ Δmean þ lðΔmax –ΔmeanÞ, (2)

and where Dmin, Dmean and Dmax refer to the min, mean and
max evaluations D(m) over M(x), and l 2 [0, 1] is a
parameter. Note that a threshold T is also used in GRASP
Resende and Ribeiro (2003) which is computed without
reference to Dmean by defining T = Dmin + α(Dmax –Dmin),
relative to a parameter α 2 [0, 1]. If the midpoint of the
preceding representation, for α = 0.5, is taken to be an
approximation to Dmean, then a rough correspondence
between this latter candidate list and those based on Dmean

occurs by specifying α = (l + 1)/2 (hence α 2 [.5, 1]) to
associate it with (2).
We assume that the evaluations have been scaled and

translated, if necessary, so that they are all positive. In the
present work, we choose a move m from CL based on the
principle of probabilistic tabu search (P-TS) (Glover, 1989)
by constructing a sample of size 1 from the uniform
distribution with probability Pr(m) given by

PrðmÞ ¼ ΔðmÞβX
m# 2CL

Δðm#Þβ : (3)

The exponent β can be selected greater than 1 to
emphasize the differences between evaluations, or selected
less than 1 to de-emphasize these differences. (Another
early form of probabilistic tabu search generates prob-
abilities by reference to the exponential function er for
chosen values of the exponent r (Xu et al., 1997).) The
completely random choice that results for β = 0 effectively
corresponds to the approach subsequently proposed by
GRASP for its candidate list. More recently, probabilistic
variants of GRASP have been introduced in Wang et al.
(2013) and Grasas et al. (2017) which adopt a number of
ideas from probabilistic tabu search.
In the context of UFLP, let x and x′ represent two binary

solutions where x′ is obtained from x by a 1-flip move
which changes the value of a single variable from xk to
x
0
k ¼ 1 – xk , so we have x# ¼ xþ ð1 – 2xkÞek , where ek is
unit vector with all components zero except the kth

component. To evaluate a 1-flip move efficiently, for
each customer j, we maintain the closest facility and the
second closest facility, i.e.,

i1j ¼ i1j ðxÞ ¼ argminfci,j : i 2 Q1ðxÞg,

i2j ¼ i2j ðxÞ ¼ argminfci,j : i 2 Q1ðxÞ – fi1j ðxÞgg:
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Then the objective function can be rewritten as
f ðxÞ ¼

X
i2Q1 f i þ

X
j2Pci1j j. Then the objective function

change produced by flipping xk is given by Δk ¼
f ðxÞ – f ðx#Þ. The objective function value after closing
facility k 2 Q1 is given by

f ðx0 Þ ¼
X
i2Q1

f i – f k þ
X

j2P –P¼
k

ci1j jþ
X
j2P¼

k

ci2j j,

where P¼
k is the set of customers assigned to k, i.e.,

P¼
k ¼ fj 2 P : i1j ¼ kg. The change Δ –

k of closing facility k
is given by

Δ –
k ¼ f k –

X
j2Pk

¼ ðci2j j – ci1j jÞ: (4)

The objective function value after opening facility k 2
Q0 ¼ Q0ðxÞ ¼ fi 2 Q : xi ¼ 0g is given by

f ðx0 Þ ¼
X

i2Q1 f i þ f k þ
X

j2P
minðci2j j – ckjÞ:

The change Δþ
k of opening facility k is given by

Δþ
k ¼ – f k þ

X
j2P

maxf0,ci1j j – ckjg

¼ – f k þ
X

j2Pk –ci1j j
–ckj

, (5)

where P –
k ¼ fj : ckj < ci1j jg. Hence, the change Δk of

flipping facility k can be expressed as

Δk ¼
Δ –
k if xk ¼ 1

Δþ
k if xk ¼ 0

:

(

Michel and Van Hentenryck (2004) and Sun (2006)
provide an efficient procedure in O(p log q) time to update
the evaluation Δk for facility and warehouse location
problems after each flip move.
Now we consider a swap move. Let x and x′ represent

two binary solutions where x′ is obtained from x by
swapping the value of two variables xk and xh with h 2
Q1ðxÞ and h 2 Q0ðxÞ, so we have Q1ðx0 Þ ¼ Q1ðxÞ – k þ h.
Then the objective function f ðx0 Þ ¼

X
i2Q1ðxÞf i – f k þ f h

þ
X

j2P min
i2Q1ðxÞ – kþh

ci,j. Note that

min
i2Q1ðxÞ – kþh

ci,j ¼ minfci,j : i 2 Q1ðxÞ – k þ hg

¼
ci1j jif ci

1
j j
< min fckj,chjg

ci2j j
if i1j ¼ k and ci2j j

< chj

chj otherwise

8>><
>>: :

Let P1 ¼ fJ 2 P : ci1j j < minfckj,chjgg, P2 ¼ fJ 2 P :

ci1j j < ckj and ci2j < chjg , and P3 ¼ P –P1 –P2 be a

partition of P. Then the objective function change produced
by swapping xh and xk is given by Δhk ¼ f ðxÞ – f ðx0 Þ. More
precisely, we have

Δhk ¼ f k – f h þ
X

j2P
min

i2Q1ðxÞ
cij – min

i2Q1ðxÞ – kþh
cij

� �
(6)

This last evaluation can be simplified as follows

Δhk ¼ f k – f h þ
X

j2P2ðci1j j – ci2j jÞ

þ
X

j2P3ðci1j j – chjÞ: (7)

According to Resende and Werneck (2007), the
objective function change can be rewritten in the following
form

Δhk ¼ Δþ
k –Δ –

h þ Δ�
hk , (8)

where

Δ�
hk ¼

X
j2P2

ci2j j
–maxðci1j j – ckjÞ,

and Δþ
k is called gain(k) which corresponds to the decrease

in solution value due to the insertion of facility k (with no
associated removal). Similarly, Δ –

h is called loss(h)
corresponding to the increase in solution value due to the
removal of facility h (with no associated insertion), while
Δ�
hk is called extra(k, h) corresponding to a positive

correction term that accounts for the fact that the insertion
of facility k and the removal of facility h may not be
independent (a customer previously assigned to facility h
may be reassigned to facility k). Note that i) Δ�

hk is always
positive or equal to 0; ii) If Δ –

h is negative, then there is an
improvement when closing h; iii) If Δþ

k is positive, then
there is an improvement when opening k.
In our implementation, the candidate list contains Drop,

Add and Swapmoves. To keep the size of the candidate list
moderate, only the Swap(k, h) moves that satisfy the
condition Δhk>0 and Δ�

hk>Δ
–
h are candidates to belong to

CL(x). This condition assures by Eq. (8) that we only
consider Swap moves that dominate Add or Drop moves.

