
RESEARCH ARTICLE

Muhammad Tariq SHAFIQ, Jane MATTHEWS, Steve LOCKLEY, Peter E.D. LOVE

Model server enabled management of collaborative changes
in building information models

© The Author(s) 2018. Published by Higher Education Press. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0)

Abstract The issues and challenges involved in control-
ling the collaborative changes in a Building Information
Modeling (BIM) data repository, in a multi-model
collaboration environment, are discussed. It is suggested
that managing iterative changes in BIMs is a database
problem, exacerbated by the long transaction times needed
to support collaborative design progression. This is yet to
be resolved in the construction industry and better
solutions are needed to support the underlying workflows
and computing operations for seamless collaboration on
BIMs. With this in mind, this paper proposes the use of the
structural and semantic characteristics of BIM objects as a
mechanism for tracking changes across co-developed
solutions. The creation of object signatures, using hash
codes derived from their characteristics, provides a
potential mechanism for object comparison and effective
change recognition and management.

Keywords building information models, collaboration,
IFC, change management, model-servers

1 Introduction

Collaboration on Building Information Models (BIMs) is
currently undertaken through file based exchanges, using a
variety of methods, such as physical file transfer, extranets,
project websites and proprietary collaboration tools
(Isikdag et al., 2007; Shafiq et al., 2012). The requirements
for BIM enabled collaboration which requires concurrent
design, are currently hindered by this reliance on the
existing file based tools (Shafiq et al., 2012), which have a
number of limitations (Adachi, 2001; Hietanen, 2002;
Kiviniemi et al., 2005a, b; Beetz et al., 2010), for example:
� differences in the internal storage structure of BIM

authoring platforms make it difficult to maintain the
integrity of information in models when shared between
applications. Even if the exchanges are in a platform
neutral file format, such as Industry Foundation Classes
(IFC), native BIM authoring applications leave application
imprints on the data. Moreover, the addition or loss of data
during an IFC export, may result in models becoming less
interpretable once imported into other applications;
� redundant data may occur in different versions in file-

based model exchanges leading to data duplication and
rework. For example, it may be necessary for internal walls
to live both in the Architects model as well as the structural
engineers model;
� as the information content grows within a BIM, its size

significantly increases, which results in it becoming
difficult to transfer through a file exchange mechanism;
� in many cases, only a partial view of the model is

required to be exchanged or viewed due to data ownership
and liability issues, which is difficult to manage through
file-based exchange;
� versioning of individual objects within a BIM is not

possible in ad hoc file based model exchanges; and
� controlling user rights, ownership and responsibility of

the model’s contents becomes compromised in file-based
information exchange.
Given the above limitations, the use of file-based

Received January 18, 2018; accepted June 15, 2018

Muhammad Tariq SHAFIQ
Department of Architectural Engineering, University of the United Arab
Emirates, UAE

Jane MATTHEWS
Department of Construction Management, Curtin University, Perth,
Western Australia 6845, Australia

Steve LOCKLEY
Department of Architecture and Built Environment, Northumbria
University, Northumbria, United Kingdom

Peter E.D. LOVE (✉)
Department of Civil Engineering, Curtin University, Perth, Western
Australia 6845, Australia
E-mail: plove@iinet.net.au

Front. Eng. Manag. 2018, 5(3): 298–306
https://doi.org/10.15302/J-FEM-2018009



exchanges of data are not viable as a long-term solution to
collaboration on BIMs. Database level transactions have
potential for achieving more sophisticated collaboration,
but the practical realization and the technology to facilitate
such transactions remain unsolved (Shafiq et al., 2012). In
addressing this issue, the concept of model servers has
been identified as having potential to improve the work-
flow and stimulate collaboration on BIMs. However,
research has been limited to date in this fertile and
emergent area. With this in mind, this paper provides a
commentary on the research undertaken to date, specifi-
cally identifying problem areas, and proposing a way
forward to a support increasingly sophisticated collabora-
tion on BIMs.

