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Abstract Residual life estimation is essential for relia-
bility engineering. Traditional methods may experience
difficulties in estimating the residual life of products with
high reliability, long life, and small sample. The Bayes
model provides a feasible solution and can be a useful tool
for fusing multisource information. In this study, a Bayes
model is proposed to estimate the residual life of products
by fusing expert knowledge, degradation data, and lifetime
data. The linear Wiener process is used to model
degradation data, whereas lifetime data are described via
the inverse Gaussian distribution. Therefore, the joint
maximum likelihood (ML) function can be obtained by
combining lifetime and degradation data. Expert knowl-
edge is used according to the maximum entropy method to
determine the prior distributions of parameters, thereby
making this work different from existing studies that use
non-informative prior. The discussion and analysis of
different types of expert knowledge also distinguish our
research from others. Expert knowledge can be classified
into three categories according to practical engineering.
Methods for determining prior distribution by using the
aforementioned three types of data are presented. The
Markov chain Monte Carlo is applied to obtain samples of
the parameters and to estimate the residual life of products
due to the complexity of the joint ML function and the
posterior distribution of parameters. Finally, a numerical
example is presented. The effectiveness and practicability
of the proposed method are validated by comparing it with
residual life estimation that uses non-informative prior.

Then, its accuracy and correctness are proven via
simulation experiments.

Keywords residual life estimation, Bayes model, linear
Wiener process*

1 Introduction

Residual life estimation is currently essential for reliability
engineering. However, given the development in the
manufacturing process, satellite tests exhibit the characte-
ristics of high reliability and long life, and collected
lifetime data are typically zero-failure or few-failure data.
These situations result in considerable difficulty in residual
life estimation. In practical engineering, various types of
reliability information, including lifetime data, degradation
data, and expert information, can be collected. However,
traditional methods are no longer effective for fusing
information. Fully utilizing the aforementioned reliability
information has received sufficient attention and presents a
solution for the residual life estimation of products with
high reliability, long life, and small sample. The Bayes
model can be a useful tool for solving this problem and is
widely used to fuse multisource information.
The two most commonly used methods are as follows.

The first method involves assuming that the degradation
process conforms to a certain distribution, and the
maximum likelihood (ML) function is established by
fusing multisource data, followed by the estimation of
parameters and residual life. Pettit and Young (1999)
assumed that degradation is a Wiener process, and they
fused failure lifetime and degradation data to estimate
product lifetime. Wang et al. (2012) proposed an effective
method that considers prior degradation information in
evaluating reliability. Updating parameters using the Bayes
method is one of the major advantages of their method.
Gebraeel et al. (2009) replaced the degradation information
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of similar products with lifetime data and the estimated
residual life by using lifetime data and field degradation
information. Padgett et al. (2004) described degradation
via the Gaussian process and achieved reliability evalu-
ation by fusing failure lifetime and degradation data.
Additional information in this field is available in Yang and
Yang (2011) and Peng et al. (2009).
Another method for fusing multisource information

obtains prior distributions according to information
sources and then fuses these distributions, which is the
most important step. Zhang (2001) proposed a method
based on the confidence level of prior information. Feng
presented several methods for fusing prior information.
These methods exhibit the following characteristics: A
correlation information fusion method (Feng et al., 2003),
an adequacy measurement-based method (Feng et al.,
2004), a multisource information fusion method based on
the maximum entropy Markov model (Feng et al., 2003),
an information fusion approach based on the Bayes fuzzy
logistic operator (Feng and Zhou., 2008), and the fusion of
information from multiple sources based on ML-II theory
in Bayesian analysis (Feng et al., 2006). Chai et al. (2005)
proposed a method for determining fusion weight based on
the ML principle.
The conclusions that can be drawn after an extensive

literature review of the aforementioned developments are
as follows. (1) The literature on the information fusion of
expert knowledge, lifetime data, and degradation data
remains scarce. (2) Methods for determining prior
distribution according to different types of expert informa-
tion are limited. (3) The effect of fusing information from
different types of sources requires further study. These
conclusions have motivated our research.
This study aims to propose a Bayes residual life

estimation method by fusing multisource information.
First, prior distributions of parameters are determined
using the maximum entropy method. Then, the joint ML
function is established. Parameter estimation and residual
life estimation can be achieved through the Gibbs sampling
method. The effects of fusing different types of informa-
tion sources are compared and discussed through a
numerical study. In particular, expert knowledge is
classified into three categories in practical engineering:
(1) estimation of reliability, (2) estimation of lifetime, and
(3) estimation of reliability and lifetime. In this study, we
propose methods for determining the prior distribution of
parameters under the three conditions.
The remainder of this paper is organized as follows.

