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Abstract Understanding the holistic relationship
between refinery production scheduling (RPS) and the
cyber-physical production environment with smart sche-
duling is a new question posed in the study of process
systems engineering. Here, we discuss state-of-the-art
RSPs in the crude-oil refining field and present examples
that illustrate how smart scheduling can impact operations
in the high-performing chemical process industry. We
conclude that, more than any traditional off-the-shelf RPS
solution available today, flexible and integrative specia-
lized modeling platforms will be increasingly necessary to
perform decentralized and collaborative optimizations,
since they are the technological alternatives closer to the
advanced manufacturing philosophy.

Keywords cyber-physical systems, optimization, petro-
chemical industry, scheduling, smart manufacturing

1 Introduction

1.1 An integrative activity

Refinery production scheduling (RPS) is about under-
standing, modeling and solving production problems

inside a very complex process industry (discussed in
Joly, 2012). It includes the management of timing, sizing,
allocation and sequencing decisions in a connected and
nonlinear world, where optimization trade-offs, specialized
processing models and complex blending correlations
must be considered in conjunction with a myriad of
technical, economic, environmental, and commercial
constraints (Lee et al., 1996; Pinto et al., 2000).
Over the decades (Symonds, 1955), with the increasing

complexity of petroleum refineries, it has become increas-
ingly clear that RPS is a highly profitable activity, and for
modern high-performing oil refineries, RPS is now under-
stood to be a strategic tool involving many areas. First,
advanced tools built on proprietary or confidential know-
how are involved (e.g., business intelligence, processing
models, blending correlations and product chemistry).
Second, RPS depends on an experienced refinery staff
whose expertise is required to interpret the results and
perform optimization in the technical sense of the word.
Third, having an intelligent production strategy is crucial
not only to achieve profitability but also for performance,
including energy and environmental efficiency, logistics
reliability and, hence, customer satisfaction. Fourth, RPS is
a paradigm-breaking activity that drives changes needed
inside the organization (see section 1.3). Fifth, and most
importantly, RPS integrates data, systems, technologies,
work processes and people, thereby rendering schedulers
the true ‘brain’ of an oil refinery.
Given its powerful integrative role, RPS is therefore

expected to play a central role in the refining business
performance in the (holistic) context of the Fourth
Industrial Revolution. In contrast to the reductionist,
exact discrete manufacturing industry (e.g., automobile
industry), the chemical process industry in general, and oil
refineries in particular, may represent a conspicuous
environment for exploiting the emergent behavior (Ottino,
2011) of the manufacturing process. For example, in-line
blending operations—which are also the basis for cutting-
edge production technologies such as in-line blending
certification (Feital et al., 2013)— represent a didactic
example, since blending has been considered the refinery’s
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last chance to impact profitability (Kelly and Mann, 2003).
Increasing attention has been devoted to analyzing the
main opportunities and challenges in the field (Li, 2016; Li
et al., 2016), which include the urgent need for an industry-
university research coalition (Yuan et al., 2017). In this
sense, here we unify insights from industry and academia
to examine promising routes for furthering RPS develop-
ment in smart refineries.

1.2 Overview of RPS technology

The union between discrete, event-based simulation
techniques and simple, rule-based heuristics proved to be
the first technological marriage necessary to handle
realistic RPS problems. Relying on this combination,
pioneering commercial RPS technologies first released in
the 1990s (e.g., ORION by Aspentech) covered a very
profitable software market and conquered a new category
of important users: the refinery schedulers. Highly
customized and complex electronic spreadsheets could
finally begin to be replaced by standardized, user-friendly
computer-aided decision-making tools.
The ability to easily represent highly specialized

operational rules and process models was a hallmark of
this innovative class of industrial automation technology.
Since RPS intelligence is a competitive differentiator (Joly,
2012), the appearance of the first commercial solutions
motivated some oil companies to develop their own
RPS applications. Examples include the BR-SIPP® by
Magalhães et al. (1998) at Petrobras (Brazil) and the OMV
Scheduling System by Steinschorn and Hofferl (1997) at
the OMV Schwechat refinery (Austria).
Such endeavors carried out inside the industrial

environment propelled the search for novel and automated
solution approaches in tight collaboration with academia
(Kelly, 2003). The widespread use of linear-based
optimization formulations for solving tactical production
planning problems gained a new function. These models
massively evolved to mixed-integer programming (MIP)-
based formulations as a first attempt to solve large-scale
scheduling problems (Pinto et al., 2000; Joly and Pinto,
2003). The results from the fruitful work between industry
and academy were also gradually being captured by
commercial vendors.
As a result, the next remarkable technological progress

in the RPS software market was the introduction of
optimization-based techniques (e.g., MIP) (Biegler and
Grossmann, 2004; Grossmann and Lee, 2003; Kelly and
Zyngier, 2007) in the 2000s for solving well-defined
refinery subsystems (e.g., Lee et al., 1996; Castro and
Grossmann, 2014; Kelly et al., 2017). Typically, these
subsystems are in the crude-oil and product blending areas,
whose topology, routings and configuration can normally
be generalizable for any refinery.
Currently, there are many good RPS tools from

traditional vendors, such as Aspentech, Haverly, Honey-
well, Technip, Princeps, Soteica, etc. Although potentially
suboptimal solutions were still being obtained in practice,
these new tools promptly proved to be useful in supporting
refinery schedulers in finding feasible and generally good
quality solutions for critical refinery subsystems. However,
as noted by Yuan et al. (2017), the capacity to complete the
scheduling of an entire oil refinery or petrochemical
plant— a key feature of advanced or smart manufactur-
ing— has not been achieved until now.