2 Model server

The technology that can support database level exchanges
is generally referred to as ‘model servers’, which can
exploit and reuse information directly from a shared model
repository and facilitate collaboration among any number
of participants. Plume and Mitchell (2007) and Jørgensen
et al. (2008) define model servers as a type of database
system that allow upload, download, sharing and coordi-
nation (e.g., model comparison, and model checking) of
models or components by multiple users. Attempts to
develop model servers for the construction industry started
alongside the development of Industry Foundation Class
(IFC) schema (Adachi, 2001; 2002). The IFC schema is
independent from the mechanisms or tools used to generate
data; its focus is to represent the core data of building
components as object models. Thus, for database level
transactions, the complete ‘IFC data model’ can be used to
underpin a ‘model server’, which has been referred to as an
‘IFC model server’ (Adachi, 2002; Hietanen, 2002). The
architecture of an IFC model server is presented in Fig. 1.
A BIM hosting model server is expected to facilitate the

exchange of information between the applications used
throughout a project’s lifecycle (e.g., design tools, analysis
tools, document management systems, facility manage-
ment tools) (Singh et al., 2011). The potential of ‘model
servers’ coupled with web based technologies for
effectively enabling information to be shared in a
collaborative environment has been demonstrated (e.g.,
Kiviniemi et al., 2005; Jørgensen et al., 2008; Beetz et al.,
2010). A considerable amount of research has been
undertaken to develop model server capabilities through
the use of the Standard for the Exchange of Products
(STEP), IFC, as well as proprietary data formats, resulting
in products such as IMSvr, SABLE, Express Data Manager
(EDM), Share a Space, Activefacility and BIMserver
(Adachi, 2002; Beetz et al., 2010; Shafiq et al., 2012). A
platform independent model server should allow different
discipline BIM applications to exchange data using IFC

and provide collaboration functionalities to enable a model
to be uploaded/downloaded, viewed, split, merged, and
compared. However, the collaboration workflows during
model server transactions result in the creation of complex
data structures, the management of which has several
unresolved challenges, therefore limiting the practical
application for end users (Kiviniemi et al., 2005; Koch and
Firmenich, 2011).
Model servers are the backbone technology that can

enable the realization of effective collaboration on BIMs,
though they are still not technically mature. Consequently,
there has been a tendency for them to be used within
experimental and academic environments, due to a number
of latent ‘pitfalls’ which include (Kiviniemi et al., 2005;
Kiviniemi, 2006; Jørgensen et al., 2008; Hjelseth and
Nisbet, 2010; Singh et al., 2011):
� transactions on model data repositories (e.g. upload or

download models) are typically made via the Internet, and
thus as the size of models issued increases, performance
problems arise particularly in large scale projects;
� data locking for ‘check-out’ or ‘check-in’ procedures

is a critical model server function required to control
concurrent access and repository update operations.
However, it imposes serious limitations on the modeling
process, creates bottlenecks for different disciplines, and
therefore adversely impacts productivity;
� restrictions on access rights and work permissions are

necessary to maintain ownership and liability; while there
is adequate provision to support this at the model level, at
the object level of a model, however, there exists no
standardized methods to facilitate and transfer such
controls. Moreover, users’ roles are not static, but switch
with changing responsibilities in accordance with different
stages of a project. In large scale projects, the roles and
responsibilities are not only complex but often overlap.
Thus, it becomes difficult to control user rights, access
permissions, model data ownership and responsibility in
large scale model collaboration environments;
� the quality of IFC export and import in BIM tools is

inconsistent, which renders it difficult to interpret data
consistently in a shared repository, particularly if it is
generated from heterogeneous applications.
� the user interfaces of existing model servers are

complex and confusing for the majority of users in a
project. Invariably users are used to working with a
number of Computer Aided Design (CAD) tools that vary
depending on each discipline’s preference and patterns of
usage. The user interfaces of existing model server
solutions are static and non-intuitive, which imposes yet
another learning curve in order to use and adopt model
server enabled collaboration systems.
� in model collaboration workflows, the change

management of evolving content becomes very complex
as a result of iterative changes and the creation of duplicate
objects when concurrent modeling is undertaken. Fre-

