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Abstract The overlap of bus and rail transit routes is
common in China. This overlap provides passengers
multiple choices for one trip. However, the availability of
multiple options would cause uncertainty in the travel
distribution of passengers. Given that buses and rail
transits are becoming increasingly common, this paper
aims to present the overlapped operation condition of bus
and rail transit using a bi-level model from the perspective
of bus operators. Frequency optimization model is
established in the upper-level model. A heuristic algorithm
called shuffled complex evolution (SCE-UA) method is
used to solve the established frequency optimization
model, and three other heuristic methods are compared
with SCE-UA. A lower-level Logit model based on Agent
simulation is set for traffic mode split. Data on the transit
system in Dalian city are chosen as an example to test the
feasibility of the model and the algorithm. Results show
that as the overlapped optimization of bus route and rail
transit routes changed primary bus frequency, the use of
SCE-UA to solve such problems has evident advantages
and feasibility; furthermore, changed bus frequency would
improve bus operations.

Keywords common route, bus operation frequency, bi-
level model, Agent simulation, SCE-UA algorithm

1 Introduction

Rail transit operation will break the balance of the existing

traffic mode choices of passengers in terms of service
(Verma and Dhingra, 2006). On the one hand, some
passengers opt for rail transit, which will reduce the
number of passengers traveling by bus. Thus, ensuring the
frequency of bus operation is a challenge. On the other
hand, rail transit cannot guarantee that it can simulta-
neously carry enough passengers, which will cause
massive waste of public investments. Therefore, the
availability of multiple choices on urban bus and rail
transit to passengers has become a pertinent issue.
This paper proposes optimizing the conditions of bus

and rail operations by using a bi-level model. Based on
traffic flow characteristics, conventional buses are for
short-distance transport, whereas rail transit is usually for
long-distance transport. Mohaymany and Gholami (2010)
identified different levels and functions of passenger
transport systems. Although bus and rail transit have
several investment differences, such as traffic capacity,
speed, and cost, the two still compete. This study analyzes
passengers’ choices between bus and rail transit using a
traffic mode split model. The model can determine a
passenger’s choice in each traffic mode and effectively
maintain bus operations under common rail transit route
conditions.
In the traffic mode split model, the share rate of

passengers is an important research field. This model is
specifically used to study passengers’ choices. Numerous
studies have focused on passengers’ choices, and they can
be divided into three based on the methods adopted. One is
disaggregate choice model based on individual choice
behavior, and the others are distribution and neural
network models, which are based on network traffic.
Various methods have different characteristics when
determining the influence factors of utility function and
specific model forms. Mandel et al. (1992) proposed the
share rate model of bus and rail using Logit model under
the condition of a high-speed rail going into operation.
When comparing the precision of models in terms of linear
and nonlinear utility functions, the nonlinear utility
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function model was found to have better explanatory
power. Nijkamp et al. (1996) compared the choice
probabilities of bus and rail traffic modes by fitting
different origin-destination (OD) pairs between neural
network and Logit model. Nuzzolo et al. (2000) evaluated
the rail transit supply–demand and fare policy with the
utility function indicating the expected arrival time and
early (late) time of delay. The model was established based
on Nested-Logit (NL) which considered service, fre-
quency, class, and accessibility. Ben-Akiva and Morikawa
(2002) studied whether passengers prefer rail transit over
bus. Results showed that passengers have no evident
preference when keeping the same service. However,
passengers prefer an improvement in rail transit service.
Yao et al. (2014) presented an optimization model, which
considered stochastic travel time to maximize the effi-
ciency of passengers’ trips in the transit network. Tabu
search algorithm was then used to solve the optimized
transit network. Results showed the negative correlation
between travel time and cost, whereas service level was
positively correlated with selective probability. González-
Savignat (2004) used the survey data from an experiment
to establish a Binomial-Logit model according to travel
purpose and distance. Travel cost, time, bus frequency,
energy consumption, and charge were used as model
variables. Findings indicated that the main factors were
travel cost and time when bus frequency was reduced. Yu
et al. (2011) proposed models to predict bus arrival time at
the same bus station but with different routes; they adopted
several methods, including support vector machine,
artificial neural network, k-nearest neighbors algorithm,
and linear regression.
Bus frequency optimization is a major component of