1.3 Role of the human factor

The importance of data for RPS systems finally became
evident for those in the highest positions inside the
corporation when trying to improve their overall value-
chains. Since a very large set of structured and consistent
information is required to run a RPS system, the refinery
data had to be organized appropriately. In Brazilian
refineries, this triggered an unprecedented level of IT
investments in the 2000s to harmonically integrate many
refinery and corporate systems.
Not surprisingly, such work typically leads to new job

openings since large data sets from many systems had to be
vetted and treated (e.g., screened, converted, reconciled,
checked, etc.) before being fed to the RPS application. The
mantra of “Best Data+ Best Decisions = Best Business”
began to be popularized inside organizations, transcending
the technical habitat that had been typical of engineering
departments in oil refineries. As a result, work processes
inside the corporation (not only inside the refinery) also
had to be systematized and improved as prerequisites for
successful project implementations.
When properly implemented, RPS applications have

also provided the driving force for changing cultures and
paradigms inside the operational environment. With the
introduction of standardized RPS tools, the short-term
production scheduling information could finally be
properly cataloged and, hence, accessed by others.
Actually, RPS applications have ‘democratized’ and
standardized operational information inside the corporate
environment.
This was an important milestone. In many cases, such

standardization also paved the way for changes in the way
the refining business was managed at the operational level.
Once the ‘information monopoly’ had been broken, staff
that were previously considered ‘irreplaceable’ (and, in
general, their ‘frozen’ viewpoints regarding how things
should be done) could finally be replaced, thereby also
rejuvenating the operationalization of the RPS activity as a
whole. As witnessed in Petrobras and abroad, the
introduction of automation technologies in RPS allowed
the role of the human factor to evolve from a tedious and
uninspiring activity to a highly motivating predictive and
prescriptive analytical activity.
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2 RPS in a smart manufacturing reality

2.1 The context

Both European’s Industry 4.0 (I4) (reviewed in Lasi et al.,
2014) and American’s Smart Manufacturing (SM) (Davis
et al., 2012) are about intensively and consistently
interweaving real-world industrial operations and its on-
going processes with computing and communication
infrastructures in a cyber-physical system (CPS)
(Monostori, 2014; Lee et al., 2015) (Table 1).
By simultaneously providing and using the data-

accessing and data-processing services available on the
Internet, the promise of CPS is to drastically increase the
interaction between automated and human-based working
processes. The high flexibility of the plant design (e.g.,
virtual plant commissioning), operation, and diagnosis of
the production system provided by smart networking will
give rise to completely new business models that will
support optimal resource utilization and smart control
(Jazdi, 2014). Robustness, autonomy, self-consciousness,
self-organization, self-diagnosis, self-repair (self-X), real-
time monitoring, responsiveness and predictability are
some hallmarks of production systems based on the I4
philosophy, the newest focus of many in the field of
process systems engineering (PSE).
Central to any CPS model is the concept of ‘digital

twins,’ which are digital models of industrial equipment
and manufacturing processes (General Electric, 2016).
Digital twins rely on a connected, responsive and
predictive software-machine existing at the nexus of
physical engineering and data science. Their value
translates directly to measurable business outcomes, such
as minimization of asset downtime and maintenance costs,
optimization of energy and utility efficiency, reduction in
cycle times, better multi-unit coordination and increased
market agility. Regarding the refining business, the concept
of ‘digital twins’ leads to another concept, the virtual
refinery (Moro, 2009). The virtual refinery is a new
underlying philosophical paradigm in the petroleum
refining industry that requires a knowledge breakthrough,
or even a cultural ‘break-with’ inside the entire organiza-
tion. For instance, the versatility provided by virtual
instrumentation (software-redundant measurement sys-
tems (Kelly and Zyngier, 2008a)) allows firms to readily
estimate the customized data required to properly running
RPS applications. Moreover, by replacing complex and
expensive hardware systems (e.g., online analyzers) with
conventional hardware (computers) and software (e.g.,
process simulators), synthetic instruments also allow
refiners to reduce the operating and maintenance costs of
physical instruments.
A real-world example in Brazilian oil refineries is the

‘virtual laboratory’. Basically, it consists of efficiently
integrating advanced process simulators (e.g., PetroSIM by

Yokogawa (KBC)) to plant data information systems (e.g.,
PI by OSI-Systems) in a real-time environment. By
adopting this simple recipe, accurate and reliable estima-
tions of process stream properties (including compositional
information) have promptly been obtained in-silico. This
has not only minimized the need for laboratory manpower
and, in some cases, maintaining sophisticated and
expensive in-line analyzers but has also improved the
execution of many high-profile engineering tasks, such as
process monitoring and model updating.

