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Abstract Construction is considered among the most
dangerous industries and is responsible for a large portion
of total worker fatalities. A construction worker has a
probability of 1-in-200 of dying on the job during a 45-
year career, mainly due to fires, falls, and being struck by
or caught between objects. Hence, employers must ensure
their workers wear personal protective equipment (PPE), in
particular hardhats, if they are at risk of falling, being
struck by falling objects, hitting their heads on static
objects, or coming in proximity to electrical hazards.
However, monitoring the presence and proper use of
hardhats becomes inefficient when safety officers must
survey large areas and a considerable number of workers.
Using images captured from indoor jobsites, this paper
evaluates existing computer vision techniques, namely
object detection and color-based segmentation tools, used
to rapidly detect if workers are wearing hardhats.
Experiments are conducted and the results highlight the
potential of cascade classifiers, in particular, to accurately,
precisely, and rapidly detect hardhats under different
scenarios and for repetitive runs, and the potential of
color-based segmentation to eliminate false detections.

Keywords construction, safety, personal protective
equipment, hardhat, computer vision

1 Background

Despite different provisions aimed to create a safer
working environment, construction remains among the

most perilous industries, responsible for a large portion of
total worker injuries, risks, and fatalities (Mneymneh et al.,
2016; Abbas et al., 2016; Abbas et al., 2018). In 2014, the
construction sector was responsible for 899 fatal injuries in
the United States, second only to the trade and transporta-
tion sector with 1246 fatal injuries; the mining sector had
183 (United States Department of Labor, 2014). More
specifically, it was found that fires, falls, and being struck
by or caught between objects contribute to over 50% of the
total casualties in the sector. Furthermore, a large portion of
work-related head injuries, in particular, is typically
sustained by workers not wearing hardhats (United States
Department of Labor, 2014). Hence, the proper use and
adoption of safety equipment such as personal protective
equipment (PPE), in particular, hardhats, was deemed
necessary on jobsites to reduce the risk of injury by impact
from falling or flying objects (Health and Safety Executive,
2014; Shrestha et al., 2015; Occupational Safety and
Health Administration, 2016). However, because the
awareness and attitude of construction workers toward
the importance of hardhats cannot be fully trusted, safety
personnel are typically deployed on construction sites to
ensure compliance with safety regulations and maintain
acceptable working conditions. Nonetheless, the current
monitoring of hardhat-wearing remains manual, tedious,
and time-consuming (Gheisari et al., 2014; Ham et al.,
2016). Therefore, there is a significant requirement to
automate this process in a cost-effective manner with
highly reduced turnaround times to mitigate the risks
associated with hazardous situations.
Among several information technology (IT) and