2.2 Conditional effect of sequential decisions and active
record move

Starting from an initial solution, the algorithm repeatedly
performs improving moves until a boundary solution is
reached. In this sequence of decisions, the moves applied
in early steps of the MWA affect the evaluation and the
choice of the decision in the current step because the
information underlying the current decision depends on
these earlier moves. (This is the so-called conditional effect
of sequential decisions.) Furthermore, the evaluation of
current decisions is able to take advantage of more refined
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information than is available to early decisions, conditional
upon decisions already made, due to the fact that the
problem is now reduced, with the implication that later
decisions are likely to be better in a conditional sense than
earlier decisions. Consequently, as observed in Glover
(2000, 2016), it becomes advantageous to re-examine
earlier decisions (which are likely to be bad) at
intermediate stages during the search process in order to
amend them and thus create paths to higher quality
boundary solutions.
In its general design, the Multi-Wave Algorithm exploits

this notion of the conditional effect of sequential decisions
using an Active Move Record (AMR) whose form is
described below. Specifically, the algorithm starts with a
vertical phase by performing constructive or improving
moves, and then after a given number of iterations the
moves (decisions) executed earlier are re-examined a
horizontal phase to see if additional improvement results
by replacing them with other moves that now are evaluated
to be better. An alternation between vertical and horizontal
phases which are triggered by parameters of the search
continues until a boundary solution is reached, whereon
updates are made and the process begins again.
We refer to both constructive and improving moves as

forward moves, and refer to destructive moves and moves
that complement (or “cancel”) previous improving moves
as reverse moves. For a constructive algorithm, the
operation of dropping and reversing a move m is often
very simple, consisting only of removing the move m from
AMR. We will understand the reference to a reverse move
m in this case to involve just the dropping operation. We
also refer both to the (arbitrary) beginning solution that
launches an improving phase of neighborhood search and
to the null construction that launches a constructive phase,
as the initial solution.
More precisely, the Active Move Record identifies the

forward moves selected so far that have not been cancelled
by reverse moves. It is convenient to represent this record
by AMR = (m1,m2,…,mr), where r = |AMR|, and where the
indexing sequence indicates that move mi was executed
before move mi+ 1 for i 2 [1, r - 1]. It should be noted that
M(x) and CL can include moves that reverse moves in
AMR.
At any stage, the effect of applying the moves in AMR to

the initial solution yields a current solution x and in the
case of a constructive algorithm, we assume that the
objective function value f(x) can be evaluated for a partial
solution as well as a complete solution. We first sketch the
general form of the Multi-Wave algorithm and then
describe the ways that AMR and CL are used within it.

3 General design of the multi-wave algo-
rithm

Each wave is divided into alternating vertical and

horizontal components, where vertical steps consist of
forward moves that enlarge the AMR and horizontal steps
consist of combined forward and reverse moves designed
to leave the cardinality of AMR unchanged. Here we
handle the horizontal phase by the simpler approach of
dropping moves from AMR by reversing them, and then
adding an equal number of forward moves to AMR. The
key steps for carrying this out involve: (1) deciding when a
horizontal phase is to be launched, (2) selecting the number
of moves to be executed during this phase, and (3)
identifying the particular moves drawn from AMR to drop
and the associated forward moves from CL that make up
the phase.
We index the successive intervention points by k =

1, 2, …, k*. The parameter vk denotes the number of
vertical steps (forward moves) executed before launching
intervention k, which therefore occurs when |AMR| = vk.
Finally, hk denotes the number of horizontal steps executed
during this intervention and dk denotes the number of
moves dropped on each of these steps. The values of these
parameters are interrelated and we give simple rules to
determine them. The condition for reaching an intervention
point and executing a horizontal phase may be expressed
as follows.
If |AMR| = vk, perform hk horizontal steps each

consisting of dropping (reversing) dk moves from the
start of AMR and sequentially adding dk new moves to
AMR from CL (where CL has access to the moves dropped
from AMR). This sequential selection implies that the
move evaluations may change from one step to the next. If
no forward move exists to replace a given reverse move (as
where no improving moves currently exist), a boundary
solution is reached and the wave terminates.
In short, all steps of adding moves to AMR during the

horizontal phase have exactly the same form as the steps of
choosing and executing forward moves during the vertical
phase.
Algorithm 2 describes in detail the main steps used in the

proposed Multi-Wave Algorithm.
Figure 1 shows the evolution of the AMR in the Vertical

Phase when r ¼ jAMRj < vk which consists of adding
moves to AMR until it reaches the size r ¼ vk . Figure 2
illustrates the steps of the Horizontal Phase that performs
dk Drop / Add moves hk times. Note that the Concluding
Horizontal Phase can be also illustrated by Fig. 2 where the
process iterates h0 times by dropping d0 moves from AMR
and adding moves until reaching a boundary solution.
Algorithm 2. Multi-Wave Algorithm
1) x = Æ ; x* = x; f(x*) = 1;
2) For Pass = 1 to MaxPas do
3) Generate a starting solution x° (null, randomly or by

post-analysis diversification);
4) For Wave = 1 to MaxWave do
5) x = x°; AMR = Æ; k = 1;
6) While x is not a boundary solution do
7) If |AMR| = vk then // Horizontal Phase
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8) For h = 1 to hk do
9) Reverse the first dk moves and remove them from