2.2 Refinery production scheduling 4.0

Mobile devices and related technologies (e.g., RFID) will
provide cheap time- and distance-independent access to the
data, processes, and services of automated production
systems. Key technologies (e.g., industrial wireless net-
works) allow networking among data from/to automation
devices, equipment status, and operating supplies. By
consistently assembling large plant data sets from physical
and synthetic instruments, CPS will provide data integrity
and data integration, thereby heightening the integrative
role of RPS. Decision-making intelligence will rely on the
real-time cooperation among decentralized optimizers
(Kelly and Zyngier, 2008b) that are integrated in the
decision automation engine (e.g., cloud computing) with
powerful big-data analytics, visualization and sharing of
information (Qin, 2014).
Therefore, refinery schedulers will make decisions

inside a workforce environment supported by a real-time
cyber representation of the physical world. Even though
diagnostics can also partly be performed by schedulers
(who have experience in plant operations), information
from big data analytics will be retrieved on-demand,
intelligently used and linked so that an automated (self-)
diagnosis (root cause analysis) can be produced. Ideally,
RPS in a smart manufacturing reality presupposes no
human diversion (distraction, deviation, digression, etc.) or
limitations in intelligence (degree of training, subjective
viewpoints, prior experience, etc.) in decision-making and
execution. Therefore, with leading-edge smart scheduling,
the RPS can, in principle, exclude the human factor from
its failure or success.

3 Examples

3.1 Example I: Failure of the crude-oil charging pump

Let us consider the crude-oil area of an oil refinery as
depicted in Fig. 1. In this first example, it is hypothesized
that (1) a crude-oil charging pump connecting a crude-oil
tank to the crude-oil distillation unit (CDU) will fail on day
5 due to a severe wear in the rolling bearings, and (2) after
failure, the pump remains out of service for 24 h (for
maintenance).
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Regarding a 10-day scheduling horizon, the production
scheduling is theoretically assessed with respect to two
scenarios: the oil refinery running either under an Industry
3.0 (I3) or Industry 4.0 (I4) technological background
(Fig. 2).
In I3, the scheduler is provided with the best decision-

making technology currently available. This consists of
having a standalone RPS solution integrated to corporate
databases from which the initial or opening conditions of
the plant can automatically be loaded to run the RPS
application off-line. In I4, the industrial wireless network
enables all equipment, devices, workmen, terminals and
other wireless nodes to finish complicated tasks individu-
ally and cooperate with other equipment, thereby provid-
ing a new architecture based on quality of service and
quality of data for running a RPS in real time in an
industrial private and secure cloud. The RPS application in
I4 runs in real time, relying on additional, real-time
processed information from the plant similar to real-time
traffic information while driving. This may include optimal
data from smart entities (e.g., sensors, machines, workmen,
mobile devices) and distributed real-time optimizers and
monitors which, in turn, are fed back with updated
information from the RPS application, thereby improving
their optimized trajectories in a virtuous cycle.
For the sake of simplicity, our analysis is restricted to

only one I4 property: equipment self-diagnosis. Hence, our
analysis is also conservative in terms of potential benefits.
Regardless of the context (I3 or I4), determining the best
operational schedule involves many interrelated decision-
making processes. They comprise logic and logistics

decisions for resource selection and sequencing over time
(e.g., start and end times of logistic operations involving
crude-oil tank selections; blending sequencing, etc.) as
well as decisions in a continuous domain, such as optimal
blending recipes and batch sizes, optimal flowrates, and
distillation cut points (Kelly and Mann, 2003).
For a scheduler working under I3, the underlying

assumption is that equipment failures will not occur.
Therefore, the optimal production schedule is first
determined at day 0, relying exclusively on known (and,
therefore, past) information. Typically, this comprises a
large data set, which must capture a snapshot of the plant at
that time (i.e., the plant initial conditions; e.g., crude-oil
inventory levels and qualities) and known operational
information about the future (e.g., the crude-oil supply
schedule, equipment programmed maintenance, produc-
tion targets, etc.). In general, a multi-objective optimiza-
tion procedure will be performed to harmonically satisfy
operational (e.g., plant operational stability) and non-
operational (e.g., plant profitability) aims. If no unexpected
events appear, the real-world will (approximately) behave
as idealized (or scheduled) in silico.
This is illustrated in the top panel of Fig. 2, which

represents the output from a competent scheduler working
under I3. Under such a hypothetical condition (unexpected
events do not occur), the production schedule is deter-
mined considering proper ramp times (R1), during which
the unloading flows from two sequenced charging tanks to
the CDU are gradually decreased and increased, separately
(Fig. 3). This operational procedure is a ‘good practice’
that allows for smooth transitory operation in the CDU

Table 1 Contextual distinctions of RPS in both Industry 3.0 and Industry 4.0

Aspect Industry 3.0 Industry 4.0

Approach Reductionist. Emergent properties of the true complex system are,
to a greater or a lesser extent, unavoidably ignored by the current
production management philosophy and technology.