computer-based tools widely adopted in the construction
field to automate different processes (Kim et al., 2009;
Khoury and Kamat, 2009a, 2009b; Kopp et al., 2010; Chae
and Yoshida, 2010; Chdid et al., 2011, Khoury et al., 2012,
Oueiss et al., 2012; Ding et al., 2012; Skibniewski, 2014;
Cheng and Teizer; 2014; Khoury et al., 2015), computer
vision techniques have proven to be efficient in rapidly and
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conveniently retrieving relevant data from construction
sites such as the detection and tracking of workers,
material, and equipment (Chi et al., 2009; Park et al., 2012;
Memarzadeh et al., 2013; Dimitrov and Golparvar-Fard,
2014; Hamledari et al., 2017). More specifically, recent
research efforts have used computer vision and image
recognition techniques for construction safety and health
monitoring (Seo et al., 2015). For example, Du et al. (2011)
introduced the idea of using computer vision techniques to
detect hardhats in a video sequence. Their algorithm was
divided into two main steps. First, a human face is detected
using existing face detection algorithms based on Haar-like
features. The system then detects the presence of a hardhat
using color segmentation. Their work is considered to be
among the first attempts in this field. However, the
proposed method was only tested against frontal close-up
videos of human faces and did not consider real-case
scenarios from construction sites. Similarly, Shrestha et al.
(2015) proposed an algorithm that detects workers using
standard face detection and then applies edge detection on
the region directly above the worker’s head. In this case,
the system detected a hardhat if its outline was determined
to be a semicircle and its color identified as red. However,
their system required a set of high-resolution CCTV
cameras to be installed on site and was only able to detect
hardhats when applied on images captured from the front.
Moreover, their system was not assessed on an actual
construction site. A more recent effort, Park et al. (2015),
detected hardhats using a support vector machine (SVM)
classifier as part of a complete framework aimed at
enhancing on-site safety conditions. Their algorithm is
based on shape recognition and utilizes histogram of
oriented gradient (HOG) features to describe the cap-style
shape of the hardhat. Although the proposed framework
was capable of detecting a hardhat under different
conditions and independently from its color, it was also
susceptible to false detections because the semi-circular
shape of the hardhat could easily be extracted from other
irrelevant objects. Many other research studies have
targeted similar applications (Gualdi et al., 2011; Bajra-
charya, 2013; Rubaiyat et al., 2016). However, the
aforementioned existing systems were either only able to
detect frontal views of hardhats under laboratory condi-
tions and never tested under proper site conditions, were
victims of over-prediction and false identification of
unwanted objects as hardhats, or were never tested against
increasing levels of challenge due to variations in
orientation, color, background contrast, image resolution,
and on-site lighting conditions. Furthermore, none of the
previous studies was concerned with the time efficiency of
the detection method for adoption in real-time scenarios. In
actuality, the computational speed of the algorithm is as
important as its accuracy, especially in safety applications.
Deep learning detection techniques, in particular, neural

networks, have gained increased popularity and have been

adopted to analyze digital images in different applications.
More specifically, Convolutional Neural Network (CNN)
algorithms have demonstrated excellent potential in object
detection applications (Krizhevsky et al., 2012). Further
research has also been performed to improve the accuracy
and reduce the computational time required for these
emerging techniques leading to Faster R-CNN (He et al.,
2014; Girshick, 2015; Ren et al., 2015). In addition to
CNN, other deep learning object detection techniques
including YOLO (You Only Look Once), a faster
algorithm with reduced precision, and SDD (Single Shot
Multibox Detector), have been applied for face, pedestrian,
and vehicle detection (Kim et al., 2016; Peng et al., 2016;
Zhou et al., 2016). Recently, Fang et al. (2018) applied the
Faster R-CNN algorithm to identify non-hardhat use on
construction sites. Several experiments were conducted
under different conditions and results proved promising
whereby high values of precision and recall were achieved.
It is important to note that this method requires a large
training set of more than 80000 annotated images gathered
over more than one year and accordingly necessitates a
significant training time.
Consequently, in an attempt to further automate part of

the indoor construction safety inspection process and
address the aforementioned limitations, this paper aims to
evaluate existing manageable object detection techniques
for rapidly and efficiently detecting the wearing of
hardhats. This evaluation uses standard resolution images
captured on actual indoor construction sites under different
situations including variations in orientations, colors,
background contrast, image resolution, and lighting
conditions.

2 Methodology

This section describes and evaluates existing computer
vision techniques deemed useful for detecting hardhats.
Among these techniques, object detection/recognition
methods (Cyganek, 2013) proved promising, in particular:
(1) feature detection, extraction, and matching, (2)
template-matching, and (3) cascade classifiers models.
The usefulness of each visual object recognition method
varies according to different factors including but not
limited to color, orientation, shape, and scale of the target
object. Furthermore, color-based segmentation is explored.
The components of the algorithms are implemented using
MATLAB 2016a.