Muhammad Tariq SHAFIQ et al. Model server enabled management of collaborative changes in building information models 299



quently, the same object is created or used in multiple
discipline models that exist on the shared data repository
and subsequently need to be reintegrated to avoid data
redundancy and duplication. This involves accurately
splitting, merging, comparing, and checking the model
and its functions (Shafiq et al., 2013).
These problems are not solely attributable to the

limitations of the technology but the inherent structure
(e.g., procurement methods and contractual arrangements)
and complex works flows and procedures that have been
designed to deliver projects. However, it is outside the
scope of this paper to examine the non-technological issues
that can hinder collaboration in construction projects. For a
detailed review of the need for collaboration on construc-
tion projects, particularly from a structural, organizational,
and cultural perspectives refer to Love and Gunasekaran
(1997a, b), Holt et al., (2000), and Lloyd-Walker and
Walker (2015).
Collaborative operations in a project requires data

synchronization and management through long transac-
tions with a model server (Weise and Katranuschkov,
2004; Nour, 2007; Counsell, 2012). A long transaction is
an extended editing operation of data, independent from
the shared data repository, which allows offline modifica-
tions and supports parallel working by involving version-
ing and merging of concurrently changed data. The shared
data repository on the server must be updated with any
changes as a result of modifications made in a long
transaction, such as new data instances added, deleted or
changed. This is the most important stage in managing
changes in a model collaboration workflow as it involves a
number of model server functions that enable comparisons,
versioning, merging and checking to be undertaken.
Timing is critical when managing a collaboration

workflow; if two events occur at different points in time,
then meaningful change management cannot be achieved
unless a model server is able to detect what has happened
between these periods. Thus, the issue of model
comparison becomes critical in managing changes for
server enabled collaborative working with BIMs (Shafiq
et al., 2013).
The analysis, interrogation and collaboration of BIMs is

generally reliant on the use of Globally Unique Identifiers
(GUIDs) or arbitrary geometry representations, however,
there is a tendency for both to fail in the complex situations
arising as a result of long transactions (Liebich et al.,
2010). Furthermore, support is required from the client-
side application when submitting changes to the model
server, for example, to maintain object owner history, and
the consistent preservation of GUIDs. However, the
internal data storage structures of client side BIM
applications tend to be different from each other, with
limited support for database level change management
within proprietary BIM applications for server enabled
collaboration. A number of studies have addressed such
technical issues, but the understanding of model server

workflows and related technical solutions remains imma-
ture (e.g., Weise and Katranuschkov, 2004; Nour, 2007;
Beetz et al., 2010; Hjelseth and Nisbet, 2010; Liebich et
al., 2010).

3 Iterative change management workflow
of a model server collaboration

The workflow in a model server enabled BIM collabora-
tion relies on an iterative bi-directional exchange of data
(i.e. ‘round trip’) in a long transaction (i.e. independent
from the server, at a local workstation, over days not
milliseconds). This includes (1) distribution/download of
the data (i.e. data check out); (2) local data manipulation
according to the user intent (i.e. model modification);
and (3) uploading changes to the shared data repository on
the model server (i.e. data check in), as reflected in the
Fig. 2.
Figure 2 represents a typical workflow of a shared data

repository (M), exchanging a neutral subset model (Mi) in
a long transaction, which is imported into an end user BIM
tool(Si), modified (Si + 1) and then exported back into
neutral data format (Mi+ 1) . The difference of Mi and
Mi + 1 is the change set which is to be re-integrated with
the shared repository to complete the workflow. This
workflow assumes that the user is importing/exporting an
IFC model in/out of a BIM authoring program, and not just
editing the IFC via a text editor. The change management
workflow in a model server transactions can be explained
in three steps (Liebich et al., 2010): (1) Takeover of data
from a model server; (2) Interpretation and manipulation of
data and; (3) Update of changes to the model server.

3.1 Takeover of data from a model server

The workflow commences with the download/check out of
the required data to execute a design/collaboration task
(such as input for the HVAC design development). It has
been established that a complete copy of the design data
are often not required (Lockley et al., 1994; Sun and
Lockley, 1997). Thus, this step often includes determining
a subset or partial model from the data repository, which
can satisfy the information requirement for the task. This is
a separate research issue; it may be or may not be in the
scope of a model server to determine and validate the
information exchange requirements for a task. Once a
piece of data are checked out from a model server it will be
changed or modified on a local machine typically in a long
transaction, (i.e. independent from the model server
repository). Model server functions need to apply a change
management or concurrency control (e.g. version manage-
ment) policy to avoid data duplication and parallel work
conflicts (such as data locking for an exclusive check out),
which will help to manage data changes or updates to the
shared data repository in the later steps.