transit operation. This paper focuses on the perspective of
bus operators who aim to maximize profit. An optimal
model for the bus frequency of a bus route is developed to
maximize the total profit of bus operators.
Several studies have focused on optimizing bus

frequency. Salzborn (1972, 1980) proposed simplified
mathematical models for designing frequency to minimize
bus fleet and passengers’ waiting time. Furth and Wilson
(1981) devised a mathematical method for optimizing the
allocation of buses to routes and maximizing net social
benefit; they proposed an algorithm based on Kuhn-Tucker
conditions. Han and Wilson (1982) proposed a two-stage
heuristic algorithm for allocating vehicles to routes: in the
first stage, a minimal frequency that can satisfy the demand
is determined, and in the second stage, frequency is
increased uniformly until all vehicles of the available fleet
are used while considering constraints on total fleet size
and route capacities. LeBlanc (1988) formulated a transit
network design model for determining transit frequency
under the assumption of elastic modal split and proposed to
solve the model by Hooke–Jeeves algorithm (HJA).
Constantin and Florian (1995) developed a mixed-integer

programming model and proposed a projected sub-
gradient algorithm for optimizing frequency to minimize
passengers’ total travel and waiting time. they proposed a
projected sub-gradient algorithm for solving the problem.
Tom and Mohan (2003) presented a model to optimize
transit routes and frequencies on the basis of genetic
algorithm (GA) to minimize operation costs and passen-
gers’ total travel time. Park (2005) used a simulation-based
GA to optimize headways and slack time. Chakroborty
(2003) and Chakroborty et al. (1995, 2001) utilized a GA
to solve a bus-scheduling problem. Their results showed
that GA was an efficient solution tool for several
optimization problems in the transport field. Yu et al.
(2010) proposed a GA to solve a bi-level optimization
problem on bus frequency, which aims to minimize the
passengers’ total travel time subjected to the constraint of
overall fleet size. Blum and Mahew (2011)reported that
bus transit route network optimization emphasizes bus
routes and schedules. Passenger demand was satisfied, and
bus company cost was lowest when bus routes and
schedules were optimized. Baaj and Mahmassani (1995)
designed a route-generation algorithm to optimize bus
routes and frequency. Agrawal and Mathew (2004)
developed an optimization model of bus transit route
network, which aims to minimize transport costs, and
calculated the model using GA. Kuan et al. (2006)
proposed GA and ant colony optimization (ACO) to
solve the problem of bus frequency optimization on the
basis of passenger competition and collaborative analysis.
Given that the optimal model addresses a bus scheduling

problem, its practical application is complicated by
increasing spaces, roads, and stations. Numerous studies
have shown that the heuristic algorithm can effectively
solve complex combinatorial optimization problems. Thus,
the shuffled complex evolution (SCE-UA) algorithm
(Duan et al., 1992), which has been successfully used in
the field of water resource, is adopted. The algorithm is
based on a simplex method with a random search,
biological evolution principles, and complex blends
(Duan et al., 1992; Duan et al.,1993) integrated together.
With reference to existing studies, the main contribu-

tions of this paper are as follows:
(1) This study explores the bus frequency optimization

problem in terms of bus operators’ profit and proposes a bi-
level model. In the upper-level model, an objective model
of bus and rail competition is established, which considers
bus operator interest and operating costs. The lower-level
model is the traffic model split by using the Logit model,
which considers factors such as waiting time, travel time,
and crowding, among others. This paper presents an
effective method to solve the bus frequency optimization
problem.
(2) The SCE-UA is proposed to solve the same problem.

Three other commonly used methods, namely, GA, HJA,
and ACO are compared with SCE-UA. After simulations
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and calculations, a balance point, which maximizes bus
operators’ profit, is derived. The Dalian–Kaifaqu (D–K)
bus route and Light Rail Route No. 3 of Dalian city are
chosen as examples to test the model. Computational
results suggest the effectiveness and evident advantages of
SCE-UA.
This paper is organized as follows. Section 2 describes

the problems. Section 3 proposes a bi-level model. Section
4 introduces SCE-UA. In Section 5, the data of Dalian city
is chosen as an example to test the model. The last section
concludes the paper.