2.1 Object detection methods

Local features and descriptors are considered the corner-
stone of a large array of computer vision techniques and
applications including object detection, tracking, and
motion estimation (Dickscheid et al., 2011). More
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specifically, in the feature detection, extraction, and
matching methods, feature detectors or gradient-based
features such as Speeded-Up Robust Features (SURF) or
binary features including Binary Robust Invariant Scalable
Keypoints (BRISK) and Features from Accelerated
Segment Test (FAST) are used to identify point corre-
spondences between the input image and a reference image
containing a hardhat (Mikolajczyk and Tuytelaars, 2009).
For example, SURF features are first detected from a
grayscale image then feature extraction locates the detected
features within each image and feature matching identifies
similarities between the reference and input images, as
indicated in the following code snippet:

Surf_Features ¼ detectSURFFeaturesðrgb2grayðImageÞÞ;
½feats1, validpts1� ¼ extractFeaturesðrgb2grayðReferenceÞ,

Surf_Features_ReferenceÞ;
½feats2, validpts2� ¼ extractFeaturesðrgb2grayðInputÞ,

Surf_Features_InputÞ;
Index_Matched_Features ¼ matchFeaturesðfeats1, feats2Þ:
Outliers are then removed and a transformation matrix is

calculated using the Random Sample Consensus (RAN-
SAC) algorithm (Oueiss et al., 2012; Khoury et al., 2015).
The hardhat having the best match with the reference
image is then detected. The number of hardhats is then
computed by hiding those identified from the target image
such that the next best-matched hardhat can be detected in
the next iteration of the algorithm. This counting iterative
process halts when no more hardhats can be detected in the
target image. It is worth noting that this method functions
best for objects displaying non-repeating texture patterns
to allow unique and numerous feature matches.
Conversely, template matching frequently refers to a

series of operations aimed at detecting and identifying a
certain form or pattern in an input image by comparison to
a reference or template (Brunelli, 2009). The template is
positioned over the input image at every possible position
and a similarity coefficient is calculated. Possible metrics
to determine the similarity include the sum of absolute
differences (SAD), sum of squared differences (SSD), and
maximum absolute difference (MaxAD) (Yu et al., 2006).
Other methods searching for the minimum difference
between two images consist of either an Exhaustive Search
(ES) or a Three-step Search (TSS). The former is more
accurate, however, more computationally expensive; the
latter is faster, yet may not always determine the optimal
solution. In MATLAB, a template matcher is typically
based on SAD unless otherwise stated (e.g., Three-Step) as
indicated in the code snippet below:

Detector ¼ vision:TemplateMatcher

ð0SearchMethod0,0Three-step0Þ:

A hardhat is detected when the difference computed
between a template image containing a hardhat and the
input image is less than a required threshold. In general,
template-matching algorithms are limited by the available
computation power owing to a required high detection
accuracy that necessitates lengthy iteration processes.
In this study, different cascade classifiers (Alionte and

Lazar, 2015) based on Histogram of Oriented Gradients
(HOG), Haar-like, and Local Binary Pattern (LBP) features
are assessed. This requires a training process using two sets
of positive and negative instances. Positive instances
contain images of the relevant object whereas negative
instances are images that do not contain the relevant object.
A sample of 75 positive and 164 negative images was
collected from construction environments to train the three
cascade object detectors. The training process also requires
a set of input parameters including the number of cascade
stages, true positive rate, and false alarm rate (FAR).
Experimenting with these parameters yields different
results, allowing for the creation of a more effective
detector. For example, training a cascade object detector
based on HOG features and with the required parameters is
performed using the following MATLAB code:
trainCascadeObjectDetector('Hog_7_10.XML', positi-

veInstances, negativeFolder, 'FalseAlarmRate', 0.10,
'NumCascadeStages', 7, 'FeatureType', 'HOG').