300 Front. Eng. Manag. 2018, 5(3): 298–306



Fig. 1 Architecture of an ‘IFC model server’

Fig. 2 Iterative cycle of data exchanges for model server enabled collaboration (Adapted from Liebich et al., 2010)

Muhammad Tariq SHAFIQ et al. Model server enabled management of collaborative changes in building information models 301



3.2 Interpretation and manipulation of data

Even with the use of an IFC model server (neutral shared
data repository), it is not practical to consider all data, on
the shared repository and on the client side, with the same
level of sophistication and semantic understanding. The
client-side applications need to transfer the IFC data into
its native proprietary format for discipline specific tasks.
The problems surrounding interoperability of neutral and
proprietary data are well known, but have only been
partially solved (e.g., Shafiq et al., 2012; Shafiq et al.,
2013). Thus, data interpretation and manipulation on the
client side often result in data loss, inaccuracies and
unexpected changes, thus making the change management
process even more complicated. Liebich et al. (2010) have
suggested that when dealing with ‘round trip’ change
management scenarios, a reliable basis for data manage-
ment is the meaning of data and not the data itself.
However, the gap in determining data meaning and data
itself is the most challenging task in future BIM
developments.

3.3 Update of changes to the shared data on a model server

The final step in the model server data ‘round trip’ is the
synchronization of changes or updates with the shared data
repository as a result of a long transaction (e.g. instances
added, deleted, replaced, edited etc.). The success of
change management depends on the quality of data
produced by the client-side applications, irrespective of
data loss or inconsistencies due to the transfer between IFC
and native data formats. However, both the existing client
side applications (BIM authoring tools), and current model
collaboration systems typically provide poor or no support
for advance data management features. Most BIM tools
generate new model instances in a new version that
contains old and new data, which cannot be used to replace
original source data on the repository as these instances
only represent a part of the whole repository (i.e., partial
models). Therefore, a model server has to be capable of
dealing with a number of changed partial models, and their
versions and variants, as the result of an iterative design
development process. In this instance, a model server must
identify what has changed between two versions of the
same data using a comparison strategy, and then apply a
merging mechanism to update the changes back into the
shared repository.
These two aspects, (1) model comparison to match two

successive model versions to recognize the latest modified
data (2) merging/update of concurrently made data
changes, are critical for the success of the whole process
of model server enabled collaboration. In the workflow
represented in Fig. 2, if the whole repository can be
exchanged (depending on the size and capacity of
applications involved), step 1 can also be avoided as
there will be no need for any subset data extraction.

However, in all cases model comparison and merging will
be required to manage changes for meaningful information
exchange and for the consistency of the shared data
repository.

4 Complexities in model server workflows

The most critical aspect of model-based collaboration is
controlling changes in concurrent workflows. This entails
all the complexities and technical challenges of effective
data management detailed above, making the ability for
meaningful model comparison essential to the success of
model-based collaboration.

4.1 Validation of federated models

As stated a model server needs to deal with the
concurrency of the collaboration operations as well as
with the structural and semantic integrity of the data.
Ideally, an IFC enabled model server will be hosting IFC
data from multiple sources in a federated database. A
federated BIM database consist of a number of linked but
distinct models which retain their integrity so that a change
in one component in one model will not affect the
components in the other linked models (Lowe and
Muncey, 2009). The contents of this federated database
need to be validated for semantic and structural accuracy
so that the changes or updates in the modeling environment
do not violate the consistency of shared BIM data on the
model server. The semantic correctness of modeling
content is very difficult to validate due to the hetero-
geneous tools involved in the creation of the federated
content. Most current tools focus on geometry integration
of federated BIM content, but have generally failed to
maintain the complete structural and semantic correctness
in IFC round tripping (Van Berlo et al., 2012; Lockley
et al., 2013). The result of this situation is a lack of
assurance that the data in a federated BIM is free from
faults and errors, leading to data interpretation that delivers
incorrect results.