2 Problem description

In the public transit network, the stations of different lines
are usually located close to one another. This condition is
called transit route overlap. Therefore, transit stations also
overlap, which means that stations of different vehicles are
also located closely. In Fig. 1, the black and blue lines
represent the bus and rail routes, respectively. In this figure,
bus and rail routes overlapped in the first four stations,
separated in the fifth station, and overlapped in the sixth
and seventh stations. If the bus and rail routes do not
overlap, passengers could select only one route in a trip.
However, if two stations overlap, passengers will consider
factors such as travel time, travel fare, and congestion in
the two transport means in choosing their travel routes. The
model of two transport means should adopt traffic mode
split by using a Binomial-Logit model. When the
frequency of bus changes, it will produce extra operating
fare. Bus frequency will also change the operator’s total
revenue. From the bus operators’ perspective, this paper
proposes a bus frequency model based on routes to
maximize total profit.

3 Competition model of bus and rail
transport

3.1 Factors of bus and rail transit options

When passengers choose transport means, they will not
only consider individual characteristics but also the

characteristics of different traffic modes (Nakagawa and
Hatoko, 2007). The specific factors are as follows:
(1) Travel time. This factor generally refers to the time

taken to complete one travel. Passengers usually prefer to
choose a time-saving and convenient traffic mode, and
travel time becomes an important factor for evaluating
different transport modes.
(2) Travel fare. Travel time savings are usually paid for

by higher fare costs. So travel fare and travel time are
generally considered.
(3) Congestion. The comfort level for passengers

during travel becomes increasingly high with the improve-
ment of living standards. Passengers always desire to have
a pleasant trip.
(4) Security and reliability. Passengers constantly desire

sufficient security during a trip because of the accelerated
pace of life. Passengers have a high demand for travel
punctuality because they have a stronger sense of time.
The factors affecting the traffic mode of passengers

include travel time, fare, congestion, security, and
reliability. However, according to Lam et al. (1999), the
most important factors are travel time, fare, and conges-
tion. Therefore, these three are selected as the main factors
in this study. Considering that security and reliability are
hard to quantify, this paper adopts a fixed parameter to
express these factors.
Prior to the establishment of the model, the following

assumptions should be considered: (1) At a specific period,
the bus operates along a predetermined route. (2) All bus
routes are not allowed to go beyond the platform and
overtake. (3) Passengers who queue up should obey the
rule of “first come, first on the bus.” (4) Passengers only
have one way to finish their trip, and they should not wait
too long to leave the stations.

3.2 Upper-level model (Frequency optimization model)

The upper-level model establishes the frequency optimiza-
tion model with the objective function of maximizing the
profit of bus operators. The model is applied by using the
analytical algorithm according to the traffic flow distribu-
tion in the lower-level model.
To simplify the model, this study considers the

operational cost, including fixed cost, depreciation and

Fig. 1 Schematic of the bus and rail transit route overlap
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maintenance cost, fuel consumption, and driver and
ticketing staff wages.

M0 ¼ C þ Cv
c þ lCs

cð Þ � T

hB
þ Co

c �
2� D� l

hB
, (1)

whereM0 is the operating cost of bus operators, T is the bus
operating cycle, hB is the time interval of bus departure, D
is the effective operating time of buses daily, and l is the
distance between the starting point and terminal. C denotes
fixed costs, and l refers to the rate between drivers and
vehicles for maintaining normal bus operations at 2.5 in
general.
Cv
c , C

O
c and CS

c refer to the cost coefficient of a vehicle,
the cost coefficient of operation, and the wage coefficient
of drivers and ticketing staff, respectively.
The revenue of operators is the bus ticket fares, which is

shown as

B0 ¼ 60� FB �
X
i

ai � D, (2)

where B0 is the revenue of bus operators, and ai is the
arrival rate of passenger i.
In conclusion, the integrated objective function of the

upper-level model is shown as

maxZ ¼ B0 –M0: (3)