Section 2 presents the cumulative distribution function
(CDF) and probability density function (PDF) of residual
life based on the Wiener process. Section 3 introduces the
process of obtaining the prior distributions of parameters
according to different types of expert information. The ML
function is established and the posterior distribution is
obtained by fusing lifetime and degradation data in Section

4. Parameter estimation and residual life prediction are
demonstrated in Section 5. A numerical example is
provided in Section 6.

2 CDF and PDF of residual life based on the
linear Wiener process

The Wiener process can describe the degradation process
of a product and exhibits good calculation and analysis
properties. Therefore, the linear drift Wiener process model
is selected for this study.
Let X ðtÞ represent the degradation value at time t. If

X ðtÞ satisfies
(1) X ð0Þ ¼ 0;
(2) fX ðtÞ,t>0g demonstrates independent and steady

increments;
(3) X ðtÞ is subject to a normal distribution with a mean

value of �t and a variance of �2t;
then fX ðtÞ,t>0g is defined as a linear drift Wiener process
with parameters � and �. Evidently, X ðtÞ exhibits the
following form according to the preceding definition
(Wang et al., 2015):

X ðtÞ ¼ �t þ �BðtÞ, (1)

where BðtÞ is the standard Brownian motion.
The CDF and PDF of lifetime, denoted by FðtÞ and f ðtÞ,

respectively, can be presented as follows (Chen, 2016):

F tð Þ ¼ 1 –P T³tð Þ

¼ Φ
�t –D

�
ffiffi
t

p
� �

þ exp
2�D

�2

� �
Φ

–D –�t
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ffiffi
t

p
� �

, (2)

f ðtÞ ¼ dF

dt
¼ Dffiffiffiffiffiffiffiffiffiffiffiffiffi

2π�2t3
p exp –

ðD –�tÞ2
2�2t

�
:

�
(3)

Then, the PDF of residual life at time τ is given as
follows:

f ðtÞ ¼ dF

dt
¼ D –Xτffiffiffiffiffiffiffiffiffiffiffiffiffi

2π�2t3
p exp –

ðD –�tÞ2
2�2t

�
,

�
(4)

where Xτ represents the degradation data at τ.
Therefore, the key step in lifetime and residual life

estimation is to determine � and �. The Bayes model can
be used to fuse multisource information to improve the
accuracy of parameter estimation. In the next section, the
method for determining the prior distributions of para-
meters is presented.

3 Prior distributions of parameters

We assume that the lifetime of a certain product on a
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satellite platform conforms to the linear Wiener distribu-
tion. In practical engineering, the types of expert informa-
tion can be divided into three categories: (1) point
estimation of reliability at a specific time, (2) point
estimation of lifetime, and (3) point estimation of
reliability and lifetime. Methods for obtaining the prior
distributions of parameters according to different types of
expert information are proposed in this section.

3.1 Prior distribution based on expert estimation of reliability

Expert information about the parameters is as follows: The
point estimation of reliability is R0 at mission time t0. For
this form of description, we can use information entropy as
an objective function.
In accordance with the principle of maximum entropy:

max H ½πð�Þ� ¼ –!
þ1

0
πð�Þln½πð�Þ�d�: (5)

Then, the extreme constraint problem can be expressed
as follows:

max H ½πð�Þ� ¼ –!
þ1

0
πð�Þln½πð�Þ�d�

s:t:!
Θ
Rð�,�2,t0Þπð�Þπð�2Þd�d�2 ¼ R0

8><
>: , (6)

where Θ represents the ranges of � and �2. We use the
Gamma distribution as the prior distributions of � and �2:

πðxja,bÞ ¼ ba

ΓðaÞx
a – 1expð – bxÞ: (7)

Then, a and b can be calculated by solving this nonlinear
programming problem with a nonlinear equality constraint,
and the prior distributions of � and �2 can be determined.
This programming problem can be difficult to solve, and a
genetic algorithm can be a feasible approach to address it.
We can also assume that �2 is uniformly distributed to
simplify this problem.