Holistic. The CPS exploits the organic synergy among numerous
components – be they of physical, technological or human nature –

underlying the RPS problem. The emergent behavior of the whole is
captured.

Scope Pseudocomponent-based analysis.
Bulk properties.
Focus on refinery subsystems.

Compositional-based analysis. RPS 4.0 must ensure the right
molecule, at the right place, at the right time and at the right price
(Resasco and Crossley, 2009).

Technology Strongly based on (customized) electronic spreadsheets. Less than
half of refineries worldwide use commercial applications typically
running standalone in off-line mode. These are usually based on
event-based simulation technology, are normally composed of a
black-box mathematical core integrated to a preformatted graphical
user interface (GUI). Emergent properties of the real-world system
are neglected, or even remain unknown. Only (good) feasible
solutions are typically obtained.

Lessons learned taught us that, rather than a finished software, a
specialized modeling platform for the process industry is welcome (see
Joly and Miyake, 2017). It offers extended possibilities in-silico, such
as flexibility to model specificities of the real-world problem, to build
the solution technique and to perform systems integration. Indeed,
modeling platforms should be considered state-of-the-art in RPS
technology since they are technological alternatives closer to the
advanced manufacturing philosophy. Optimal solutions are obtained
(Kelly et al., 2017; Menezes et al., 2017).

Human Factor Over the decades, the operationalization of RPS remained highly
dependent on the human factor, which has long played a crucial
role on the business performance. Preformatted RPS solutions
have rendered bright process engineers merely specialized users
of electronic spreadsheets or, at best, of a particular black-box
technology.

The human factor will play a key role on the in-silico design of self-
conscious technologies devoted to solving the RPS problem, no longer
in the operationalization of the activity supported by them. Even more
technically skilled and experienced people will be required. This
corroborates with the view of many authors, such as Yuan and
coworkers, who preach the urgent need for industry-university
coalitions.
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Fig. 1 Conceptual model for an oil refinery running under a self-consciousness technological background
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during charging tank switchovers. In an I3 reality, the lack
of intelligent automation systems that improve equipment
monitoring, and data reliability does not allow schedulers
to know in advance (and, hence, compute) a future
‘unexpected’ event when running their RPS application
at day 0. Thus, if an unexpected event occurs, fast
rescheduling should be executed by schedulers to avoid a
crisis.
Let us assume that the pump feeding the light crude-oil

from charging tank 2 (LC-2) to CDU fails at day 5 due to

excessive wear in its rolling bearings (Fig. 2, middle
panel). As a result, the LC-2 injection into the crude-oil
blend mix will stop suddenly, thereby implying (undesir-
able) disturbances in the CDU operation despite the
expected compensatory actions from the APCs/RTOs
applications. After the pump failure, the feed flowrate of
heavy crude-oil from charging tank 1 (HC-1) is altered by
these online applications to compensate for the reduction
in the feed flowrate of the CDU. As a result, the originally
scheduled date for its completion is anticipated. After an

Fig. 2 Production scheduling theorized for distinct technological backgrounds (Industry 3.0 vs. Industry 4.0). In this figure, the red
circles denote the need for a setup time (tank preparation) before charging the CDU; the green circle denotes no constraint for tank usage
before the indicated time

Fig. 3 (Left panel) Process flow diagram for CDU charging operation. (Right) Conceptual model illustrating the ramp time (R1)
associated with the light crude-oil tank switchover operation (see Fig. 2)

Marcel JOLY et al. Smart refinery production scheduling 207



elapsed (lag) time L spanning from the event detection
(day 5) to the conclusion of (unplanned) logistic operations
in the tank farm, the light crude-oil from tank 4 (LC-4)
begins to be injected into the crude-oil blend mix that feeds
the CDU. This operation takes place without a smooth
changeover occurring between tanks 2 and 4. Stable
operation in the CDU is therefore impaired.
The stable operation in the CDU will only be restored S

time units after LC-4 is aligned to load the CDU. The early
emptiness of tank 1 (caused by the increase in the HC-1
flowrate as ordered by the APC, aiming at compensating
for the abrupt fall in the LC-2 flowrate right after the pump
failure event) causes the need for shortening the ramp time
(R2<R1) between tank 1 and tank 3 (which is unavailable
until the beginning of day 6). This, in turn, imposes a
nonsmoothed transition between two different heavy
crude-oils and, hence, additional disturbances in the
CDU. Moreover, if the scheduler is unaware for the period
required for pump maintenance when urgently rerunning
the RPS application, additional operational discontinuities
may arise, thus amplifying the aforementioned negative
consequences.
Conversely, in a smart industrial environment (Fig. 2,