3.3 Lower-level model (Traffic mode split model)

The lower-level model is based on agent simulation, in
which Binomial-Logit model is used to divide different
passengers in different traffic modes. When passengers are
in a non-common route station, they only have one traffic
mode (bus or rail transit) available. When passengers are in
a common route station, they have two traffic modes to
choose from. As passengers may make a comprehensive
judgment on the basis of past travel experiences, such as
interval of the departure time an congestion of a bus,
passenger preferences would also vary. Some passengers
prefer a low-cost mode, whereas others prefer a more
comfortable means of transport. Furthermore, if the
frequency of the bus operation becomes high, which
means that that extra waiting time will not be long, then the
passengers who would opt for the rail transit may reelect to
the bus.
On the basis of the above analysis, the factors of travel

time, fare, and congestion are considered to establish a
Binomial-Logit model to analyze the probability of the
chosen traffic modes of bus and rail transit.
According to random utility theory, different options

will produce utility for passengers. Passengers will choose
programs with the largest utility using their cognition
under specific conditions. In this study, Binomial-Logit
model is used to describe passenger behavior. The general
form of the Binomial-Logit model is

Pm ¼ eVmX
j2A

eVm
, (4)

where Pm is the probability for the passengers to choose
plan m; Vm is the utility for the passengers to choose plan
m; andA is the set of plans for the passengers to choose
from. Xk is the linear relationship between factors and
feature vectors. Utility function is

Vm ¼ bk þ βkXk , (5)

where bk is the constant that denotes the variable that
cannot be expressed specifically in the formula, and βk is
the unknown parameter of k that corresponds to the
characteristic variable. The factors that affect the traffic
mode selection of passengers are shown in Table 1.

We then quantify the factors influencing the traffic mode
selection of passengers.
(1) Travel time. Assume that only one way of transport is

chosen during a trip. Travel time refers to time taken to
finish the entire trip, including the time spent walking to
the station, waiting time, and the travel time inside the bus.
The travel time for passengers to complete a trip by bus

can be expressed as Eq. (6).

TB ¼ WB

vb
þ HB þ

L –WB

vB
, (6)

whereWB is the walking distance for passengers by bus; vb
is the speed of walking; L is the walking distance for
passengers; vB is the speed of the bus; HB is the waiting
time of passengers for the bus, and the waiting time is
impacted by bus frequency. According to queuing theory,
the average waiting time can be expressed by half of

the bus departure time interval, which is HB ¼ hB
2

(Dubois

et al., 1979).
The travel time for the passengers to finish a trip by rail

transit can be expressed as Eq. (7).

TR ¼ WR

vb
þ HR þ OR þ

L –WR

vR
: (7)

whereWR is the walking distance for passengers by rail; vR
is the speed of the rail; and HR is the waiting time of
passengers for the rail. The average waiting time that can
be taken as half of the rail departure time interval (Guan,

Table 1 Factors affecting the traffic mode selection of passengers

Factors Variable Constant

Travel time X1

Travel fare X2

Congestion X3

Other factors bk
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2004) is HR ¼ hR
2
; and OR is the time for passengers to

access the rail platform. OR ¼ q1 þ
kq2
vb

, where q1 is the

horizontal distance, q2 is the vertical elevation difference,
and k is the coefficient between going up and down stairs.
The value of going up stairs is 4.0, the value of getting
down stairs is 2.0, and the value of taking an escalator is
1.0.
(2) Travel fare. The travel fare for passengers to achieve

a trip by bus can be expressed as Eq. (8).

FB ¼ kB þ fB � ðL –WB – LBÞ, (8)

where FB is the fare for traveling by bus, kB is the basic bus
fare, and fB is the bus fare level. If the fare policy uses an
integrated ticketing system, then fB is equal to 0. LB is the
travel distance that covers basic bus fare.
The travel fare for passengers to achieve a trip by rail

transit can be expressed as Eq. (9).

FR ¼ kR þ fR � ðL –WR – LRÞ, (9)

where FR is the fare for traveling by rail, kR is the basic rail
fare, and fR is the level for the rail fare. If the fare policy
uses an integrated ticketing system, then fR is equal to 0. LR
is the travel distance that covers basic rail fare.
(3) Congestion. The congestion cost for passengers to

complete a trip by bus and rail transit can be expressed as
Eqs. (10) and (11).

YB ¼

Xn
i¼1

ðZi
Bu –Z

i
BdÞ – SB

 !

CB
; (10)

YR ¼

Xn
i¼1

ðZi
Ru – Z

i
RdÞ – SR

 !