3.2 Prior distribution based on expert estimation of lifetime

Expert information about the parameters is as follows: The
point estimation of lifetime is L0.
In accordance with the principle of maximum entropy,

the problem is expressed as follows (Liu, 2017):

max H ½πð�Þ� ¼ –!
þ1

Θ
πð�Þln½πð�Þ�d�

s:t:!
Θ1

�πð�Þd� ¼ �0

8><
>: , (8)

where �0 represents the estimation of �.

In accordance with Eq. (8), let l ¼ D2

�2 and β ¼ D

�
. Then,
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which is the standard form of the Wiener process. Let

x ¼ 1

t
. Then, dx ¼ –

1

t2
dt. Its expectation EðtÞ can be

solved as follows:
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Therefore, we obtain �0 ¼
D

L0
. Assume that the

distribution of � is the Gamma distribution as follows:

π �ð Þ ¼ ba

ΓðaÞ�
a – 1e – b�: (11)

Then, the expectation of � can be calculated as follows:

E �ð Þ ¼ !
þ1

0
�πð�Þd� ¼ !

þ1

0

ba

ΓðaÞ�
ae – b�d�
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0

1
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The obtained constraint condition is
a

b
¼ �0 ¼

D

L0
.
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Hence, we have

b ¼ a
L0
D
: (13)

We can transform the constrained nonlinear program-
ming problem into an unconstrained nonlinear program-
ming problem by using the preceding equation. Finally,
MATLAB is a powerful tool for solving this problem. The
obtained accuracy and efficiency are satisfactory. Given
the lack of information, we also assume that �2 is
uniformly distributed.

3.3 Prior distribution based on expert estimation of lifetime
and reliability

To simplify the calculation, we assume that �2 conforms to
the uniform distribution presented in Sections 3.1 and 3.2.
However, after fusing expert data in the form of reliability
at a specific time, the Gamma distribution can be used as a
prior distribution of �2. The expert data of both types of
point estimation can be used to obtain a more accurate
distribution of the residual life of products by replacing the
original uniform distribution. The specific method is
described as follows.
Expert information about the parameters is as follows:

the point estimation of reliability at mission time t0 is R0
and that of lifetime is L0.
The Gamma distribution is selected as the prior

distribution of �2. We derive �0 ¼
D

L0
in Section 2.2.

The point estimation of �2, which is denoted by �2
0, can be

obtained by solving Rð�0,�
2,tÞ ¼ R0.

Similarly, the programming problem is expressed as
follows according to the principle of maximum entropy:

max H ½πð�2Þ� ¼ –!
þ1

0
πð�2Þln½πð�2Þ�d�2

s:t:!
1

0

�2πð�2Þd�2 ¼ �20

8>>><
>>>:

: (14)

After obtaining the values of the parameters of the
Gamma distribution and substituting them into Eq. (14),
the prior distribution of �2 is derived. The method for
determining the prior distribution of � is presented in
Section 3.2.
Given that � and �2 are mutually independent, the joint

distribution function of � and �2, which can also be
regarded as the joint prior distribution, is expressed as
follows:

πð�,�2Þ ¼ πð�Þπð�2Þ: (15)

When the prior distributions of � and �2 that we
obtained under the three conditions are substituted, we can
derive the joint prior distribution πð�,�2Þ.

4 Posterior distributions of the parameters

We assume that we have collected m lifetime data,
including kðk£mÞ failure lifetime data T1,T2,:::,Tk and
m – k censored lifetime data TC1

,TC2
,:::,TCm – k

, where D is
the failure threshold of degradation. Given the drift
parameter � and the diffusion coefficient �, the ML
function based on lifetime data can be given as

Lð�,�2jTÞ ¼∏
k
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Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(16)

Assume that the performance degradation data of n
products were collected. At the initial time ti0, the
performance degradation value for sample i is Xi0 ¼ 0.
The degradation values at times ti1,ti2,⋯,timi are
Xi1,Xi2,⋯,Ximi. The change in the performance degradation
of product i between times tiðj – 1Þ and tij is Δxij ¼ Xij –
Xiðj – 1Þ. Hence,