bottom panel), the RPS solver is supplied with real-time
information related to equipment self-diagnosis. This is
achieved with support from the digital twin models of
every pump and by continuously analyzing each model
using advanced statistical tools (discussed in General
Electric, 2016). Here, engineers cannot only predict the
time of failure but also bring the pump down for
maintenance predictively, eliminating the costs of unne-
cessary downtime and mitigating the risks of unplanned
outages.
In an I4 context, the (true) global optimal solution is

determined all at once on day 0 (or at any time at which
updated plant self-diagnosis information becomes avail-
able for performing rescheduling). In this scenario, the
crude-oil supply from LC-2 is preventively interrupted U
time-units before the expected time of failure for the pump
connecting tank 2 to the CDU. This allows the switchover
between the light crude-oil tanks (LC-2 to LC-4) to be
performed, satisfying optimal conditions with respect to
ramp times. Even though the I4 optimal solution (Fig. 2,
bottom panel) requires the same number of tank switch-
over operations as determined in the I3 rescheduling (Fig.
2, middle panel), the switchover operations are now ideally
performed, that is, they are executed obeying adequate
ramp times (R1), thereby resulting in stable CDU
operation.
It is worth noting that, besides potentially affecting the

operational stability, an unexpected (and, in general,
urgent) need for rescheduling may (and in general does)
imply suboptimal operation along with loss of economic
opportunities. Worse still, it may also introduce potential
risks for plant safety if it is not carefully planned and
implemented at the operational level. For a scheduler

working in a smart refinery, equipment self-diagnosis
(relying on lube-oil temperature and pump shaft vibration
information, for example) will automatically indicate the
need for programmed maintenance of the charging pump.
This information is updated in real-time and sent to the
RPS application, which optimizes the programmed
flowrate with which the pump must operate in the short
term, thereby establishing a virtuous cycle toward
optimized operation. In such a holistic approach, more
stable operation based on a production schedule which
tends “to do the right thing at the first time” is the net
outcome. Here, operational discontinuities and economic
losses associated with unexpected plan changes are
minimized (or avoided).

3.2 Example II: CDU tray damage

Let us discuss the differences between I3 and I4 with
respect to a distinct situation: impaired functional
performance of the equipment. This may be a case of
tray damage inside the CDU. In this case, the equipment
(CDU) will not stop working. However, the fractioning
inside the column becomes noticeably impaired once this
damage occurs. Specifically, distillate yields and qualities,
such as distillation temperatures, will change due to loss of
separation efficiency, causing negative outcomes.
Contrary to the previous example (pump failure), now

schedulers will have to contend with the problem for some
time (until the scheduled date for the next refinery
programmed maintenance stop). Worse still, there is a
considerable probability that the event may even go
unnoticed by schedulers working under an I3 reality. This
is because the typical symptom (loss of column efficiency
and performance) may partially be offset/hindered by
actions from advanced process control (APC) and/or real-
time optimization (RTO) applications, particularly if the
stream quality control of the side-cuts is poor. Therefore,
money losses in this example may potentially become
larger than in the previous example because essentially no
action (by schedulers) may be implemented to properly
address the problem in an I3 reality.
In contrast, the efficient equipment self-diagnosis

associated with I4 will reveal that the CDU performance
was undesirably changed. As a result, new crude-oil assays
(constant parameters related to distillation yields as
function of crude oil type and CDU operation mode)
must be determined/estimated in silico (e.g., by using
process simulators) and then loaded to the RPS solution to
properly solve the crude-oil blend shop optimization
problem. Once properly implemented, this action will
allow APCs and RTOs to efficiently play their original
roles and efficiently collaborate with other automation
applications toward finding a systemically new optimal
operation point associated with the ‘new’ hardware.
Distinctions between I3 and I4 for both examples are
summarized in Table 2.
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4 Challenges

We argue that RPS in an I4 reality brings academic and
industrial challenges, which can be categorized into four
main topics (Table 3).

4.1 Information technology and the Internet

In terms of IT, things have improved since 2007, namely,
the Cloud— big data and servers—which will be
responsible for data storage, cleaning, mining, high-
performance computing, remote support and other services
that provide the bridge between the industrial network and
the application layers. Cloud computing is now main-
stream, which makes leveraging it in industry so much
easier and more secure. (discussed in Li et al., 2015). This
is an essential aspect for I4 because the integrated
optimization of the whole system beyond the refinery
limits remains a computationally intractable problem
(Grossmann, 2005). However, a major ongoing challenge

is to find IT resources and proper technologies to support
the transformation of industrial systems in the information
age; it is like changing the tire while the car is moving. For
instance, cybersecurity and big data are critical issues that
require very experienced industrial transformation specia-
lists with interdisciplinary skills and subject matter domain
knowledge.
The role of IT in general— and the Internet in

particular— on intelligent industrial systems can be even
more crucial in some instances, such as the Brazilian one.
With occasional exceptions (e.g., the automobile and
electronics), the Brazilian industry is still at the level of
Industry 2.0 (I2). Recent discussions carried out by FIESP
(Federation of Industries of the State of São Paulo)
indicated that I4 is possible in Brazil, even starting from an
I2. However, it is necessary to look for routes that will
materialize short-term results while the Brazilian industrial
park completes its technological transition to a condition
closer to that idealized for I4. In this sense, a major
recommendation from consultants has been “Just use the
Internet.” In other words, the main challenge for smart