AMR
10) Perform dk forward moves and add them to AMR
11) EndFor
12) k ← k + 1;
13) Else // Vertical Phase
14) Perform one forward move and add it to AMR
15) EndIf
16) EndWhile
17) x* = argmin{f(x), f(x*)};
18) For h = 1 to h0 do // Concluding Horizontal Phase
19) Reverse the first d0 moves and remove them from

AMR
20) While x is not a boundary solution do
21) Perform a forward move and add it to AMR
22) EndWhile
23) x* = argmin{f(x), f(x*)};
24) EndFor
25) Update vk, hk and dk for all k;
26) EndFor
27) EndFor
28) Return x*
A variety of rules are possible for determining the

parameters of the Multi-Wave Algorithm, and particularly
those of the horizontal phase. We focus here on rules that
are easy to execute provided in subsequent sections.

3.1 Determining the intervention parameter values vk and k*

The vk values which identify the values of |AMR| at which
interventions occur can be conveniently established by
using an estimate re of the final |AMR| value upon reaching
a boundary solution. Such an estimate can be determined
by executing a preliminary wave without any interventions
(as insured by making v1 large) and setting re = |AMR|
when the wave terminates. This re estimate can be updated
after each subsequent wave to equal the final |AMR| value
obtained during this wave or the average of the final |AMR|
values obtained so far.
Given re, a desired spacing between successive inter-

ventions can be selected based on either:
(1) The separation δk between successive values vk

at which successive interventions occur, which yields vk =
vk-1 + δk for k = 0 to k*, where by convention v0 = 0. The
value δk should satisfy δk≥dk + 1. In the simplest case, we
select a constant value δ = δk≥2, which therefore
determines k* = ⌊re / δ⌋. This approach is useful for

Fig. 1 Vertical phase r ¼ jAMRj < vk

Fig. 2 Horizontal phase r ¼ jAMRj < vk

456 Front. Eng. Manag. 2018, 5(4): 451–465



densely populating the values vk over the estimate re, hence
is suited to choosing k* relatively large (in comparison to
re).
(2) The chosen total number of interventions k*. In the

simplest case, we divide the interval [1, re] into equal parts
and we consider values of k* ranging from 1 to a selected
upper limit (5 for small value), then for any value of k*, let
vk = [k re/(k* + 1)] or vk = [(k + 1)re/(k* + 2)] for each k =
1 to k*. This approach is useful for sparsely populating the
values vk over the estimate re, and it is suited to choosing
k* relatively small.
Note that with the first technique (1), the value of d

determines the total number of interventions k*. We have
tested the simplest version where δk = δ is a constant value,
but this simplest rule worked well only for some instances
of UFLP. Hence we implement a new rule where δk
increases after each η waves η 2 {1, …, 4} starting with
small value of δ1 2 {2, 3} (i.e., δk+h = δk + τ with τ 2
{1,…, 6}). To implement the second rule (2), based on the
estimation of re, we keep a record at each pass of the
average number of moves performed up to the current
wave. Accompanying this, we increase the number of
interventions k* by 1 at each wave (k* = k* + 1), starting
with a small value (in our implementation, k* = 5). Hence,

we have vk = vk – 1 + d where δ ¼ ~re
k*.

3.2 Determining the number of drop moves dk

The value dk identifying the number of moves to be
dropped during the kth intervention point should be
chosen, as previously noted, so that dk< δk = vk- vk-1.
Again, an equal spacing option gives a possible starting
point, giving each dk a value dk = d> 1 for all k.
Alternatively, dk may be selected randomly at each
intervention point to lie in the interval [1, d]. Another
option is to let dk be larger on the first step of the horizontal
phase and then decrease it to a smaller value on subsequent
steps. In the latter case, two alternatives of interest are to
decrease dk immediately to 1 and to decrease it by a single
unit at each step until it reaches 1. In our implementation
for UFLP we determined the number of drop moves by
setting dk = 2 for all k, adopting the equal spacing option
because of its simplicity and effectiveness.

3.3 Determining the number of horizontal steps hk

We determine the number of horizontal steps hk as a function
of the number of dropped moves dk. To assure that every
move in AMR is dropped on one of these steps performed on
the kth intervention, we select hk = ⌈|AMR|/ dk⌉ in our current
implementation, where |AMR| refers here to the size of the
active move record when the kth intervention is launched. In
particular, each time a move or a block of moves is selected
from AMR: (a) the moves dropped from AMR are made
available to become members of CL; (b) the rule of

probabilistic tabu search is employed for successively
choosing moves from CL to be executed; and (c) M(x)
and hence CL are updated after each of these moves.
It is reasonable to expect that the horizontal interventions
will contribute to an intensification/diversification tradeoff
in a way that will enable the P-TS choice rules to focus
primarily on intensification, as by using relatively large l

and b values. If l is chosen sufficiently large, e.g., in the
interval [.98, 1.0], then the value of b will be largely
irrelevant. In our implementation, at each pass, the value of
b starts from 1.5 and ends at 0.5 and at each wave decreases
by stepwize 1/MaxWave, while the value of l starts from
0.8 and ends at 0 and at each wave decreases by stepwize
0.8/MaxWave. Starting from large l and b values allows
intensification of the search while slowly reducing those
values at each pass permits an intensification/diversification
tradeoff.