CR
, (11)

where Zi
Bu and Z

i
Bd are the number of passengers getting on

and off at station i, respectively. SB refers to the number of
bus seats. CB is the bus capacity. The rail transit notations
are the same.
Capacity constraints are as follows:

Xn
i¼1

ðZi
Bu – Z

i
BdÞ£CB; (12)

Xn
i¼1

ðZi
Ru – Z

i
RdÞ£CR: (13)

(4) Other factors. As the factor of reliability and safety
are difficult to quantify, a fixed parameter b based on
previous research is used to represent the factor in this
study.
The specific formulas are as follows:

PB ¼ e – �VB

e – �VB þ e – �VR
¼ 1

1þ eð – �ðVR –VBÞÞ ; (14)

PR ¼ 1 –PB ¼ 1

1þ eð – �ðVB –VRÞÞ ; (15)

VB ¼ β1FB þ β2TB þ β3YB þ b1; (16)

VR ¼ β1FR þ β2TR þ β3YR þ b2: (17)

In these formulas, PB is the probability of choosing bus,
PR is the probability to choosing rail transit, and � is the
sensitivity for passengers to choose a traffic mode based on
the cost. β1,β2,β3 are the coefficients of the main factors.
b1,b2 are the judgment parameters for the other factors of a
bus.

4 Solution algorithm

4.1 SCE-UA

Bus frequency optimization model (Eq. (3)) is a large-scale
nonlinear optimization model, which addresses a compli-
cated problem that traditional analytical methods cannot
solve. Many recent studies have proven that heuristic
techniques can successfully solve such complex problems
(Yao et al., 2016; Yao et al., 2017; Yao et al., 2015; Yu
et al., 2015), which GA, HJA, and ACO are commonly
used to address. In addition, many scholars have attempted
to use SCE-UA. The SCE-UA method is a novel global
optimization strategy designed to be effective and efficient
for a broad class of problems. This method combines the
strengths of the simplex procedure by Nelder and Mead
(1965) with the concepts of controlled random search
(Price, 1987), competitive evolution (Holland, 1975), and
complex shuffling, which is newly developed (Qu et al.,
2008). Thus, the current paper introduces SCE-UA, which
has been successfully applied in the field of water resource
optimization (Duan et al., 1994).
The SCE-UA strategy procedure is presented below.
Step 1. Initialize the numbers of complexes and points in

each complex as represented by P and m, respectively. The
total sample size s = pm.
Step 2. Generate s points x1,:::xs in the feasible space

Ω 2 ℝn. Correspondingly, calculate the function value fi of
each point xi.
Step 3. Rank the s points in ascending function value fi.

Store them in Array D = fxi,fi,i ¼ 1,:::,sg. Thus, i = s
represents the point with the largest function value.
Step 4. DivideD into P complexes A1,:::,Ap, each withm

points, so that Ak ¼ fxkj ,f kj jxkj ¼ xkþpðj – 1Þ, f kj ¼ fkþpðj – 1Þ,
j ¼ 1,:::,mg.
Step 5. Individually evolve each complex Ak ,k ¼ 1,:::,p

on the basis of the competitive complex evolution
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algorithm.
Step 6. Replace A1,:::,Ap intoD to shuffle the complexes,

such that D = fAk ,k ¼ 1,:::,pg. Sort D in order of
increasing function value.
Step 7. Check for convergence. If the convergence

criteria are satisfied, then stop; otherwise, return to Step 4.
In Step 5, the complex evolution algorithm is used to

evolve each complex. The detailed process of the complex
evolution algorithm is as follows:
Step 5.1 Initialize the parameters q, σ, and τ, where, q is

the number of subcomplexes, σ is the target number of
generations, and τ is the target number of evolutions of
each complex. Note that 2£q£m, σ≥l, and τ≥1.
Step 5.2 Use a trapezoidal probability distribution to

produce weights inAk , that is, the weight of xk1 is

�i ¼
2ðmþ 1 – iÞ
mðmþ 1Þ , i ¼ 1,:::,m: (18)

Point xk1 has the highest probability � ¼ 2=mþ 1. Point
xkm has the lowest probability �m ¼ 2=mðmþ 1Þ.
Step 5.3 Randomly choose q distinct points u1,:::,uq

from Ak according to the probability distribution specified
above. Store them in Array B = fui,vi,i ¼ 1,:::,qg, where vj
is the function value of point uj. Store the relative location

of uj of A
k in L.