Table 2 Summary of RPS concerns related to Examples I and II

Example Issue Industry 3.0 Industry 4.0

(I) Equipment failure Rescheduling required? ↑↑ ↔

(e.g., pump failure) Stable operation affected? ↑↑ ↔

Production goals met? ↓ ↑ or ↑↑

Profitability affected? ↑ or ↑↑ ↔

(II) Equipment dysfunction Rescheduling required? ↔ or ↑ ↔

(e.g., CDU tray damage) Stable operation affected? ↔ or ↑ ↔

Production goals met? ↓ ↑ or ↑↑

Profitability affected? ↑↑ ↔ or ↓

Note: ↔, Reduced probability or unlikely to occur; ↑, likely to occur; ↑↑, very likely; ↓, very unlikely.

Table 3 Summary of top four challenges and promising routes (in italics) of RPS in an I4 reality

Academia Industry

How to improve the agile, robustness, computation speed of scheduling
problems? By developing MILP technologies, predictive (hybrid)
modeling and solution algorithms for consensus seeking, cooperative
learning and distributed detection.

How to connect the scheduling module with the CPS module? By developing new
(e.g., geometric) data frameworks to fuse the digital twins (cloud) with modeling
platforms (e.g., IMPL(a)) primarily devoted to optimizing discrete (logic) and
nonlinear decisions.

How to develop petroleomics and molecular management technologies?
By building tight, long-term technological partnerships with industry
(e.g., Marshall and Rodgers, 2004) to develop, for instance, in-line
laboratories and novel process models based on compositional
information.

How to integrate real-time scheduling optimization with feedback and hybrid
model predictive control? By extending identification and prediction methods to
apply under mild assumptions on a dynamic system; by providing process model
standardization and synchronization among applications.

How to capture the emergent behavior of open complex systems in silico?
By developing nonlinear dynamics and chaos, network theory and agent-
based models (Ottino, 2003).

How to efficiently incorporate real-world feedback of ongoing changes into the
virtual environment? How to reduce timeliness? By developing soft sensors and
digital models of manufacturing processes (the ‘cyber’ or ‘digital twins’) in the
cloud.

How to support the transformation of industrial RPS systems which
handle sensitive information and cannot be patched continuously or
taken out of service without a planned outage? By providing consulting
expertise to extend the control system security to new platforms with new
requirements.

How to overcome cultural resistances to the arrival of a new production
philosophy? By implementing continued technical and technological education
actions inside the industrial environment (e.g., Joly et al., 2015).

Note: (a) Industrial Algorithms Limited, Industrial Modeling and Programming Language (IMPL) Manual, Version 1.0, September 2017.

Marcel JOLY et al. Smart refinery production scheduling 209



manufacturing in Brazil is to seek direct communication
between suppliers and consumers. “Do not think about
products, think about services” is the mantra that best
summarizes the understanding of what advanced manu-
facturing should look for in such a reality.

4.2 Mathematical techniques

4.2.1 Refinery modeling

A first challenge lies on the fact that an oil refinery is an
open system. It maintains itself in a continuous inflow and
outflow, a building-up and breaking-down of its material
components. The same final state may be reached from
different initial conditions and in different ways (the
principle of equifinality). As Horgan highlights, for open
systems “our knowledge of them is always partial,
approximate, at best” (Horgan, 1995). Open systems
require input parameters, mathematical structures and
assumptions that are not fully known. Even when
measurements are available, they are never available for
all model elements, and they always contain some level of
uncertainty and inconsistency. In addition, an oil refinery is
also a complex system. Decomposing the system and
analyzing subparts does not necessarily give a clue as to
the behavior of the whole (Ottino, 2011). In this case,
reductionist and deterministic attempts fail to provide an
explanation because engineering complex systems are
characterized by emergent properties that typically appear
as a result of nonlinear interactions among the system
components. This may be a particularly problematic issue
at the microscopic level (e.g., reactive processes). Hence,
the biggest challenge is to capture the network collectively
in a single model to compute the emergent behavior,
which, we argue, may impact the optimal solution.
However, the current state-of-the-art technology in sche-
duling simulators— especially spreadsheets— does not
consider the flowsheet as a whole and thus misses
substantial profit and performance opportunities collec-
tively. Similarly, advanced controllers (e.g., multivariable
model predictive control, MPC), such as DMCplus,
RMPCT, PACE/SMOCpro, etc., do not consider the
flowsheet explicitly; they only consider controlled (depen-
dent) and manipulated (independent) variables.
A second challenge is to incorporate the real-world

