
RESEARCH ARTICLE

Yanfeng LI, Jun LI

Multi-class dynamic network traffic flow propagation model
with physical queues

© The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0)

Abstract This paper proposes an improved multi-class
dynamic network traffic flow propagation model with a
consideration of physical queues. Each link is divided into
two areas: Free flow area and queue area. The vehicles of
the same class are assumed to satisfy the first-in-first-out
(FIFO) principle on the whole link, and the vehicles of the
different classes also follow FIFO in the queue area but not
in the free flow area. To characterize this phenomenon by
numerical methods, the improved model is directly
formulated in discrete time space. Numerical examples
are developed to illustrate the unrealistic flows of the
existing model and the performance of the improved
model. This analysis can more realistically capture the
traffic flow propagation, such as interactions between
multi-class traffic flows, and the dynamic traffic interac-
tions across multiple links.

Keywords first-in-first-out (FIFO), multi-class traffic,
physical queues, traffic flow modeling

1 Introduction

Modeling dynamic traffic flow propagation in a network is
one of the key components of dynamic traffic assignment
(DTA), which is one theoretical core in intelligent
transportation system (ITS). The traffic flow model
describes how traffic propagates inside a traffic network
and hence governs the network performance in terms of
travel time. The procedure in implementation is often
called dynamic network loading (DNL). The performance
of DTA models in terms of capturing actual travel behavior
and computation speed relies on its traffic flow component.

Therefore, developing a realistic and efficient network
traffic flow model is a basic and important work for the
solution of DTA models.
Traditional DTA problems assume that homogeneous

vehicles exist in the traffic network, and the related traffic
flow propagation models govern only a single class of
vehicles. However, various types of vehicles travel with
different speeds and interact mutually in actual urban
traffic network. The network traffic flow propagation
model is required to capture the dynamics of hetero-
geneous mobility, such as the interactions between the
multiclass vehicles and interactions across multiple links.
Existing traffic flow propagation models can be

classified into two categories: Non-physical models and
physical models. The former models have a simpler
calculation but fail to capture some fundamental traffic
dynamics such as queue spillback. The second category of
models is also referred to advanced exit flow functions,
which are developed based on either Daganzo’s (1994;
1995) solution scheme (i.e., cell transmission model,
CTM) or Newell’s (1993) solution scheme to the Lighthill
and Whitham (1955) and Richards (1956) (LWR) hydro-
dynamic model of traffic flow (Kuwahara and Akamatsu,
2001; Lo and Szeto, 2002a). These models can describe
dynamic traffic conditions on a road network, including
shock waves and the propagation of queues over links, and
the related models are popularly applied to calculate travel
times for DTA models in the past decade (Kuwahara and
Akamatsu, 2001; Lo and Szeto, 2002b; Lo and Szeto,
2004; Szeto et al., 2011). Bliemer (2007) noted that those
models rely on first-in-first-out (FIFO) rule, and cannot be
extended to easily simulate multi-class traffic flow
propagation in the network. Recently, Tuerprasert and
Aswakul (2010) extended the single-class CTM to the
multiclass CTM (MCTM) with heterogeneous vehicles.
However, FIFO rule among each type of vehicles can be
violated in the MCTM. This problem is the main difficulty
in developing multi-class traffic flow models based on the
LWR theory.
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In literature, the multi-class traffic flow models (Ran and
Boyce, 1996; Lo et al., 1996; Huang and Lam, 2003;
Logghe and Immers, 2008; Leclercq and Laval, 2007; van
Wageningen-Kessels et al., 2010; Wong and Wong, 2002;
Liu et al., 2013; Liu et al., 2017; Levin and Boyles, 2016)
have received more and more attention due to their
potential in representing traffic flow in a realistic manner.
van Wageningen-Kessels (2016) developed a framework
for the mathematically rigorous qualitative assessment of
deterministic multi-class kinematic wave traffic flow
models. Existing multi-class traffic flow propagation
models can also be classified into two categories: Non-
physical models (Ran and Boyce, 1996; Lo et al., 1996;
Huang and Lam, 2003; Logghe and Immers, 2008;
Leclercq and Laval, 2007) and physical models (van
Wageningen-Kessels et al., 2010; Wong and Wong, 2002;
Liu et al., 2013; Liu et al., 2017; Levin and Boyles, 2016).
Ran and Boyce (1996), Lo et al. (1996), Huang and Lam
(2003) proposed the dynamic user optimal models with
multiple users. However, these studies do not provide
much attention to the actual multi-class traffic flow
propagation. Logghe and Immers (2008) presented a
multi-class traffic flow model by considering the road to
be divided into parallel spaces used by each class
separately. The interaction between different vehicle
types in the same lane cannot be incorporated into the
model. Leclercq and Laval (2007) developed a multi-class
model with Lagrangian coordinates using a variational
formulation, while van Wageningen-Kessels et al. (2010)
proposed a Langrangian formulation of the kinematic wave
model for multiple user classes. Wong and Wong (2002)
extended the macroscopic LWR model to capture the
behaviors with heterogeneous drivers. More recently, Liu
et al. (2013) and Liu et al. (2017) developed a macroscopic
emission model that considers the multi-class nature of
traffic, and uses the models for model predictive control
(MPC) for traffic networks. These models are only applied
to a simple highway road without intersections. Levin and
Boyles (2016) developed a multiclass cell transmission
model with mixed autonomous and human traffic based on
a collision avoidant car following model, and analysis
indicated that as autonomous vehicles penetration rate
increases, the capacity of a roadway increases. The non-
physical models have a simpler calculation but fail to
capture some fundamental traffic dynamics, while physical
models can capture the realistic traffic dynamics but are
computationally inefficient. Therefore, it is necessary to
develop multiclass dynamic traffic flow propagation
models that can capture the realistic traffic dynamics and
are computational efficient.
Bliemer (2007) developed an analytical multi-class