2.2 Color-based segmentation

Color-based segmentation (Kaur et al., 2013) consists of
eliminating positive detections not conforming with
possible color schemes of a certain object, in this case a
hardhat. To identify those schemes, numerous images of
blue, orange, and white hardhats were collected under
different lighting conditions and cropped such that the
resulting image contained only portions of the hardhat. The
average and standard deviation of pixel values were then
calculated for each image using RGB, CIE LABORA-
TORY, and HSV color spaces (Kaur et al., 2013) to
determine the most accurate representation of the hardhat
color.
The RGB color space is defined by the three

chromaticities of the red, green, and blue and can produce
any chromaticity that is in the triangle defined by these
primary colors. The CIE LABORATORY is a color space
where L is brightness and a and b are chrominance
components, with the difference that the color values are
considerably greater than the human gamut; its gamut
exceeds that of the RGB. HSV stands for Hue, Saturation,
and Value and is based on how colors are conceived by the
human vision. Hue refers to pure color form, Saturation
refers to the amount of color, and Value refers to the
brightness of the color.
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3 Object detection methods: preliminary
results and analysis

3.1 Performance of feature detection, extraction, and
matching algorithm

Owing to the uniform shape and color of a hardhat (e.g.,
blue or white), the number of detected features was
determined to be low (see Fig. 1). One suggested solution
to the problem was to add a customized sticker to the
hardhat (see Fig. 2a). This then significantly increased the
number of extracted features (see Fig. 2b, 2c, 2d).
To further assess the applicability of this algorithm in

detecting hardhats in indoor construction environments,
experiments were conducted on close-up images (see Fig.
3) clearly indicating the customized stickers on both
hardhats. The algorithm is independent from any type of
feature used; however, given that a minimum number of
features must be extracted with the least computational
power, the choice was SURF features.
For example, in Fig. 3a, 63 matching features were

identified between the reference and target image in the
first iteration of the algorithm. The first detected hardhat
was then hidden from the target image and in the second

iteration, 44 matching features were identified between the
reference and new target image (see Fig. 3b). The iteration
process halts once the second hardhat is hidden and the
program returns the final number of detected hardhats. As
such, owing to the lack of pertinent features on a hardhat,
the algorithm searches for the customized sticker and
identifies its target irrespective of the color or shape.
However, further testing revealed deficiencies in the
system. The method is actually susceptible to misclassify-
ing any object displaying the sticker. Moreover, in a three-
dimensional dynamic construction environment, a clear
view of the sticker cannot always be guaranteed. In fact, in
another sets of experiments, a hardhat could not be
detected because either the size or resolution of the sticker
was low (see Fig. 4), or the sticker was not visible owing to
the orientation of the hardhat. Moreover, the feature
extraction and filtering combined with the iteration
processes required a relatively high calculation cost.

3.2 Performance of template-matching algorithm

Experiments conducted in an indoor construction environ-
ment demonstrated that the algorithm wrongly predicted
the location of a blue hardhat when using a template with a

Fig. 1 Number of detected SURF, BRISK, and FAST features in blue (top) and white (bottom) hardhats

Fig. 2 Number of detected SURF, BRISK, and FAST features in white hardhat with sticker
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slightly different rotation (see Fig. 5). Hence, a unified
template is not sufficient to detect all instances and a
classic template matching is relatively inaccurate when
addressing any form of difference in scale and rotation.
Furthermore, the lengthy calculation process of classic
template matching eliminates any usefulness of such an
algorithm in a real-time application. In fact, scanning full
resolution images from construction sites required hours of
processing and significant computational power.

3.3 Performance of cascade classifier

Object detectors are frequently sensitive to out-of-plane
transformation. However, this should not be a problem in
the case of hardhat detection because its semi-circular
shape remains unchanged regardless of the viewing angle.
Cascade detectors based on Haar and LBP features yielded
high rates of wrong detection in all testing images (see Fig.
6). Conversely, detectors based on HOG features could
accurately describe the circular shape of the hardhat

irrespective of its color (see Fig. 7).
The ability of the detector to correctly identify hardhats

from different viewpoints was further verified using a set
of three testing images containing front, side, and back
views of a blue hardhat (see Fig. 8). The classifier was also
capable of recognizing two objects simultaneously. Color
variations also had no effect and the computational speed
was acceptable. Furthermore, the capacity to experiment
with training parameters to obtain different results is
another main advantage of cascade classifiers.