Δxij � Nð�Δtij, �2ΔtijÞ, (17)

where Δtij ¼ tij – tiðj – 1Þ,i ¼ 1,2,:::,n,j ¼ 1,2,:::,mi.
The ML function of the parameters established based on

the performance degradation data are

Lð�,�2jX Þ
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n

i¼1
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j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2Δtij

q exp –
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2�2Δtij

" #
: (18)

When lifetime and performance degradation data are
combined, the ML function is obtained as follows:

Lð�,�2jX ,TÞ ¼∏
n

i¼1
∏
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Then, the posterior distributions of the parameters are
shown according to Bayesian theory as follows:

π �,�2jX ,T	 
 ¼ πð�,�2ÞLð�,�2jX ,TÞ
∬πð�,�2ÞLð�,�2jX ,TÞd�d�2 : (20)

Qian ZHAO et al. Bayes estimation of residual life by fusing multisource information 527



5 Parameter estimation and residual life
prediction

Estimating the parameters of a distribution is a difficult
task because of the complexity of the ML function and the
posterior distribution of parameters � and �. Therefore, the
Markov chain Monte Carlo sampling method is selected to
address this problem.
The conditional density function of � is

πð�j�2,Th,XhÞ / πð�,�2Þ

exp –
Xn
i¼1

Xmi

j¼1

ðΔxij –�ΔtijÞ2
2�2Δtij

–
Xk
i¼1

ðD –�TiÞ2
2�2Ti

" #

∏
m – k

i¼1
Φ

D –�TCi

�
ffiffiffiffiffiffi
TCi

p
 !

þ exp
2�D

�2

� �
Φ
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�
ffiffiffiffiffiffi
TCi

p
 !" #

:

(21)

The conditional density function of �2 is
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Given sample size T. The steps of the Gibbs sampling
method are as follows.
(1) Let t ¼ 1.
(2) The initial values �ð1Þ and ð�2Þð1Þ of parameters �

and �2 are randomly generated.
(3) Let t ¼ t þ 1. �ðtÞ and ð�2ÞðtÞ are sampled according

to the conditional PDF.
(4) Repeat Step 3 until all the values with size T are

obtained.
After the data set is obtained via Gibbs sampling, we

estimate the parameters by calculating the mean value of
samples as follows:

�̂ ¼ E½�� ¼ lim
T ↕ ↓1

1

T

Xt
i¼1

�ðiÞ

�̂2 ¼ E½�2� ¼ lim
T ↕ ↓1

1

T

Xt
i¼1

ð�2ÞðiÞ: (23)

Finally, the PDF and CDF of residual life can be
obtained after estimating the parameters. Then, we can
predict the residual life of the product.

6 Numerical example

In this section, a certain product of a satellite platform is
selected as the object of analysis to achieve residual life
estimation based on the Bayesian model by fusing
multisource information. The feasibility and practicability
of the method are validated. Then, the accuracy of the
proposed method is proven through simulation experi-
ments by comparing the proposed method with methods
that use non-informative prior and a degradation model.
The reliability information collected for this product is

presented as follows.
(1) Expert knowledge: The point estimate of product

lifetime is L0 ¼ 40 months.
(2) The lifetime data are shown in Fig. 1, all of which are

zero-failure lifetime data.
(3) The degradation data are the temperatures of this

product with a failure threshold of 42°C, which are roughly
subject to the linear Wiener process.

6.1 Data processing

The median filtering method is used to remove outliers
from the performance degradation data (Liu, 2017), and
the degradation data are converted to once a day. The curve
of the temperature is plotted in Fig. 2(a). To facilitate data
analysis, temperature data are converted into once a half-
month, as shown in Fig. 2(b).

6.2 Prior distribution of the parameters with information

The maximum entropy method and the optimization tool in
MATLAB are used according to the point estimate of
lifetime by experts to obtain a ¼ 1:0045, b ¼ 2:009.
When combining lifetime and degradation data, we use

Gibbs sampling to obtain the sample trajectory of � (Fig. 3)
and the posterior distribution of � (Fig. 4).
Then, we can get the point estimates of the parameters

from the prior distribution with information.