DNL model that can capture the queue spillback and the
interaction across various links. Since each whole link is
divided into two parts (i.e., treated as two cells), its
computational efficiency is considerably higher than that
of classic numerical solution schemes for the multiclass

LWR model. However, we observed that Bliemer (2007)’s
model can yield unrealistic inflow when the queue length
approximates the length of the link and unrealistic outflow
when the queue length decreases to zero. To cope with
these unrealistic results, this paper improves Bliemer
(2007)’s model by enhancing the sending and receiving
functions of the model. In addition, Bliemer (2007)’s
model is formulated in continuous space and cannot be
solved analytically due to its complexity. To solve it by
numerical methods, the improved model is directly
formulated in discrete time space. We also develop
numerical examples to illustrate the unrealistic flows
generated by Bliemer (2007)’s model and the performance
of the improved model.
The rest of this paper is organized as follows: The flow

propagation model will be formulated in the next section,
where a link travel time estimation method will also be
presented. In Section 3, numerical examples are developed
to illustrate the properties of the proposed model. Finally,
Section 4 presents this study’s conclusions.

2 Model

The multi-class traffic flow propagation model consists of a
link model and a node model. The link model describes the
dynamic propagation of various types of vehicles in links,
while the node model presents the transmission from
upstream links to downstream links.

2.1 Notations

Consider a traffic network G ¼ ðN ,AÞ with multiple
origins and destinations, where N is the set of nodes, and
A is the set of links. The time interval ½0,T � is discretized
into K time intervals. The length of each interval is δ,
which satisfies Kδ ¼ T . As shown in Fig. 1, Link a is
divided into two areas: Free flow area and queue area. The
length of the two areas are time varying, and denoted by
LfaðkÞ and LqaðkÞ for a specified interval k respectively. We
have La ¼ LfaðkÞ þ LqaðkÞ, where La is the length of Link a.
The traffic capacities are identical along the whole link.
There are M types of vehicles with different free flow
speeds in the network. All vehicles travel with their own
free flow speed in the free flow area but with the same
speed in the queue area. Therefore, FIFO rule is satisfied
only for the vehicles of the same type. Different types of
vehicles can overtake each other in the free flow area.
Using the cumulative flows, we can obtain the number

Fig. 1 The illustration for Link a
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of vehicles of each type on each link and its queue area,
given by

XamðkÞ ¼ UamðkÞ –VamðkÞ, (1)

and

X q
amðkÞ ¼ QamðkÞ –VamðkÞ: (2)

The cumulative flows of each link can be disaggregated
by the routes through the link, and the relationships
between link-based flows and route-based flows are
formulated as follows:

UamðkÞ ¼
X
p

δpaUampðkÞ, (3)

QamðkÞ ¼
X
p

δpaQampðkÞ, (4)

VamðkÞ ¼
X
p

δpaVampðkÞ, (5)

Qb
amðkÞ ¼

X
p

δpabQampðkÞ, (6)

V b
amðkÞ ¼

X
p

δpabVampðkÞ: (7)