4.2 Post rationalization versus pre-defined collaboration

The core of the change management workflow in a model
server environment is the process of finding the changes
and updates (model comparison) and merging them back
with the shared data repository. These are often post-
rationalization activities in the collaboration workflow
where data management systems (i.e. model servers) have
to deal with what has already happened on a set of data
with no or limited knowledge of any conditions applied to
the incoming data. In post rationalization situations,
establishing the right characteristics for determining
change is a challenging process (for example, comparing
corresponding objects in different model versions). For

302 Front. Eng. Manag. 2018, 5(3): 298–306



this, GUIDs are typically used in a shallow or deep tree
comparison of IFC models (Nour, 2007). Yet, this
approach has been widely criticized due to the inconsistent
persistence of GUIDS (Weise and Katranuschkov, 2004;
Kiviniemi et al., 2005; Nour and Beucke, 2008; Hjelseth
and Nisbet, 2010). These resulting inconsistent, missing,
or replaced GUIDs can potentially lead to costly calcula-
tions, and quality compromises in a round trip data
exchange.
An alternative approach is to use pre-defined protocols

to manage changes and updates in model server collabora-
tions (Liebich et al., 2010). In a pre-defined approach,
model server workflows only use a pre-selected set of data,
and its versions, which are assigned with predefined
authority and responsibility for any changes. This
approach is alleged to eliminate potential conflicts when
integrating changes back into the shared repository by
applying restrictions on unauthorised and unwanted
changes. Liebich et al. (2010) advocated this approach
and suggested splitting the possible changes into three
categories, which are:
1) Invariant data: A type of data that is not allowed to

change during a round trip exchange.
2) Read-only data: A type of data that is not expected to

be updated, thus issued as read-only.
3) Changeable data: A type of data that can be changed

and that is allowed to be updated in the shared repository.
Applying such restrictions to the data before starting a

data exchange cycle significantly decreases the amount of
costly calculations in model server workflows. However,
predefined collaboration operations require more sophis-
ticated control mechanisms, which are absent from current
practice. The transfer from post rationalization to pre-
defined collaboration operations has the potential to greatly
improve the accuracy and quality of data collaboration in a
model server enabled environment.

4.3 Inconsistent version control

A prerequisite of an effective model collaboration process
is accurate versioning of IFC objects in the exchanged
models. Existing collaboration systems consider BIMs as
files and version them accordingly. Versioning of objects
within a model is neglected, which restricts further
processing of model content for collaboration operations.
In the IFC2x3 or IFC4 schema, there is no definition for an
actual Model (i.e., IfcModel); there is therefore no variable
that can support versioning of an ‘IfcModel’ at the model
level. Thus, there is an abstraction gap between current
BIM tools and the structural nature of IFC models. As an
alternative, object versioning is a developing approach that
applies a control mechanism to an object in a BIM, at an
attribute level, enabling conflict detection and change
management on objects rather than on files or models
(Nour and Beucke, 2008; 2010).
The key advantage of object level version control is the

ability to track changes and updates through an audit trail
during data exchanges, which can greatly improve the
efficiency and effectiveness of model collaboration work-
flows. Existing BIM authoring tools maintain object
versioning through the GUIDs of IFC objects and
relationships. Nour and Beucke (2010) have suggested
that in practice version control merely based on IFC
GUIDs leads to inconstant results. An underlying problem
with the use of GUIDs is that they are not managed
correctly in existing BIM authoring tools and their
resulting unreliability creates more problems than it solves
for object versioning and model comparisons. Improved
version control practices are needed to overcome these
issues and provide more efficient results. This could
include consideration of other metrics in addition to
GUIDs (such as geometry, topology and semantics) for
object recognition and versioning.

4.4 Granularity level of model comparison

When comparing models, a decision needs to be made as to
what granularity level the comparison will be made at, for
example Model < objects < relationships < references <
attributes <PropertySets < values. Generally, models can
be compared either using shallow or deep comparisons
(Nour, 2007). A shallow comparison only considers
mapping of primitive attributes, such as those defining
geometry, and compares potential matches in two models
using their GUIDs. Deep comparison also includes
referenced attributes and compares the entire hierarchy of
the model structure. Both of these approaches use GUIDs,
which are difficult to maintain and inefficient (Nour and
Beucke, 2010), leading to costly and inaccurate computa-
tions. In addition, these approaches rely on the structural
properties of objects (i.e., properties that define geometry
representation) that can be used to compare and identify
differences and similarities. However, different BIM
authoring tools may have different geometric representa-
tion for the same physical object. This leads to the
following question: How can models constructed inde-
pendently with different tools be compared when their
internal representations vary from that exchanged through
the IFC?