3.4 Concluding horizontal phase

The goal behind the concluding horizontal phase is to iron
out imperfections produced after the last intervention. This
procedure is applied to the AMR produced by the current
wave. The difference between the concluding horizontal
phase and the horizontal phase performed during the wave
is: after dropping d0 moves from AMR and reversing them,
the concluding horizontal phase performs forward moves
until a boundary solution is reached, rather than stopping
after executing d0 forward moves, as done in the horizontal
phase of the wave. From this fact, the initial values of h0 and
d0 are chosen to depend on the value |AMR|. Choosing a
large value of d0 can make a significant change in the
solution x and leads us to start a new search from scratch, as
in a simple multi-start search, and this will be done h0 times.
On the other hand, choosing a small value of d0 allows us to
iron out early imperfections, but if |AMR| is large then h0
will receive a large value, and this will negatively affect the
search procedure and its CPU-time. To achieve the goal of
the concluding horizontal phase without inhibiting the
effectiveness of the search process, we fix h0 and d0 by
setting d0 = 2 and h0 = min(⌈|AMR|/d0⌉, h), where h is the
maximum number of iterations we imposed on h0.
Consequently, if ⌈|AMR|/d0⌉> h the procedure will not
examine all the moves in AMR and in such a case only early
moves in AMR are reversed. We are motivated to use this
technique based on the notion of the conditional effect of
sequential decisions.

4 Computational results

Our simple version of the multi-wave algorithm was coded
in JAVA and all experiments were conducted on a
computer with Intel Xeon E3-1505M CPU @ 2.80 GHz
and 16 GB RAM. To test the performance of our MWA, we
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use four of the most widely referenced and challenging
benchmark data sets of UFLP from the literature including:
The benchmark of Ghosh (2003) (GHOSH), the data set of
Kratica et al. (2001) (M*), the large-scale data set used in
Barahona and Chudak (1999) (MED) and the test
problems from the OR-Library of Beasley (1990)
(ORLIB). These data sets can be uploaded from http://
resources.mpi-inf.mpg.de/departments/d1/projects/bench-
marks/UflLib/. In addition, the MWA is compared against
nine of the most efficient methods developed for the UFLP.
These state-of-the-art methods are:
1) LAG: The Lagrange-method from Sun (2006) which

is implemented in Sun (2005).
2) CLM: The Complete Local search with Memory of

Ghosh (2003).
3) GTS: The Tabu Search of Ghosh (2003).
4) HYB: The Hybrid multistart method of Resende and

Werneck (2006).
5) TS: The Tabu Search of Sun (2006).
6) MDAS: The Multi-start Drop Add Swap heuristic of

Tseng and Wu (2009b).
7) MTS: Multiple Trajectory Search of Tseng and Wu

(2009a).
8) US: The discrete Unconscious Search of Ardjmand et

al. (2014).
9) ILS: The Iterated Local Search method of De Armas

et al. (2017).
Our experiments are divided into two parts. In the first

part, we present a comparison between the proposed MWA
and two multi-start algorithms we have implemented with
the aim to identify performance differences between the
MWA and classical multi-start approaches. In the second
part of our experimentation, the MWA results are
compared to the outcomes from the 9 state-of-the-art
algorithms identified above. In all experiments, we report
CPU-times for the MWA in two columns: Column All
which refers to the full CPU-time of the execution and
column Find which refers to the CPU-time needed to find
the best solution in the execution. In what follows, first we
give a brief description of the benchmark data sets used,
then we present the two parts of the experiments.

4.1 Benchmarks for UFLP

We use the following four benchmark data sets to evaluate
the MWA:
� GHOSH: In this data set from Ghosh (2003), the

number of customers p and the number of facilities q are
set to be (p, q) 2 {(250, 250), (500, 500), (750, 750)} with
30 problem instances of each size. These instances are
divided into three groups A, B and C in which the facility
setup costs fi, are chosen uniformly from intervals [100,
200], [1000, 2000] and [10000, 20000] respectively for
low, medium and high fixed cost values. In all instances,
the assignment cost cij is chosen at random from [1000,
2000]. In addition, each set of test problems of the same

size and from the same group are further divided into two
categories, where in 5 instances cij is symmetric (i.e., cij =
cji) and in the other 5 instances cij is asymmetric.
� MED: This benchmark contains 18 large-scale

problems, originally introduced for the p-median problem
by Ahn et al. (1988) and used later by Barahona and
Chudak (1999) in the context of UFLP. We name each
instance as q-y where the number of facilities q 2 {500,
1000, 1500, 2000, 2500, 3000} (each facility is a candidate
for opening and represents a customer at the same time)
and the parameter y 2 {10, 100, 1000}. Each combination
of q and y is included to yield a total of 18 instances. The

parameter y is used to calculate the setup cost f i ¼
ffiffi
q

p
y ,

which is the same for all facilities.
� M*: The third benchmark is the data set of Kratica

et al. (2001). According to the authors, these problems are
generated to closely approximate real-life cases. In these
problems the number of customers is equal to the number
of facilities and varies from 100 to 2000 (i.e., p = q 2{100,
200, 300, 500, 1000, 2000}).
� ORLIB: The fourth test problem set is taken from the

OR-Library of Beasley (1990). These instances were
initially proposed for the capacitated facility location
problem and then used for the uncapacitated facility
location problem case by ignoring the capacity of facilities.
This data set contains 15 instances, in which the numbers
of facilities and customers vary from ((q, p) = (16, 50) to
(q, p) = (100, 1000)).