2.2 The link model

Since different types of vehicles have different characteri-
stics such as width, length and height; one car is considered
as passenger car unit (pcu) for convenience. In this paper,
we suppose the queue density Ja is given, then the queue
length can be specified by

LqaðkÞ ¼
X
m

X q
amðkÞ=Ja ¼

X
m

½QamðkÞ –VamðkÞ�=Ja: (8)

By definition, we can obtain the length of the free flow
area LfaðkÞ ¼ La – L

q
aðkÞ. If LqaðkÞ ¼ La, queue spillback

happens.
Since vehicles travel with free flow speed in the free

flow area, for a special vehicle of type m, its entering time
into Link a must be δðk þ 1 – LfaðkÞ=vfamδÞ if it leaves the
free flow area into the queue area of Link a at the end of
time interval k+ 1. Therefore, the cumulative flows have
the following relationship:

Qamðk þ 1Þ ¼ Uamðk þ 1 – LfaðkÞ=vfamδÞ: (9)

LfaðkÞ=vfamδ may not be an integer. If so, k þ 1 –LfaðkÞ=
vfamδ will also not be an integer. In this case, the linear
interpolation method can be used to approximate the right-
hand side of Eq. (9).

2.3 Node model

As shown in Fig. 2, Al is the set of links leading to Node l,
Bl is the set of links leaving Node l. The node model
depicts the flow propagation from Link a 2 Al to Link
b 2 Bl.

For any link, the outflow is restricted by both the outflow
capacity and the number of vehicles on the link. Those
restrictions can be equivalently formulated as follows:

X
m

Vamðk þ 1Þ£min Cout
a ðkÞ þ

X
m

VamðkÞ,
(

X
m

Uam k þ 1 –
La
vfamδ

�� �
, (10)

where Cout
a ðkÞ is the outflow capacity of Link a at time

interval k. The first term on the right-hand side of Eq. (10)
indicates that the total outflow of Link a at time interval k
cannot exceed the outflow capacity, and the second term
demonstrates that the cumulative outflow for vehicle of
typem by the end of time interval k+ 1 must enter the Link
a before time δðk þ 1 – La=v

f
amδÞ.

Furthermore, the transmission flow from Link a to Link
b is restricted by the receiving capacity of Link b. The
receiving capacity depends on the inflow capacity and the
accommodated vehicles’ number of Link b. Therefore, the
cumulative outflow from Link a to Link b should also
satisfy the following condition:

X
m

Vb
amðk þ 1Þ£pbaðkÞ⋅min Cin

b ðkÞ,LbJb –
X
m

XbmðkÞ
)(

þ
X
m

Vb
amðkÞ, (11)

where pbaðkÞ is the priority coefficient for transmission flow
from Link a to Link b during time interval k. It is
correlative with Cout

a ðkÞ. If Cout
a ðkÞ= 0, we can adjust pbaðkÞ

= 0. Anyway, we have
X
a0

pbaíðkÞ ¼ 1. Cin
b ðkÞ is the inflow

capacity of Link b at time interval k, and LbJb –
X
m

XbmðkÞ

Fig. 2 An intersection sketch
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is the maximum number of additional vehicles that can be
contained in Link b at the end of time interval k.
According to the length of queue, we consider the

following two cases:
Case I: No queue (i.e., the queue length of Link a equals

zero)
In this case, vehicles travel with free flow speed to link

exit. Limited to the travel time, the maximum cumulative
number of vehicles allowed to leave Link a equals the
cumulative number of vehicles entering the link by time
interval k þ 1 – La=v

f
amδ. Therefore, we have

Vampðk þ 1Þ£Uampðk þ 1 – La=v
f
amδÞ: (12)

Case II: Queuing (i.e., the queue length of Link a is
positive)
Since all vehicles obey FIFO rule in the queue area,

there exists one certain time tak such that Vampðk þ 1Þ ¼
QampðtakÞ. The vehicles leaving Link a before the end of
time interval k + 1 have entered the queue area before time
interval tak , but the vehicles entering the queue area after
time tak will continue to stay in Link a by the end of time
interval k + 1. The following equation is used to determine
tak :

tak ¼ max t :
X
m

Qamðt=δÞ£min Cout
a ðkÞ þ

X
m

VamðkÞ,
((

X
m

Uam k þ 1 –
La
vfamδ

�� �
,
X
m

Qb
amðt=δÞ

£pbaðkÞ$min Cin
b ðkÞ,LbJb –

X
m

XbmðkÞ
)(

þ
X
m

Vb
amðkÞ

)
: (13)

According to the conservation law, the cumulative
inflow of Link b belongs to Path p equals to the
corresponding cumulative outflow of its previous link on
that path. For the special case, if Link b is the first link on
the path, the cumulative flow equals to the cumulative
departure flow of the path. Therefore, we have

Ubmpðk þ 1Þ

¼
Xkþ1

l¼1

fmpðlÞ, if b is the first link on path p,

Vampðk þ 1Þ, otherwise,

8><
>:

(14)

where Link a is the previous link of Link b on Path p.