3.4 Discussion, comparison, and selection

Based on preliminary experiments and results featured
above, the three computer vision techniques were assessed.
The first evaluated technique, feature detection, extraction,
and matching, is useful for identifying specific common
features between a reference and input image. However, a
considerably limited number of features was extracted
from a hardhat due to its uniform shape. Hence, a

Fig. 3 Matching features for (a) first hardhat and (b) second hardhat

Fig. 4 No detection example–sticker size excessively low
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customized sticker was added to improve the results.
Nevertheless, false detections occurred whenever the
sticker was not clearly visible, or its size or resolution

was low. In the second evaluated technique, template
matching, an object is identified by calculating the
similarity coefficient between a testing and target image.

Fig. 5 Wrong detection using template matching

Fig. 6 High rate of incorrect detections using (a) Haar features and (b) LBP features

Fig. 7 Extracted HOG features: (a) blue hardhat and (b) white hardhat
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However, the inability to detect hardhats from different
orientation angles made this technique impractical for a
real-time application in an actual dynamic environment.
Conversely, cascade classifiers are trained using a set of
positive and negative images, then used to detect objects
based on specific features. This third technique proved
robust against changes in orientation, size, and color.
These findings are comparatively summarized in Table 1.
Accordingly, the cascade object detector, in particular the
HOG-based detector, clearly outperformed the other
presented object detection techniques and can be poten-
tially adopted in real-time safety applications.

4 Color-based segmentation methods:
preliminary results and analysis

For a sample of 102 blue hardhats, the average values of
Red, Green, and Blue in the RGB representation were
relatively low, describing the “dark” rather than the “blue”
color of the hardhat. Red, Green, and Blue values spanning
from 2.5 to 36, 3.9 to 57, and 21 to 100, respectively (see
Fig. 9), do not well represent the blue color. Similar
insignificant results were obtained using the CIE
LABORATORY color space. For the HSV color space,
the calculated averages of Hue, Saturation, and Value for
the 102 sample images ranged from 0.59 to 0.66, 0.66 to
0.95, and 0.08 to 0.39, respectively (see Fig. 10), while
providing the most accurate representation of a blue color
with low brightness. The values of standard deviation for

Hue were also minimal (see Fig. 11), implying that the
uniformity of the hardhat color within each image was
accurately modeled. The same procedure was applied for
other colors of hardhats (e.g., orange and white) and the
best results were obtained using the HSV color space.
Hence, in this study, color-based segmentation in HSV

color space is adopted. In addition, for best results, it was
decided to apply this technique on the parts of the images
identified as hardhats from the HOG-based cascade
classifier process with the aim of reducing false detections.
This potential combination of algorithms thereby warrants
further experimentation.

5 Experimental analysis of cascade
classifier

In this section, further assessment of the HOG-based
cascade object detector was performed. Two seven-stage
cascade object detectors were trained using the same image
data sets of 75 positive and 164 negative images and two
different values for the FAR, 0.05 and 0.1. In theory, a
greater FAR should yield more false positive results and
the detector should be less likely to miss a desired object.
The performance of the cascade classifier was then
analyzed against variations in orientation and color,
background contrast, image resolution, and lighting
conditions. Three scenarios were devised and the respec-
tive results are depicted in Tables 2, 3, and 4 including
computational durations (t) together with their underlying

Fig. 8 Detected hardhat: (a) front view, (b) side view, and (c) back view

Table 1 Comparative summary of object detection techniques

Computational duration Feature detection, extraction, & matching Medium Template matching Very high Cascade classifier Low