feedback of ongoing changes into the virtual environment;
this is what we refer to as the “parameter feedback”
addressed in the FOCAPO 2008 (Kelly and Zyngier,
2008c)). As the models are always improved with gain and
bias updating, this is a crucial aspect for a successful RPS
project in an I4 reality, where online rescheduling (Zhang
et al., 2015; Gupta et al., 2016) is expected to occur. Here,
data reconciliation emerges as a critical issue, since it is
instrumental to (1) validate the material balances for
consistency, (2) regress/fit/calibrate model parameters
based on plant measurement feedback, and (3) verify and

validate the system’s measurements. However, we are not
properly leveraging the power of data reconciliation and
regression to manage the past/present rolling horizon.
Instead, many consider state estimation (Kalman Filtering)
as the way forward, but it does not handle nonlinearities
properly. In fact, state estimation is just a subset of data
reconciliation that has been proven effective (Kelly and
Zyngier, 2008a).
Here, current industrial challenges involve (1) the

integration between real-time scheduling optimization
with feedback and hybrid model predictive control, and
(2) minimizing timeliness, which can be defined as the
time between when data are expected and when it is readily
available for use (Loshin, 2011). A recent project at a
Canadian iron-ore processing plant (Rio Tinto) exemplifies
this crossover between real-time scheduling and hybrid
model predictive control for the application of “Smart
Sweeping.” Discrete control of shuttle-conveyor positions
dumping crushed-ore onto multiple stockpiles feeding
several grinding mills simultaneously and controlling their
continuous holdup / inventory profiles using new industrial
radar level sensing devices is an excellent example of
nascent Industry 4.0 technology and concepts at work.

4.2.2 Algorithms

Decision-making processes concerning continuous vari-
ables (e.g., to model in-line blending units and conversion
units) should gain increasing attention in the RPS
community due to the increasing need for producing
clean fuels from the processing of poor crude-oils.
Nonlinear optimization, for instance, using sequential
quadratic programming (SQP), generalized reduced gra-
dient (GRG2) algorithm or the augmented Lagrangian
method do not work in practice for large-scale planning
and scheduling models with an indefinite Hessian
(diagonally dominate quadratics). On the other hand,
successive linear programming (SLP) works very well and
is industry-proven in planning optimization. XPRESS-SLP
in Spiral Plan and homegrown solvers in PIMS, GRTMPS
and RPMS are illustrative examples. Therefore, some
researchers have invested substantially in developing SLP
algorithms that can be called using any commercial and
community-based LP and QP solver, and not just XPRESS
for XPRESS-SLP and LINDO for LINDO-SLP.
The MILP technology is not being leveraged properly,

which is suitable for representing typical on-off operations
in RPS (e.g., resource selection and sequencing). Schedul-
ing simulators currently relegate most (or even all) logic
and logistics decisions to the scheduler. MPC only solves
for continuous variables. MILP can— and should— be
considered within nondeterministic approaches, such as
predictive modeling. Predictive modeling (identification
and estimation) represents underlying relationships in
historical data to explain the data and make predictions,
forecasts or classifications regarding future events. By
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combining distinct methods such as statistical analysis,
historical review, pattern recognition, mathematical pro-
gramming techniques, risk analysis, deep learning, neural
networks, machine learning and other artificial intelligence
techniques, its promise is to solve the whole RPS problem,
which remains intractable by deterministic optimization
methods.

4.3 Refining business

To impact the profitability of their existing installations,
refiners need to adopt more phenomenological approaches
(e.g., molecular management of refinery operations and
petroleomics (Wu and Zhang, 2010)). For instance, one
can use crude-oil composition tracking to predict the yields
and properties of key distillate streams using the assay-data
and the fractionator model updated with feedback from the
measurement system. In this sense, initial forays can be
traced back to 1995 with pipeline-to-tank and tank-to-CDU
movements being logged directly in the Honeywell
TDC3000 DCS at Exxon Canada’s Nanticoke refinery. In
Brazil, Petrobras has invested millions of dollars since the
2000s in the difficult task of developing their own
integrated solutions for monitoring and optimizing the
refinery logistics in real time (the GOMM project (Moro
and Zanin, 2014)). However, despite the monumental
efforts made by these companies, the challenge has not yet
been completely overcome. Other oil companies, such as
ExxonMobil, have invested considerable efforts in the so
called “molecular management,” which also justified RPS
projects vis-à-vis Aspentech's scheduling solution—
though we lack information regarding if they used
crude-oil composition tracking/tracing results as a data
feed to their scheduling and distillation units advanced
controls.
Today, many APC vendors are struggling with deter-

mining how to control distillation and fractionation units
given the continuously changing crude-oil diet/slate (i.e.,
“crude-switching”). This issue is even more important for
optimizing the crude-oil feed blend shop when the crude-
oil tanks are running-gauge tanks (simultaneous input and
output flows), which makes composition tracking even
more challenging, as one needs to integrate at least every 1
min to improve accuracy. We argue that the actual
opportunity here is to track the crude-oil compositions
every hour by, for example, integrating every minute,
especially for running-gauge tanks in an automated fashion
while also suggesting which crude-oil tanks have active
transfers or movements in and out. Then, take the assays
with effective cut point temperatures and predict composi-
tional and property information for the various refinery
streams (e.g., hydrotreating feed total/reactive sulfur). If
there is a laboratory measurement for it, then ymeasured =
gain�ymodel+ bias can be used, where past routine
operating data (what we call the “past rolling horizon”) can
be used to calibrate the gain and bias (Kelly and Zyngier,