2.4 Simulation procedure

From the above, the link model is used to calculate the
cumulative inflow of the queue area, while the node model
is applied to calculate the transmission flow from upstream
links to downstream links and determine the cumulative
inflow and outflow of each link. In summary, the detailed
simulation procedure of the proposed model is outlined as
follows:
Step 1: Initialize the cumulative flow at the start time to

be zero, and set k = 0;
Step 2: Calculate the link cumulative inflow UamðkÞ;
Step 2.1: Calculate UampðkÞ with Eq. (14);
Step 2.2: Calculate UamðkÞ with Eq. (3);
Step 3: Calculate the cumulative queue inflow

Qamðk þ 1Þ;
Step 3.1: Calculate the length of queue part LqaðkÞ with

Eq. (8), then the length of free flow part can be obtained;
Step 3.2: Calculate Qamðk þ 1Þ with Eq. (9);
Step 4: Calculate the link cumulative outflow

Vamðk þ 1Þ;
Step 4.1: Calculate Vampðk þ 1Þ with Eq. (12) or (13);
Step 4.2: Calculate Vamðk þ 1Þ with Eq. (5);
Step 5: If k =M (M is the ending time interval), stop.

Otherwise, k = k+ 1. Return to Step 2.

2.5 Link travel time estimation

The cumulative link inflow and outflow can be obtained
using the above flow propagation model, which can be
used to estimate link travel times. The link travel time by
the end of interval k is defined as the horizontal distance
between two cumulative flow curves by Lo and Szeto
(2002a) and Huang and Lam (2002). In Fig. 3, we have the
relationship UamðkÞ ¼ Vamðk þ τamðkÞÞ. Since the time is
discretized, the vehicles entering the link at the end of
time interval k may leave the link at some time between
½k0δ,ðk0 þ 1Þδ� or time interval k0 þ �m ð0<�m<1Þ, where
k0 > k. Linear interpolation can be used to formulate

Fig. 3 Link cumulative inflow and outflow
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UamðkÞ, UamðkÞ ¼ ð1 –�mÞVamðk0Þ þ �mVamðk0 þ 1Þ.
Using this linear interpolation, we can obtain �m, given
as follows

�m ¼ UamðkÞ –Vamðk0Þ
Vamðk0 þ 1Þ –Vamðk0Þ

: (15)

By definition of �m, we have UamðkÞ ¼ Vamðk#þ �mÞ.
According to the relationship UamðkÞ ¼ Vamðk þ τamðkÞÞ,
we have k#þ �m ¼ k þ τamðkÞ, which implies that the link
travel time can be easily obtained by the following
equation:

τamðkÞ ¼ ðk0 þ �m – kÞ, (16)

where the unit of link travel time is time interval.
If function Vamð⋅Þ is strictly monotonic increasing, then

τamðkÞ ¼ V – 1
am ðUamðkÞÞ – k. However, there are two rea-

sons that may cause the link cumulative inflow or
cumulative outflow not to satisfy strictly monotone
increasing: (1) A temporary inflow drops to zero (e.g.,
during light traffic), and (2) a temporary outflow capacity
drops to zero (e.g., during a red phase, an incident or an
accident). If one of the above situations happen, Eqs. (15)
and (16) cannot be used to calculate the link travel time
directly. In this case, a linear interpolation method
developed by Nie (2003) can be adopted.

3 Numerical simulation and analysis

To illustrate the multi-class traffic flow propagation in link
and in network and the difference between the models by
Bliemer (2007) and the developed one, several numerical
examples are applied to simulate the propagation with the
proposed model.