4.5 Data inconsistencies in IFC round tripping

IFC models are often composed of thousands of primitive
and referenced objects and types which are represented
differently within the internal structures of BIM tools.
Therefore, the same IFC model exported from two
different tools, can have added or deleted object types or
associated attributes. These data inconsistencies occur due
to the different internal structure of BIM authoring tools
and application imprints on the IFC model during the
round tripping process. Ma et al. (2006) identified that
such data inconsistencies can include added attributes,

Muhammad Tariq SHAFIQ et al. Model server enabled management of collaborative changes in building information models 303



numerical precision loss, and differences in string length,
attribute value calculations, and referenced objects. In
addition, there can be schema inconsistencies caused
during the export process, as some required attributes can
be absent or lost during IFC export from a specific BIM
tool. Such data inconstancies cause problems in data
manipulation operations and yield inaccurate results.

5 Model server enabled collaboration on
BIMs: A way forward

Collaboration on BIMs using a distributed shared
repository is an iterative process involving long transac-
tions. The information in the shared repository (i.e., Model
server) is defined in terms of a moment in time and
associated versions in other moments in time, resulting in a
number of versions and variants of a shared repository
instance and discipline specific information models. The
changes in these versions can be (1) technical changes,
such as selection of a design alternative, (2) modifications
and detailing of objects as the design process precedes,
(3) changes caused by data round tripping, such as IFC
import/export.
Management of these changes involves complex work-

flows supported by computing operations which enable a
model server to handle simple and complex transitions.
Apart from the technical challenges, there are user issues
that need to be considered while managing iterative
changes. For example, if a structural engineer decides to
change the position of 4 columns, there is no predefined
standard workflow for executing this change. The engineer
may change each column individually, leading to four
changes in the model; or may decide to change one, delete
the other three and then copy and paste the first one three
times. This will result in one change, three deletions and
three new columns in a model, but ultimately the design
change would be the same in both cases. In such design
modifications, when exporting a new version of an IFC
model, the IFC versioning can be different, as the two
editing operations could result in different GUIDs for the
same model elements. If the objects’ GUIDs are identical,
there is clearly a match for comparison or merging (as
GUIDs are designed to be unique). However, two objects
can still constitute a comparable pair even if their GUIDs
are different. Most model comparison applications, such as
Solibri or ArchiCAD, use GUIDs to establish candidates
for comparison, and therefore fail if they are different for
two comparable objects. Tracking comparable objects
across versions is the most basic operation in managing the
workflows of model server enabled collaboration on BIMs.
GUIDs are helpful when tracking such changes, but there
is a need to consider other characteristics in addition, such
as location (same bounding box), containment (same
address), name, specification, or function.
When managing changes in model server environments,

it is important to understand what types of changes are
expected in two versions that are being subjected to a
comparison process. In addition to obtaining an accurate
comparison result, the process should minimise the amount
of unwanted change notifications to the end users. Model
comparison is performed at an object level but the end
users are typically concerned about the effectiveness of the
outcome. For example, when a cost engineer runs a model
comparison, if there isn’t any change that affects cost
information, then he or she may not be interested to know
anything else that is different between the two versions of
the model.
So, in terms of managing changes in IFC models, it is

important to understand the scope of changes at an object
level, but also to consider the end user requirements
(e.g. comparing heating systems only), otherwise the
comparison process may produce accurate, but redundant
results for the end users. A practical way of thinking about
change management in the construction industry is linking
a change to its subsequent actions, such as a design change
leading to a new set of drawings or a specification change
triggering a ‘Request for Information’. These changes can
affect the objects inside a model by changing their
position, shape, and properties. If the position and shape
of an object is changed, then it is a visible change and so
can be communicated to an end user through a graphical
representation (i.e., a door has been moved from wall A
to B).

5.1 Creating signatures for IFC objects: A way forward

The characteristics of objects can be used to create
signatures for IFC objects, which then can be used in
addition to GUIDs, to effectively compare corresponding
objects in change management process. This leads to a new
research question: “What should constitute an effective
signature for IFC objects”? It is suggested that this can be
answered by looking into the structural and semantic
characteristics of an IFC model and the type of changes an
IFC object can undergo. Fundamentally, a change can be in
an object’s position, its shape and its properties.
Position and shape are absolute, as any change in these

components will require a significant change. Therefore,
the characteristics of an object related to its position and
shape provide an appropriate mechanism for creating
recognition signatures. For example, in an ‘IfcDoor’, the
‘IfcLocalPlacement’ defines the local coordinate system
that is referenced by all geometric representations. The
three-dimensional (3D) shape of ‘IfcDoor’ is represented
using ‘SweptSolid’, ‘SurfaceModel’, or ‘Brep’ to define
the door geometry. Most BIM authoring tools exchange
arbitrary shape extrusions in IFC, which can be used to
create a unique object signature. Moreover, the position
and shape are a way of reflecting an object on a drawing
and in a 3D model, which is easy to reflect to an end user if
there is any change. Therefore, these two components are