Color invariance Yes No Yes

Orientation invariance No No Yes

Practicality No No Yes

Customizability Yes No Yes

Training database/fingerprinting No No Yes
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time statistics.
In Scenario 1, the level of challenge was relatively low

and all hardhats could be easily discerned from their
respective backgrounds. The two detectors were tested on
ten images with 13 hardhats in total; the one with the FAR
set to 0.05 missed three hardhats, whereas the detector with
the FAR set to 0.1 did not miss any hardhats (Table 2).
Nevertheless, both classifiers were subject to wrong
identification and for example, in Image 6, a mobile
worker’s head was mistakenly classified as a hardhat (see
Fig. 12). The computational durations of both detectors
were similar with an average processing time per image of
approximately 2 s.
For Scenario 2, the level of challenge was significantly

increased. The low contrast between the hardhat and its

background (e.g., white hardhat in front of a white wall)
could reduce the significance of the detected HOG
features, which, in turn, could reduce the efficiency of
the detector. In fact, the performance of the cascade object
detector did reduce compared to Scenario 1. More
specifically, for the higher FAR of 0.1, the detector could
identify ten out of 13 hardhats (Table 3). That is, the
detector did remain efficient even when the contrast with
the background was minimal (see Fig. 13). The computa-
tional durations of both detectors did not significantly vary
with a similar average processing time per image of
approximately 2 s.
To assess the effect of changing the resolution of the test

images on the detection results independently of other
factors, the third experiment (Scenario 3) was performed

Fig. 9 Average Red, Green, and Blue values in images of blue hardhat

Fig. 10 Average Hue, Saturation, and Value values in images of blue hardhat

Fig. 11 Standard deviation of Hue, Saturation, and Value values in images of blue hardhat
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using the same images of Scenario 1, however, cropped or
resized to obtain an image resolution of (1920 � 1080)
pixels. Images 1 to 5 were cropped; Images 6 to 10 were
resized. Cropped images (1–5) yielded results identical to
Scenario 1. Conversely, resizing the image could decrease
the size of the hardhats below the trained size and
accordingly prevent hardhat detection. This was the case
in Images 7 and 8 (Table 4). Therefore, training the

detector using images of the same resolution and captured
from a similar distance as the test images can positively
influence detection results. Compared to Scenarios 1 and 2,
these scenario’s computational durations improved
significantly from approximately 2 s to approximately
0.5 s.
A fourth scenario (i.e., low luminosity) was also

considered. However, its results were not reported because

Table 2 Performance of cascade classifier in Scenario 1

Scenario 1–High contrast against background, variable colors, and orientations

Image ID 1 2 3 4 5 6 7 8 9 10

True number of hardhats 1 1 1 1 1 1 1 2 2 2

Detected-FAR = 0.05 1 1 0 0 1 2 1 2 1 3 t = 2.171 s

Detected-FAR = 0.1 1 1 1 1 1 2 1 2 2 3 t = 2.231 s

Time statistics-FAR = 0.05

Action Number of Calls Total Time/s Percentage of Total Time Average Time/s

Execution of detector 10 19.949 91.9% 1.9949

Reading image file 10 1.734 8.0% 0.1734

All other actions - 0.031 0.1% 0.0031

Total - 21.714 100% 2.1714

Time statistics-FAR = 0.1

Action Number of Calls Total Time/s Percentage of Total Time Average Time/s

Execution of detector 10 20.517 91.9% 2.0517

Reading image file 10 1.767 7.9% 0.1767

All other actions - 0.034 0.2% 0.0034

Total - 22.318 100% 2.2318

Table 3 Performance of cascade classifier in Scenario 2

Scenario 2- Low contrast against background, variable colors, and orientations

Image ID 1 2 3 4 5 6 7 8 9 10

True number of hardhats 1 1 1 1 1 1 1 2 2 2

Detected- FAR = 0.05 0 1 0 1 0 0 1 1 1 1 t = 2.191 s

Detected- FAR = 0.1 0 1 1 1 1 0 1 2 2 1 t = 2.196 s

Time statistics-FAR = 0.05

Action Number of Calls Total Time/s Percentage of Total Time Average Time/s

Execution of detector 10 20.120 s 91.8% 2.0120 s

Reading image file 10 1.765 s 8.1% 0.1765 s

All other actions - 0.030 s 0.1% 0.0030 s

Total - 21.915 s 100% 2.1915 s

Time statistics-FAR = 0.1

Action Number of Calls Total Time/s Percentage of Total Time Average Time/s

Execution of detector 10 20.148 s 91.7% 2.0148 s

Reading image file 10 1.778 s 8.1% 0.1778 s

All other actions - 0.036 s 0.2% 0.0036 s

Total - 21.962 s 100% 2.1962 s
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the variation in image luminosity did not considerably
influence the performance of the HOG-based detector, as it
is capable of describing the shape of the object irrespective
of its color.