3.1 Example 1: Comparison with the existing model
(Bliemer, 2007)

To compare the difference between the improved model
and the existing model, we give a very simple illustrative
example. Suppose the traffic flow propagates only on one
single link, and only one vehicle type. The vehicle inflow
rate is set as 10 pcu/s. Suppose the free-flow speed of
vehicles is 180 km/h. The link length is 1 km, and the free-
flow travel time of vehicles is 20 s. The queue density, the
inflow capacity, and the outflow capacity of the link are
1000 pcu/km, 20 pcu/s and 20 pcu/s respectively. The
length for each time interval δ ¼ 1 s.
We consider two scenarios. The first scenario is

described as follows: At a certain time slot k, the vehicles’
number in the queue part is exactly 20 pcu. We can get
different results by adopting the two models to implement
the DNL. Figure 4 illustrates the resulting number of
vehicles arriving at link exit, the amount of vehicles within
the queue, the outflow capacity and the actual outflow of

the link within 10 time slots after k.
By adopting Bliemer (2007)’s model, the results show

that the outflow rate is always less than the vehicles’
number in the queue part (Fig. 4(a)). The vehicles in the
free part, which can leave at the same time interval, is not
considered; these vehicles will form the queue at this time
slot and will leave the link at the next time slot. However,
in the improved model, we consider these vehicles;
therefore, the outflow rate is greater than or equal to the
result with Bliemer (2007)’s model (Fig. 4(b)). After k+ 2
s, there is no queue part in the link.
In another scenario, we suppose at a certain time slot the

queue length is near the link length, but there is still some
available space with 5 pcu. The outflow capacity changes
to 0 due to the red traffic light or other blocks. By adopting
Bliemer (2007)’s model, the inflow rate should be 10
pcu/s. This is not suitable for the actual case. With the
improved model, the inflow rate should be 5 pcu/s at this
time slot. In fact, when the accommodated vehicles’
number in the link is less than the inflow capacity, we

Fig. 4 Different results with two models
(a) The results with Bliemer’s model; (b) the results with the improved
model
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should consider the smaller one.

3.2 Example 2: Interactions between multi-class traffic
flows

This example considers the traffic flow propagation on a
single link, and there are two vehicle types: trucks and cars.
The inflow rates of cars in this example are given as
follows:

f1ðtÞ ¼
0:0185t, if t£320 s

0:05, if 320 s<t£800 s

0, if t > 800 s

,

8><
>:

(17)

where the unit for the inflow is pcu/s. The inflow rates of
trucks are one fifth that of the cars. Suppose the free-flow
speeds of cars and trucks are 60 and 40 km/h, respectively.
The link length is 2 km, and the free-flow travel time of
cars and trucks are 120 and 180 s, respectively. The queue
density, the inflow capacity, and the outflow capacity of the
link are 360 pcu/km, 7200 and 7200 pcu/h, respectively.
The simulation time horizon is 1000 s, and the length for
each time interval δ ¼ 1 s.
The link travel time for cars and trucks in different time

intervals is illustrated in Fig. 5. It can be observed that the
link travel time for cars is always less than that of trucks.
With increasing traffic flow in the link, the queue is formed
gradually, and the difference between the two travel times
becomes small. The longer the queue, the shorter the free
flow area and the closer two travel times (Fig. 5). The
length of the free flow area consistently varies with the
difference between the two travel times.

In Fig. 6, the link queue length is 0 km before times of
220 s. This finding indicates that cars and trucks travel at
the corresponding free traveling speed for the entire link
before times of 100 and 40 s, respectively. Therefore,
before the time 40 s, the difference between the two travel

times is 60 s. However, the cars entering the link from a
time of 40 to 100 s travel at the free traveling speed for the
entire link, while the trucks entering the link at the same
time period would encounter queuing. Therefore, the
difference between the two travel times increases. With the
traffic flow increasing, queuing influences the trucks more
seriously than the cars.
The difference reaches a maximum at a time of 170 s.

However, with further increase in the traffic flow, the queue
rapidly becomes longer, and the interaction between cars
and trucks increases; which gradually reduces the
difference of the two travel times. At a time of 320 s, the
queue length equals to the link length, and the two travel
times are identical. After that time, the inflow of cars and
trucks changes to 0.5 and 0.1 pcu/s, respectively. The
queue begins to dissipate, and the difference between the
two travel times increases gradually. After the queue
dissipates completely, the difference remains at 60 s.