4.2 Comparison between basic multi-start and the MWA

In this subsection, we present a comparison between two
basic multi-start methods and the MWA. The aim behind
this comparison is to identify the contribution provided by
techniques used in our simple MWA that differentiate it
from multi-start methods: (1) the use of the AMR and the
division of a wave into horizontal and vertical phases in
order to exploit the conditional effects of the sequential
decisions, and (2) the manner in which we exploit the
candidate list in order to select the most appropriate moves
to be applied at each step of the algorithm. To achieve this
aim, we compare the results returned by the MWA to those
obtained by the two basic multi-start methods using the
same CPU times.
The basic multi-start algorithms we implemented may

be viewed as simple instances of the GRASP approach and
consist of two sequential phases: (i) a Greedy Randomized
Procedure (GRP) in which a new starting solution is
generated, and (ii) a local search which improves the
solution returned from the first phase. These steps are
performed until the time limit stopping criterion is met. In
traditional GRASP methods the GRP procedures are used
to construct complete and/or feasible solutions but in our
case, a UFLP-solution with only one facility is a complete
and feasible solution. In fact, in our multi-start methods,
the GRP procedure is used to find starting solutions with
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good tradeoff between the assignment cost and facilities
opening cost. To do this, the GRP starts from a solution
with one facility (i.e., with low opening cost even that
generated a large transportation cost). To establish a good
tradeoff between the opening cost and the assignment cost
(that minimizes the overall cost) we search for the best
number of facilities to be opened by starting with one
facility and continue to add facilities using the greedy
randomized technique until no improving add moves are
available. Thus, the method performs improving add
moves which both improve the solution quality and
converge to a good tradeoff between the assignment and
opening costs. After that, the method performs a local
search procedure in which the Add, Drop and Swap moves
are considered.
In this study, the two versions of the multi-start approach

are examined: MultiS-FI, in which the local search adopts
the first improvement choice strategy and MultiS-BI, in
which the local search adopts the best improvement choice
strategy. Table 1 shows the results of the three algorithms
MultiS-FI, MultiS-BI and MWA: the first column presents
the instances, then in columns from two to seven, for the
two multi-start methods, we present the average solution
cost, the best solution cost and the average number of
iterations out of 10 runs. In columns eight and nine we
show the MWA results, and finally, in column, ten we
present the CPU times of the methods. These results are
obtained as follows: First, we run the MWA algorithm on
these instances by setting the MaxPas = 10 and MaxWave

= 10 (so 100 waves are performed). Then we run the two
multi-start methods using the same amount of CPU-times
consumed by the MWA.
As shown in Table 1, the MWA algorithm clearly proves

more effective than the two multi-start methods. The MWA
obtains higher quality best solutions for all MED instances
and in most instances, the average solution cost obtained
by the MWA is better than the best solution cost obtained
by the multi-start methods. In addition, we observe that the
average number of iterations for MultiS-FI equals 1170
and for MultiS-BI equals 928. So, on average, around 1000
solutions are investigated by these methods in one
execution, whereas the 100 solutions generated by
executing only 100 waves of the MWA turn out to include
much better outcomes. Hence, we conclude that the new
techniques used in our simple MWA method allow it to
uncover better regions in the search space where high-
quality solutions are available.

4.3 Comparison with state-of-the-art algorithms

We now present the results of the MWA on each
benchmark and compare these results to those obtained
by the most effective methods from the literature.

4.3.1 Results on GHOSH test problems

As previously noted, this benchmark contains hard test
problems. We compare the results of the MWA on these

Table 1 MWA results versus multi-start results

MultiS-FI MultiS-BI MWA

Instance Avg best Nbr_it Avg best Nbr_it Avg Best CPU

500-10 798577.0 798577* 521.2 798577.0 798577* 514.8 798577.0* 798577* 8.22

500-100 327068.8 327001 1191.7 327017.9 326901 917.2 326798 326790* 20.49

500-1000 99175.8 99170 2767.3 99172.9 99169* 2632.9 99170.9 99169* 47.16

1000-10 1434250.7 1434154* 442.6 1434301.7 1434154* 430.4 1434154* 1434154* 38.75

1000-100 608008.3 607903 1407.0 608028.8 607903 1007.6 607883.9 607878* 134.62

1000-1000 220703 220668 2698.2 220725.3 220680 2322.2 220585.2 220560* 273.47

1500-10 2000839.6 2000801* 452.6 2000839.5 2000801* 433.8 2000828.8 2000801* 111.23

1500-100 867063.7 866829 1021.2 867451.8 867163 764.3 866490.1 866454* 314.24

1500-1000 335579.5 335491 1893.3 335571.8 335487 1297.9 335059.1 335002 702.70

2000-10 2558118.0 2558118* 533.1 2558126.2 2558118* 492.8 2558119.4 2558118* 277.50

2000-100 1123893.3 1123172 1121.6 1124056.8 1123188 765.4 1122854.5 1122805 660.59

2000-1000 438498.7 438295 1216.0 438544.6 438304 503.3 437813.6 437693 1201.25

2500-10 3100172.0 3099907* 550.0 3100439.2 3099907* 570.4 3100155.9 3099907* 531.12

2500-100 1348372.0 1347790 996.7 1348954.5 1348594 695.4 1347566.8 1347516* 1036.96

2500-1000 535364.9 535132 1581.9 535271.4 535091 1186.9 534593.6 534506 2737.16

3000-10 3570904.8 3570766 534.2 3570988.5 3570766* 562.6 3570766* 3570766* 876.77

3000-100 1604408.9 1604011 1006.8 1605408.1 1604748 709.7 1602512.2 1602345 1711.03

3000-1000 644839.1 644718 1133.1 644746.6 644574 909.4 643885.3 643797 3389.68

AVG 1170.47 928.72
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problems to the results of: TS, CLM, GTS, HYB,MTS, US
and MDAS. Table 2 presents the solution costs (objective
function values) obtained by each method and Table 3
presents the CPU-times of each method. The results for TS,
GTS, HYB, MTS, CLM and US are taken from Sun (2006)
and Ardjmand et al. (2014). The results of MDAS are not
reported in Ardjmand et al. (2014) and we take them
directly from the original paper of Tseng and Wu (2009b).
As shown in Table 2, the MWA was able to reach all

best-known solutions (which were found by at least one of
the most effective methods in the literature) and to obtain a
new best known solution for the instance 750-asym-A. By
contrast, none of the previously proposed methods was
able to find all the best solutions previously known,
disregarding the new best solution we have found. Table 3
additionally shows that our simple MWA has a competitive
computing time compared to the other methods. The MWA
performs particularly well on the type C problems where it
is able to reach the best solution of two large-scale
instances in less than 2 s (750-sym-C and 750-asym-C) and
obtain best solutions for two of the medium size instances
in less than 1 s (500-sym-C and 500-asym-C). In addition,
on average, our algorithm needs only half the CPU-time
required by the fastest method to obtain its best results
(comparing the averages of these CPU-times).