2017). If the crude-oil compositions can be accurately
tracked and have reasonably good assays and laboratory
data, then a very effective prediction of any product stream
leaving the CDU/VDU in real-time can be made, which
can then be used as feedforward/disturbance variables in
model predictive controllers. We speculate that few, if any,
refiners are doing this now, despite the increasing
availability of supporting technology (e.g., PetroSIM by
Yokogawa (KBC)).
However, the greatest challenge with better crude-oil

feed composition tracking, specifically, is the ability to log,
in real-time, the movements of crude-oil deliveries from
pipelines/marine vessels, tank-to-tank transfers, tank-to-
blender and tank-to-CDU. Therefore, searching for crude-
oil composition tracking as a “soft-sensor” remains an
engineering aim to be pursued in an I4 reality. It may be
posed as an excellent example of an I4 and Analytics 3.0
application. This is because it requires a network model/
cyber-physical system and is for predictive analytics
applied to achieve better crude-oil feed control, optimiza-
tion and scheduling, i.e., feedforward / anticipatory
control.

4.4 Human resources

Even more than a revolution in the industrial environment,
I4 is a revolution for our society and the way it is
hierarchically structured. From a business management
standpoint, past paradigms and beliefs must be reassessed
at all levels of the organization before migrating
manufacturing to a new reality. I4 will represent a special
challenge for managers. Here, technical education has
proven to be the best catalyst to promoting the required
‘cultural revolution’ in the industrial environment in the
automation era of I3 (Joly et al., 2015).
Previously involved only in “Project Management,”

many managers expect the technical staff/consultants/
contractors to be solely responsible for implementing new
solutions inside their organization. What some managers
do not understand is that the business re-engineering is as
much a management job as an engineering job and an
operations job. While the severity of this aspect may vary
from company to company, it is likely to be more
pronounced in state-owned companies, as we have
witnessed in Brazil. Antiquated viewpoints that do not
consider IT (and IT-related fields, e.g., artificial intelli-
gence) as a core business area of an oil company must be
changed. In the age of the Internet-of-Things, everything is
connected to everything else.
By connecting and integrating traditional industries to

promote flexibility, adaptability, and efficiency and
increase effective communication between producers and
consumers, the objective of I4 is to ensure high product
quality at a minimal price. Therefore, any discipline, field
or domain that enables a company to reach this lofty goal
must also be understood as a core business area. Refinery
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production planning and scheduling may be posed as an
example (Joly, 2012). Considering this, work processes
inside the entire organization must be reassessed to meet
the needs of an integrated business’ core areas in a timely
manner. Better data and better decisions equal better
business. If managers do not understand this, then
engineers and operators will not care either (or conflicts
among them will result). A deplorable example comes
from a Brazilian refinery. To satisfy a corporate KPI related
to the number of the refinery employees, refinery managers
halted work on data reconciliation. Although this peculiar
example may be considered an aberrant case, data
reconciliation is another subject that deserves much more
attention than it has often received from many oil refiners
and others involved in production, yield and loss
accounting.

5 Conclusions

In this report, we have sought to show that the best
operationalization of RPS in an I4 reality does not depend
strictly upon having good scheduling software. Rather, the
optimal prediction of future operations will depend on the
CPS. The prerequisite for success now lies in having
intelligent data management, analytics and computational
capabilities that form the cyber space. In other words, the
approach has changed: its philosophical basis has evolved
from a reductionist to a holistic viewpoint of the problem
(Fig. 1).
Therefore, more than any traditional off-the-shelf RPS

solution available today, flexible and integrative specia-
lized modeling platforms (as embedded systems) will be
increasingly necessary to produce a truly optimized
production schedule. Having proper working processes,
highly educated personnel, coherent and comprehensive
KPI models, and, of course, bright managers with open
minds to find new solutions and test new technologies are
the complementary requirements.
At the proposed endpoint, schedulers will evolve from

mere users or operators of software packages to technically
qualified modelers educated to develop optimization
models and to improve solution strategies on their own.
Additionally, schedulers will have a high-profile in the I4
environment by decisively contributing to the design of
novel systems and integrative working processes consider-
ing the Aristotelian perspective of the whole. As a true
organism coexisting with its environment, the Refinery 4.0
is more than the sum of its parts.
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