Fig. 1 Lifetime data of products
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� ¼ 0:5441, � ¼ 0:5939

The initial performance degradation value is Xt0 ¼

19:34 °C. When τ ¼ 200 days, Xτ ¼ 22:43°C. Therefore,
the PDFs of lifetime and residual lifetime are shown in
Figs. 5(a) and 5(b), respectively.

Fig. 2 Temperature of the product
(a) Tempertature of the product (unit: day); (b) Tempertature of the product (unit: haif-month)

Fig. 3 Sample trajectory of � Fig. 4 Posterior distribution of �

Fig. 5 PDFs of lifetime and residual life
(a) Tempertature of the product (unit: day); (b) Tempertature of the product (unit: haif-month)
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6.3 Residual life estimation based on non-informative prior

When expert knowledge is unavailable, we assume that the
prior distributions of � and �2 are uniform distributions.
After fusing lifetime and degradation data, the sample
trajectory of � that is obtained via sampling is shown in
Fig. 6 and the posterior distribution of � is shown in Fig. 7.
Then, we can obtain the point estimates of the

parameters.

�0 ¼ 0:6031,   �0 ¼ 0:5745

The PDFs of lifetime and residual life can be determined
and are presented and compared in Section 6.4.

6.4 Comparative analysis

Table 1 provides three cases: prior distribution of
parameters with information (Case 1), prior distribution
of parameters without information (Case 2), and modeling
of performance degradation data (Case 3). The lifetime and
residual life estimations of the three cases are compared.
Posterior distributions of the three cases are depicted in

Fig. 8.
A conclusion can be drawn that the degradation model

can solve the problem of estimating the residual life of
products with high reliability, long life, and small sample.
Nevertheless, limitations also exist. Determining the
threshold and goodness of fit of the degradation model
influences the accuracy of estimation. The comparison of
the posterior distributions of the parameters shows that the

distribution of a parameter becomes more concentrated by
fusing multisource information, which can improve the
precision of prediction. The difference between the
estimation of � obtained in Cases 1 and 2 has drawn our
attention because expert knowledge does not entirely
correspond to the degradation data. Therefore, the
accuracy of expert information is high in estimating
residual life. If the attitude of experts is too optimistic, then
the prediction of residual life may be longer.

6.5 Simulation experiment

To test the accuracy of the proposed method, we assume
that µ = 1.5, s = 0.4, and D = 90°C. Then, the expected
lifetime is 60 months by using Eq. (3). Therefore, the
expert information is as follows: the estimation of lifetime
is 60 months. The degradation data between 1 and 20
months are generated via simulation and shown in Fig. 9.
Failure lifetime data (T_fail) and zero-failure lifetime

data (T_censor) are provided in Table 2.
Therefore, when current time τ ¼ 10 months, the true

value of residual life is 49.1141 months by integrating Eq.
(4). Posterior distributions of three cases are depicted in
Fig. 10.
Additional details are provided in Table 3.
The accuracy of lifetime and residual life estimations is

improved by fusing expert knowledge. Moreover, the
results are more precise if more information is fused and
used. We should emphasize that the advantage of this
method will be more evident if lifetime and degradation
data are not easily tractable.

Fig. 6 Sample trajectory of � Fig. 7 Posterior distribution of �

Table 1 Comparison of the three cases

Case Point estimate of � Point estimate of � Interval estimate of � (95%) Lifetime estimate/month Residual life estimate/month

1 0.5411 0.5939 (0.0823, 1.0172) 41.8763 36.1633

2 0.6038 0.5745 (0.1393, 1.0385) 37.5278 32.4080

3 0.6323 0.6103 (0.1211, 1.1696) 35.8363 30.9473
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7 Conclusions

A Bayes method for residual life estimation by fusing
multisource information is proposed in this study. The
determination of the prior distributions of parameters by
using different types of expert information is discussed.

The proposed method is proven to be valid and accurate by
comparing with methods that use non-informative prior
and the degradation model. Moreover, the residual life of a
product is approximately estimated. The accuracy of expert
information is important. Inaccurate expert information
may lead to considerable errors. Nevertheless, the
proposed method is limited. Guaranteeing or testing the
accuracy of expert information should be studied further.
Moreover, additional efforts should be exerted to improve
this method when prior information is changed or the
degradation process is different.
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