4.3.2 Results on MED test problems

The second comparison is made on the MED test

problems. In Table 4, we compare the four methods that
have results on this data set: ILS, MDAS, HYB and MWA.
In the first and the second columns we present the instance
name and the optimal solution found by the solver Gurobi,
then for each method, we report the average solutions cost
and the average CPU-times out of 30 runs for ILS and
HYB, 50 runs for MDAS and 10 runs for the MWA. The
results of HYB and ILS are taken from Resende and
Werneck (2006) and De Armas et al. (2017) and the results
of MDAS are taken from Tseng and Wu (2009b). Note that
the results for MDAS are not reported in De Armas et al.
(2017).
Comparing MWA to ILS and MDAS, the MWA obtains

better solutions for all problem instances with the
exception of one problem in which MDAS and MWA
obtain the same optimal solutions over all executions (500-
10). Compared to ILS, the MWA method finds better
solutions to all problem instances and requires smaller
average CPU-time (778,23 versus 931,41). Although the
average CPU-time for MDAS is slightly smaller than the
average CPU-time for MWA, we observe that in all
instances where q 2 {500, 1000, 1500, 2000, 2500, 3000}-
y = 10 the CPU-times of MWA are better than those of
MDAS. Interestingly, for the indicated problems from the
MED test set, in contrast to the problem from the GHOSH
test set, the HYB method is much closer to matching the
MWA performance overall – obtaining better results than
MWA in 7 instances, while the MWA method obtains
better results than HYB in 10 instances (and in one

Table 2 MWA results versus literature results on GHOSH benchmark instances

Instance TS MDAS GTS CLM HYB MTS US MWA

250-sym-A 257805.0 257804.0 257832.6 257895.2 257806.2 257804.0 257804.0 257804.0

250-sym-B 276035.2 276035.2 276185.2 276352.2 276035.2 276035.2 276035.2 276035.2

250-sym-C 333671.6 333671.6 333820.0 333671.6 333671.6 333671.6 333671.6 333671.6

250-asym-A 257917.8 257917.8 257978.4 258032.6 257923.4 257917.8 257917.8 257917.8

250-asym-B 276053.2 276053.2 276467.2 276184.2 276053.2 276053.2 276053.2 276053.2

250-asym-C 332897.2 333897.2 333237.6 333058.4 332897.2 333897.2 332897.2 332897.2

500-sym-A 511180.4 511181.2 511383.6 511487.2 511196.4 511188.8 511180.4 511180.4

500-sym-B 537912.0 537912.0 538480.4 538685.8 537912.0 537912.0 537912.0 537912.0

500-sym-C 621059.2 621059.2 621107.2 621172.8 621059.2 621059.2 621059.2 621059.2

500-asym-A 511140.0 511136.4 511251.6 511393.4 511145.0 511137.8 511137.4 511136.4

500-asym-B 537847.6 537847.6 538144.0 538421.0 537863.4 537847.6 537847.6 537847.6

500-asym-C 621463.8 621463.8 621811.8 621990.8 621463.8 621463.8 621463.8 621463.8

750-sym-A 763693.4 763684.8 763830.8 763978.0 763706.6 763708.8 763684.8 763684.8

750-sym-B 796571.8 796571.8 796919.0 797173.4 796632.2 796571.8 796576.8 796571.8

750-sym-C 900158.6 900158.6 901158.4 900785.2 900272.0 900158.6 900158.6 900158.6

750-asym-A 763717.0 763716.4 763836.6 764019.4 763731.2 763735.8 763712.4 763711.6*

750-asym-B 796374.4 796374.4 796859.0 796754.2 796396.8 796374.4 796374.4 796374.4

750-asym-C 900193.2 900193.2 900514.2 900349.8 900193.2 900193.2 900193.2 900193.2

#BKS 14/18 16/18 0/18 1/18 8/18 14/18 15/18 18/18
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Table 3 MWA CPU-times versus literature CPU-times on GHOSH benchmark instances

Instance TS MDAS CLM HYB MTS US MWA

All Find

250-sym-A 2.828 7.36 86.842 4.328 5.59 0.843 1.94 0.18

250-sym-B 5.628 5.88 34.634 7.774 7.73 0.618 0.75 0.1

250-sym-C 9.878 5.73 69.458 8.702 8.49 0.63 0.435 0.05

250-asym-A 2.618 7.32 86.506 4.636 5.62 0.993 1.84 0.78

250-asym-B 5.79 5.92 33.688 8.082 7.33 0.6 0.75 0.08

250-asym-C 9.196 5.67 89.99 7.776 8.51 0.586 0.39 0.04

500-sym-A 15.616 35.87 946.028 27.644 27.4 8.201 14.72 7.98

500-sym-B 31.432 26.72 294.656 34.196 32.7 4.619 4.29 0.95

500-sym-C 71.106 24.18 437.462 40.376 36.72 3.46 2.27 0.47

500-asym-A 13.76 35.97 921.208 20.232 27.43 7.736 11.81 7.28

500-asym-B 34.748 26.73 311.344 31.3 32.91 4.751 3.95 0.53

500-asym-C 72.064 26.60 388.21 47.79 36.61 3.601 2.31 0.45

750-sym-A 39.812 93.68 3650.662 49.214 67.63 25.903 34.41 20.31

750-sym-B 93.352 68.83 1583.17 92.886 77.67 14.601 11.37 4.1

750-sym-C 229.914 56.31 1194.534 113.64 88.17 10.888 7.117 1.31

750-asym-A 39.65 92.60 3658.588 59.13 67.91 26.914 40.58 20.49

750-asym-B 95.43 64.71 1606.778 73.322 78.06 14.542 11.17 5.03

750-asym-C 236.902 56.95 1325.812 112.994 87.17 10.827 7.12 1.76

AVG CPU 56.10 35.95 928.87 41.33 39.09 7.80 8.73 3.99

Table 4 MWA results versus literature results on MED test problems

Instance Gurobi ILS MDAS HYB MWA

OPT AVG CPU AVG CPU AVG CPU AVG CPU (Find ) CPU(All)