6 Experimental analysis of the color-based
segmentation method

To test the effectiveness of the proposed algorithm, the

developed tool was applied on images where the cascade
classifier incorrectly identified unwanted objects as hard-
hats. The results highlighted the capability of the color-
based segmentation tool to eliminate false detections by
filtering out the objects not matching with any of the
aforementioned color statistics. For different runs, the
algorithm accurately detected and identified the hardhat
object in the images and eliminated any previous false
detections output from the HOG-based cascade classifier
(see Fig. 14).

Fig. 12 Wrong classification of head region in Image 6–Scenario 1

Table 4 Performance of cascade classifier in Scenario 3

Scenario 3–Different image resolutions

Image ID 1 2 3 4 5 6 7 8 9 10

True number of hardhats 1 1 1 1 1 1 1 2 2 2

Detected- FAR = 0.05 1 1 0 0 1 2 0 1 1 3 t = 0.541 s

Detected- FAR = 0.1 1 1 1 1 1 2 0 1 2 3 t = 0.568 s

Time statistics- FAR = 0.05

Action Number of Calls Total Time/s Percentage of Total Time Average Time/s

Execution of detector 10 4.887 90.3% 0.4887

Reading image file 10 0.486 9.0% 0.0486

All other actions - 0.040 0.7% 0.0040

Total - 5.413 100% 0.5413

Time statistics- FAR = 0.1

Action Number of Calls Total Time/s Percentage of Total Time Average Time/s

Execution of detector 10 5.150 90.7% 0.5150

10 8.6%

All other actions - 0.040 0.7% 0.0040

Total - 5.681 100% 0.5681
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Fig. 14 Hardhat detection results for positive images: (a) cascade object detector and (b) cascade object detector combined with color-
based segmentation

Fig. 13 Correct identification of both hardhats in Image 8–Scenario 2
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7 Conclusions, limitations, and future work

This paper evaluated existing computer vision algorithms,
in particular object detection and color-based segmentation
methods, in efficiently and rapidly detecting hardhats on
indoor construction sites. Several experiments were
conducted and the results revealed that a well-trained
cascade classifier was found to be robust under different
scenarios and conditions. Furthermore, it was proven to be
relatively time efficient and in a real-time application, it
would be capable of scanning for violations every two
seconds. The process can actually be expedited by
reducing the resolution of the training and test images.
Moreover, color-based segmentation proved effective in
reducing false detections output from the cascade classifier
process.
While this research study achieved promising results

under different scenarios and situations, it exhibited
limitations. The performance evaluation of the proposed
algorithms was limited to a relatively small number of
testing images. Furthermore, all experiments were per-
formed using a single type of hardhat and three different
colors. Moreover, the study did not consider the cases
where multiple hardhats could be detected in a single
region of interest or hardhats could be occluded by others.
As such, a more comprehensive testing set is required and
the robustness of the computer vision algorithms against
other variations in the shape and color of the hardhat along
with occlusions must be investigated. Further work will
investigate improving the accuracy and recall of the
hardhat detection process and eliminating false detections
by combining a weak cascade classifier with other image
and color-based segmentation techniques. Further testing
is also required to evaluate the accuracy of other object
detection algorithms and to explore the potential use of
heat cameras in addition to digital imagery. Future studies
will aim as well at integrating this hardhat detection
process into a complete safety inspection framework
capable of rapidly, efficiently, and conveniently issuing
safety warnings when a safety violation is detected and
alerting nearby workers of hazards.
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