304 Front. Eng. Manag. 2018, 5(3): 298–306



compelling candidates to create a unique object signature.
However, the case with object properties is different as it
involves the degree of change that needs to be incorporated
into creating the signature.
If a method can determine the degree of importance of

IFC properties, then it can be used to create a signature
based on key properties. Hence, in terms of creating an
element’s signature, there are a number of issues that need
to be considered in the broader perspective of change and
relevance to the end user. A change or update in an object’s
properties can have multiple impacts, for example it can
affect its identity, position, shape, representation, subse-
quent drawings and specifications or both for the end user.
As previously noted, the position and shape related
properties of an element are strong candidates for a
signature but those remaining also need to be examined
and cannot be ignored if effective change management and
productivity improvements are to be attained, particularly
during the model comparison process. With this in mind,
future research should focus on creating object signatures
using hash codes from IFC object characteristics, as part of
a signature matching strategy, previously successfully used
in Software Engineering (Reddy and France, 2005), for
object recognition and comparison in managing model
server enabled collaboration on BIMs.

6 Conclusions

Collaboration on BIMs involves iterative and distributed
processes that make maximum reuse of the information
being exchanged directly between models in a model
collaboration environment. BIMs are subject to constant
evolution, where collaboration requires information to be
created, coordinated and exchanged concurrently and most
often in real time, allowing multiple users to manipulate
information while requiring the data to be synchronized in
a shared data repository. As the information in a BIM
grows during an iterative design and production process
and even beyond into maintenance, a critical issue is how
to manage the iterative changes as a result of the
collaboration operations and workflows that involves
various project participants and heterogeneous applica-
tions. Emerging practice indicates that the aspirational
single project model in a collaborative BIM environment is
not usually a single database structuring all the related
information but a combination of tightly and loosely
coupled databases (federation) linked with clear rules and
allowing controlled access to the different parts of the
information available in the federated model for collabora-
tion operations. A central issue to the management of this
federation is an understanding of the concurrent and
iterative processes required to support and execute the
tasks involved in the operations of a collaborative BIM
environment.

References

Adachi Y (2001). Introduction of IFC model server. http://cic.vtt.fi/

projects/ifcsvr/memo/VTT-MEMO-ADA-05.pdf

Adachi Y (2002). Overview of IFC model server framework. ECPPM,

2002: 367–372

Beetz J, De Laat R, Van Berlo L, Van Den Helm P (2010). Towards an

open building information model server. In: Proceedings of the 10th

International Conference on Design & Decision Support Systems in

Architecture and Urban Planning. The Netherlands

Counsell J (2012). Beyond level 2 BIM, web portals and collaboration

tools. In: Proceedings of 16th International Conference on Informa-

tion Visualisation. 510–515

Hietanen J (2002). BLIS review: IMSvr. http://www.blis-project.org/

software/reviews/IMSvr_Review.pdf

Hjelseth E, Nisbet N (2010). Overview of concepts for model checking.

http://itc.scix.net/data/works/att/w78-2010-53.pdf

Holt G D, Love P E, Jawahar Nesan L (2000). Employee empowerment

in construction: An implementation model for process improvement.

Team Performance Management: An International Journal, 6(3/4):

47–51

Isikdag U, Aouad G, Underwood J, Wu S (2007). Building information

models: A review on storage and exchange mechanisms, bringing

ITC Knowledge to Work. In: Proceedings of CIB 24th W78

Conference Maribor 2007

Jørgensen K A, Skauge J, Christiansson P, Svidt K, Sørensen K B,

Mitchell J (2008). Use of IFC Model Servers—Modelling Collabora-

tion Possibilities in Practice. Aalborg: Aalborg University

Kiviniemi A, Fischer M, Bazjanac V (2005a). Integration of multiple

product models: IFC model servers as a potential solution. In:

Proceedings of the 22nd CIB-W78 Conference on Information

Technology in Construction. 1–4

Kiviniemi A, Fischer M, Bazjanac V (2005b). Multi-model Environ-

ment: Links between Objects in Different Building Models. In:

Proceedings of the 22nd Conference on Information Technology in

Construction CIB W78. Dresden: 277–284

Kiviniemi A (2006). Ten years of IFC development why are we not yet

there? International alliance for interoperability. In: Proceedings of

2006 Joint International Conference on Computing and Decision

Making in Civil and Building Engineering. Montreal

Koch C, Firmenich B (2011). An approach to distributed building

modeling on the basis of versions and changes. Advanced

Engineering Informatics, 25(2): 297–310

Liebich T, Weise M, Laine T, Jokela M (2010). InPro building

information model. https://www.yumpu.com/en/document/view/

8106859/inpro-building-information-model

Lloyd-Walker B, Walker D (2015). Collaborative project procurement

arrangements. Newtown Square: Project Management Institute

Lockley S, Greenwood D, Matthews J, Benghi C (2013). Constraints in

authoring BIM components for optimal data reuse and interoper-

ability: Results of some initial tests. International Journal of 3-D

Information Modeling, 2(1): 29–44

Lockley S, Rombouts W, Plokker W (1994). The Combine data

exchange system. In: First ECPPM Conference, Dresden

Love P E, Gunasekaran A (1997a). Process reengineering: A review of

Muhammad Tariq SHAFIQ et al. Model server enabled management of collaborative changes in building information models 305



enablers. International Journal of Production Economics, 50(2–3):

183–197

Love P E, Gunasekaran A (1997b). Concurrent engineering in the

construction industry. Concurrent Engineering, 5(2): 155–162

Lowe R H, Muncey J M (2009). Consensus DOCS 301 BIM Addendum.

Construction Lawyer, 29(1): 17

Ma H, Ha K, Chung C, Amor R (2006). Testing semantic interope-

rability. In: Proceedings of the Joint International Conference on

Computing and Decision Making in Civil and Building Engineering.

1216–1225

Nour M (2007). Manipulating IFC sub-models in collaborative team-

work environments. In: Proceedings of the 24th CIB W-78

Conference on Information Technology in Construction. 1–12

Nour M, Beucke K (2008). An open platform for processing IFC model

versions. Tsinghua Science and Technology, 13: 126–131

Nour M, Beucke K (2010). Object versioning as a basis for design

change management within a BIM context. In: Proceedings of the

13th international conference on computing in civil and building

engineering (ICCCBE-XIII). Nottingham.

Plume J, Mitchell J (2007). Collaborative design using a shared IFC

building model—Learning from experience. Automation in Con-

struction, 16(1): 28–36

Reddy R, France R (2005). Model composition—a signature-based

Approach. AOM Workshop

Shafiq M T, Matthews J, Lockley S R (2012). Requirements for model

server enabled collaborating on building information models.

International Journal of 3-D Information Modelling, 1(4): 8–17

Shafiq M T, Matthews J, Lockley S R (2013). A study of BIM

collaboration requirements and available features in existing model

collaboration systems. Journal of Information Technology in

Construction, 18: 148–161

Singh V, Gu N, Wang X (2011). A theoretical framework of a BIM-

based multi-disciplinary collaboration platform. Automation in

Construction, 20(2): 134–144

Sun M, Lockley S R (1997). Data exchange system for an integrated

building design system. Automation in Construction, 6(2): 147–155

Van Berlo L A H M, Beetz J, Bos P, Hendriks H, Van Tongeren R C J

(2012). Collaborative engineering with IFC: New insights and

technology. In: Proceedings of 9th European Conference on Product

and Process Modelling. Iceland

Weise M, Katranuschkov P (2004). Generic services for the support of

evolving building model data. In: Proceedings of the 10th

international conference on computing in civil and building

engineering (ICCCBE-XIII). 1–12

306 Front. Eng. Manag. 2018, 5(3): 298–306


	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12
	bmkcit13
	bmkcit14
	bmkcit15
	bmkcit16
	bmkcit17
	bmkcit32
	bmkcit18
	bmkcit19
	bmkcit20
	bmkcit21
	bmkcit22
	bmkcit23
	bmkcit24
	bmkcit25
	bmkcit26
	bmkcit27
	bmkcit28
	bmkcit29
	bmkcit30
	bmkcit31