500-10 798577 799077.1 46.89 798577.0* 28.0 798577* 33.2 798577.0* 1.488 8.22

500-100 326790 327007.6 18.54 326922.375 25.6 326805.4 32.9 326798 12.402 20.49

500-1000 99169 99172.6 14.57 99196.0 22.4 99169* 23.6 99170.9 18.13 47.16

1000-10 1434154 1435918.6 54.94 1434171.0 130.7 1434185.4 173.9 1434154* 15.41 38.75

1000-100 607878 608202.3 160.76 607992.563 106.5 607880.4 148.8 607883.9 73.21 134.62

1000-1000 220560 221260.9 175.71 220626.563 84.4 220560.9 141.7 220585.2 159.42 273.47

1500-10 2000801 2002874.5 178.66 2000854.14 331.1 2001121.7 347.8 2000828.8 70.89 111.23

1500-100 866454 867654.7 385.46 867149.69 293.6 866493.2 378.7 866490.1 196.11 314.24

1500-1000 334962 338046.1 381.83 335400.813 218.7 334973.2 387.2 335059.1 361.28 702.70

2000-10 2558118 2559611.3 224.77 2558121.5 687.4 2558120.8 717.5 2558119.4 93.39 277.50

2000-100 1122748 1125471.9 980.89 1123936.5 562.3 1122861.9 650.8 1122854.5 311.26 660.59

2000-1000 437686 443025.7 997.64 438263.0 425.9 437690.7 760 437813.6 527.60 1201.25

2500-10 3099907 3107032.5 710.01 3100174.5 1116.7 3100224.7 1419.5 3100155.9 259.50 531.12

2500-100 1347516 1350446.6 1903.79 1348713.25 870.5 1347577.6 1128.2 1347566.8 711.44 1036.96

2500-1000 534405 540365.2 1940.58 535134.938 675.3 534426.6 1309.4 534593.6 1723.54 2737.16

3000-10 3570766 3579295.7 2605.87 3570820.75 1667.0 3570818.8 1621.1 3570766* 287.43 876.77

3000-100 1602154 1607502.6 2987.58 1605083.63 1349.5 1602530.9 1977.6 1602512.2 999.13 1711.03

3000-1000 643463 652092.7 2996.92 644376.25 1017.3 643541.8 2081.4 643885.3 2022.41 3389.68

Fred GLOVER et al. A simple multi-wave algorithm for the uncapacitated facility location problem 461



instance the two methods obtain the same average solution
value). The two methods require approximately the same
average CPU-times for this problem set.
Table 5 compares the best solutions for problems from

the MED test set, comparing MWA to ILS, where MWA
executes 10 runs and ILS executes 30 runs. Here we
present only the results for ILS and MWA because,
unfortunately, the best solutions returned by MDAS and
HYB are not reported for these particular problems. Table
5 shows that the best solutions found by MWA are better
than the best solutions found by ILS in 15 out of 18
instances, and the two methods found the same optimal
solutions for 3 instances.
From Table 4, we observe that: (1) For all instance q-10

(q 2 {500, 1000, 1500, 2000, 2500, 3000}) the MWA
performs very well by reaching the best average solution
cost in all executions while requiring less CPU-time than
the state-of-the-art methods from the literature. (2) For
instances q-1000 (q 2 {500, 1000, 1500, 2000, 2500,
3000}), the MWA provides high-quality solutions and
outperforms the two state-of-the-art methods ILS and
MDAS. We observe also that the CPU-times of MWA in
these instances are slightly worse than the other methods.
Finally, Table 5 shows that the MWA was able, out of 10
runs, to find the optimal solutions for 12 out of 18 large-
scale instances (with up to 3000 customers and 3000
facilities).

4.3.3 Results on M* and ORLIB test problems

The results of MWAversus the literature results on M* and
ORLIB benchmarks are presented in Table 6 and Table 7
respectively. In Table 6 (for the M* test problems) we
compare MWA to TS, LAG, US and HYB and for each
instance show the solution costs and CPU-times reported
by each method. In Table 7 (for the ORLIB test problems)
we present the name of the instance and the optimal
solution in columns one and two, then present the CPU-
times of TS, LAG and HYB in columns three, four, and
five respectively. The CPU-times of MWA are presented in
columns six and seven. These tables show that the M* and
ORLIB problems were easy to solve.
Table 6 shows that TS, US, and HYB, along with our

MWA approach, were all able to reach every best-known
solution for the M* problems in competitive CPU-times
compared to the other state-of-the-art methods. The
ORLIB problems turn out to be even easier to solve,
since all state-of-the-art methods, without exception, are
able to obtain optimal solutions to all problems. For this
reason, Table 7 shows only the CPU-times. It may be noted
that our MWA method requires significantly less average
computation time for these problems than the other
methods, demonstrating its efficiency in solving these
problems as well as in the case of the more complex
problems, where in addition it obtains better solution
results.