3.3 Example 3: Traffic interactions across multiple links

In general, the traffic flow propagation model based on
physics queue can describe the interaction across multiple
links, queue formation and dissipation, and queue spill-
back. The model developed in this paper can also describe
the actual traffic flow characteristics.
A diverge network, shown in Fig. 7, is applied in

Example 3. The length of Links 1 and 4 is 2 km and that of
Links 2 and 3 is 1 km. The queue density for Link 1 is 360
pcu/km, while others are 180 pcu/km. The outflow
capacity for Link 1 is set as 7200 pcu/h, while others are
set as 3600 pcu/h. The inflow capacity equals the outflow
capacity for each link.
The exit of Link 2 is controlled by traffic light signal.

The traffic light signal’s red light phase occurs from time
160 to 400 s, and its green light phase occurs for all other
times. Like Example 1, the two types of vehicles in the
network are cars and trucks. The simulation time horizon is

Fig. 5 Link travel times for cars and trucks

Fig. 6 Queue length and the difference between two travel times
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also set as 1000 s, and the length of each time interval is
δ ¼ 1 s. The demand of OD1 and OD2 is 1 and 0.6 pcu/s
from time 0 to 500 s, respectively.
Two simulation scenarios are considered. One is the

propagation with the different mixed traffic flow ratios, and
the other is the propagation with the different free traveling
speed of trucks. Regardless of how the mixed traffic flow
ratios change, the OD demands of traffic flow remains the
same.
(1) The propagation with the different mixed traffic flow

ratios.
The free traveling speed for cars and trucks is set as 60

and 40 km/h, respectively. Five different mixed traffic flow
ratios of cars to trucks are considered. They are 4:1, 1:1,
1:3, only cars, and only trucks.
For each ratio the queue spillback occurs in Link 2,

which leads to a queue forming in Link 1 as shown in
Figs. 8 and 9. The larger the cars proportion in mixed
traffic flow, the earlier queue spillback occurs in Link 2.

After spillback, the queue in Link 1 forms earlier and
longer.
From a time of 400 s, when the traffic light signal turns

to green, the queue in Link 2 begins to dissipate. The larger
the cars proportion in the mixed traffic flow, the later Link
1 reverts to free traveling state. The reason is that if the cars
proportion in the mixed traffic flow is larger, more cars
enter the queuing part early; and the queue in Link 2 forms
earlier, and the queue length increases more rapidly. When
the queue length equals the link length, queue spillback
happens. With the larger car proportion, the queue in Link
1 forms earlier, the queue length is also longer, and the time
for queue dissipation in Link 1 takes longer.
(2) The propagation with different free travel speed of

trucks.
The free travel speed of cars is fixed as v1f= 60 km/h.

Consider 4 cases with different free traveling speed of
trucks. The cases are 20, 30, 40 and 50 km/h. The mixed
traffic flow ratio of cars to trucks is set as 1:1.
The simulation results are shown in Figs. 10 and 11. It

can be found that if the difference between the two free
traveling speeds reduces, the queue spillback in Link 2
occurs earlier. Next, the queue length in Link 1 is longer,
and later reverts to free travel state. The reason is that the
queue forming initially in Link 2 is caused by car flow
congestion. If the free traveling speed of trucks becomes
larger, the trucks will enter the queue in Link 2 earlier and
the queue in Link 2 increases more rapidly. It is shown as
the dotted rising lines in Fig. 10.
Since the duration time of the red light is not long

enough, when the free travel speed of trucks is 20 km/h the
trucks would not encounter queuing in Link 2 due to their
slow speed. The vehicles in the queue only include cars.
Meanwhile, the queue spillback in Link 2 would not
happen. Correspondingly, the queue length in link 1 is
zero.

Fig. 7 Diverge network

Fig. 8 Queue in Link 2 with different mixed traffic flow ratios

Fig. 9 Queue in Link 1 with different mixed traffic flow ratios
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4 Conclusions

In this paper, we present an improved multi-class dynamic
network traffic flow propagation model with consideration
of physical queues. Each whole link is divided into two
parts (free flow part and queue part). Therefore, the
model’s computational efficiency is considerably higher
than that of classic model based on the multiclass LWR
theory, such as MCTM. The vehicles of the same class
satisfy FIFO principle on the whole link, and the vehicles
of the different classes also follow FIFO in the queue area
but not in the free flow area. We improve the model by

enhancing the sending and receiving functions of the
model. The model is formulated in discrete time space
directly for better solving. Several numerical examples are
developed to illustrate that the developed model can more
accurately capture the traffic flow propagations; such as
interactions between multi-class traffic flows and the
dynamic traffic interactions across multiple links. In the
future studies, the proposed model can be adopted into
DTA problems.
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