5 Conclusions

Our simple version of the multi-wave algorithm for the
uncapacitated facility location problem proves highly
effective, as determined by computational tests comparing
our method to nine state-of-the-art methods from the
literature. The efficacy of our MWA algorithm derives
from strategies for exploiting the conditional effects of
sequential decisions, embodied in two alternating phases, a
vertical phase that successively augments or improves a
current solution, and a horizontal phase that modifies the
current solution by replacing moves stored in an active
move record (AMR). The alternation of vertical and
horizontal phases continues until reaching a boundary
solution, after which parameters are updated based on
performance history and the method repeats. Our findings
motivate an investigation of more advanced strategies of
the general multi-wave algorithm that additionally exploit
other conditional effects, including particularly the effect
of persistent attractiveness.
Our findings suggest that the ideas we have incorporated

in our multi-wave implementation for UFLP may likewise
prove valuable in application to other combinatorial
optimization problems. It has been beyond the scope of
this study to investigate the full set of strategies available to
the multi-wave algorithm, and consequently, our findings

Table 5 MWA best solutions versus ILS best solutions on MED test

problems

Gurobi ILS MWA

Instance OPT Best Best

500-10 798577 798577* 798577*

500-100 326790 326894 326790*

500-1000 99169 99169* 99169*

1000-10 1434154 1434154* 1434154*

1000-100 607878 607939 607878*

1000-1000 220560 220959 220560*

1500-10 2000801 2001920 2000801*

1500-100 866454 866769 866454*

1500-1000 334962 337452 335002

2000-10 2558118 2558125 2558118*

2000-100 1122748 1124572 1122805

2000-1000 437686 442136 437693

2500-10 3099907 3102719 3099907*

2500-100 1347516 1349510 1347516*

2500-1000 534405 539485 534506

3000-10 3570766 3570930 3570766*

3000-100 1602154 1606424 1602345

3000-1000 643463 650777 643797
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Table 6 MWA results versus literature results on M* test problems

Instance TS LAG US HYB MWA

Cost CPU Cost CPU Cost CPU Cost CPU Cost CPU
All

Find

MO1 1305.95 0.68 1305.95 0.69 1305.95 0.07 1305.95 0.988 1305.95 0.24 0.08

MO2 1432.26 0.76 1445.70 0.73 1432.26 0.07 1432.26 1.030 1432.26 0.27 0.10

MO3 1516.77 0.80 1535.77 0.79 1516.77 0.07 1516.77 0.960 1516.77 0.30 0.12

MO4 1442.24 0.77 1442.24 0.79 1442.24 0.06 1442.24 0.892 1442.24 0.27 0.09

MO5 1408.77 0.80 1408.77 0.78 1408.77 0.06 1408.77 0.815 1408.77 0.34 0.09

MP1 2686.48 4.97 2722.66 3.40 2686.48 0.24 2686.48 3.695 2686.48 0.72 0.33

MP2 2904.86 5.00 2914.42 2.81 2904.86 0.28 2904.86 4.125 2904.86 0.78 0.47

MP3 2623.71 4.95 2623.71 3.06 2623.71 0.30 2623.71 3.500 2623.71 0.61 0.33

MP4 2938.75 5.82 2958.80 3.23 2938.75 0.32 2938.75 3.887 2938.75 0.70 0.34

MP5 2932.33 5.49 2946.03 3.06 2932.33 0.25 2932.33 4.169 2932.33 0.75 0.42

MQ1 4091.01 20.84 4091.01 3.96 4091.01 0.84 4091.01 8.919 4091.01 1.64 0.91

MQ2 4028.33 17.82 4096.13 4.34 4028.33 0.79 4028.33 7.802 4028.33 1.65 1.15

MQ3 4275.43 15.46 4373.08 3.78 4275.43 0.84 4275.43 9.508 4275.43 1.63 0.97

MQ4 4235.15 16.24 4274.68 4.06 4235.15 0.74 4235.15 9.834 4235.15 1.84 0.92

MQ5 4080.74 17.66 4138.50 3.87 4080.74 0.90 4080.74 10.813 4080.74 1.87 0.98

MR1 2608.15 71.33 2634.71 11.67 2608.15 3.04 2608.15 27.221 2608.15 8.05 4.03

MR2 2654.73 74.02 2704.66 11.37 2654.73 2.98 2654.73 27.646 2654.73 6.02 3.86

MR3 2788.25 83.13 2874.46 11.62 2788.25 3.20 2788.25 26.417 2788.25 4.74 4.10

MR4 2756.04 72.84 2774.38 12.54 2756.04 2.91 2756.04 27.595 2756.04 7.70 3.96

MR5 2505.05 75.91 2526.32 11.57 2505.05 3.08 2505.05 26.989 2505.05 7.80 4.54

MS1 5283.76 629.31 5434.11 50.19 5283.76 10.56 5283.76 113.395 5283.76 31.34 11.12

MT1 10069.80 6173.04 10172.55 189.69 10069.80 120.58 10069.80 701.167 10069.80 180.33 78.47

#BKS 22/22 5/22 22/22 22/22 22/22

Table 7 MWA results versus literature results on ORLIB test problems

Instance Optimal TS LAG HYB MWA
All

Find

Cap71 932 615.75 0.05 0.07 0.034 0.060 0.020

Cap72 977 799.40 0.05 0.08 0.039 0.060 0.025

Cap73 1 010 641.45 0.05 0.08 0.053 0.045 0.045

Cap74 1 034 976.97 0.04 0.07 0.049 0.050 0.030

Cap101 796 648.44 0.07 0.07 0.055 0.095 0.055

Cap102 854 704.20 0.06 0.12 0.056 0.085 0.030

Cap103 893 782.11 0.05 0.10 0.072 0.080 0.050

Cap104 928 941.75 0.06 0.06 0.077 0.075 0.055

Cap131 793 439.56 0.11 0.20 0.105 0.145 0.055

Cap132 851 495.32 0.12 0.19 0.097 0.115 0.055

Cap133 893 076.71 0.13 0.28 0.131 0.130 0.040

Cap134 928 941.75 0.13 0.20 0.140 0.125 0.085

Capa 17 156 454.48 13.02 7.97 7.380 1.545 1.190

Capb 12 979 071.58 10.38 8.69 6.245 1.687 1.492

Capc 11 505 594.33 9.23 9.19 6.148 1.805 1.190

Avg - 2.24 1.82 1.38 0.41 0.29
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also motivate an exploration of other multi-wave compo-
nents.
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