Step 5.4 Generate offspring according to the following
procedure:
(a) Sort B and L so that the q points are arranged in

ascending order of function value and then use the formula
to calculate centroid g:

g ¼ 1

q – 1

Xq – 1
j¼1

uj: (19)

(b) Compute the new point r ¼ 2g – uq (reflection step).
(c) If r is within the feasible space Ω, compute the function
value fr, and proceed to Step d; otherwise, compute the
smallest hypercube H 2 ℝn that contains Ak , randomly
generate a point z within H, compute fz, set r = z, and set fr
=fz (mutation step). (d) If fr < fq, then replace uq by r, and
proceed to Step f; otherwise, compute c = (g +uq)/2 and fc
(contraction step). (e) If fc < fq, then replace uq by c, and
proceed to Step f; otherwise, randomly generate a point z
within H and compute for fz (mutation step). Replace uq by
z. (f) Repeat Steps a–e σ times, where σ≥1 is a user-
specified parameter.
Step 5.5 Replace parents by offspring as follows:

Replace B into Ak using the original location stored in L.
Sort Ak in order of increasing function value.
Step 5.6 Iterate by repeating Steps 2–5 τ times, where

τ≥1 is a user-specified parameter which determines how
many offspring should be generated (how far each
complex should evolve).

The SCE-UA method version used for optimization in
this study uses the values m = (2n + 1), q = (n + 1), σ = 1,
and τ = (2n + 1). These parameter values in SCE-UA are
presented Table 2. Hence, the only variable to be specified
by the user is the number of complexes p.

To clarify the methodology and clearly indicate the
novelty of the solution procedure, the algorithm flowchart
of SCE-UA method is shown in Fig. 2.

4.2 Agent simulation

The lower-level model is the traffic mode split by using a
Binomial-Logit model based on agent simulation (Ger-
shenson, 2001). Many agent simulation software are
currently available worldwide. The current study uses a
NetLogo platform for the simulation (Pursula, 1999).
NetLogo is utilized to simulate a social phenomenon as it
can design and model an environment, and it is suitable for
the system simulation of evolution over time. Model
developers give instructions to the hundreds of indepen-
dent operation bodies (agents). An agent enables a
microcosmic-level exploration between individual beha-
vior and macro models. The macroscopic model is
composed of many individual interactions (Erol et al.,
2000).
The model building process includes initialization and

operation phases. Initialization creates a 2D simulation of
the bus operating environment, including route and waiting
areas for bus passengers. Bus and rail agents are produced
on the route area, and the actual uncertain bus frequency is
simulated. The simulation can depict the operating
environment of bus frequency, including traffic jams and
waiting at crossroads. According to the set rule, buses have
different departure time intervals, whereas rail transit has a
set departure time interval. In each station, passengers in
the waiting area should appoint a passenger management
agent. A management agent can produce a certain number
of passenger agents in a certain period. Thus, the arrival
rate of passenger is fixed. The passenger agent observes the
rules of their utility function during operations. When bus
and rail agents arrive in the waiting area, passengers will
choose whether to get on or not.

5 Case study

To test the practicability and reliability of the model and
algorithm, this paper takes the data of the D–K bus route
and Light Rail Route No.3 as examples. The above model

Table 2 Parameters in SCE-UA

m p q � τ

21 4 11 1 21
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and algorithm are used to achieve optimal bus frequency.
According to the reality, Light Rail Route No. 3 and D–

K bus route overlapped in several stations from the Dalian
to the Kaifaqu station. The overlapped stations of Light
Rail Route No. 3 are Dalian, Xianglujiao, Jinjiajie,
Quanshui, Houyan, Dalianwan, and Jinmalu stations
(Fig. 3). The corresponding overlapped stations of D–K
bus route are Dalian, Xianglujiao, Jinsanjiao, Ocean
Natural, Distribution Market, No. 68 Middle School, and
Jinmalu stations (Fig. 4).
On the basis of the investigation and statistics on Dalian,

several assumptions for the model are drawn as follows:

(1) When passengers are in an overlapped station, 30%
and 20% of them are fixed passengers for bus and rail
transit, respectively, that is, fixed passengers will not
change their choices even if the condition changes.
(2) Assume that the rest of the passengers, except for

fixed passengers, can choose their means of finishing the
trip according to individual utility in an overlapped station.
(3) The last two overlapped stations will not be

considered in ascending and descending of the bus and
light rail routes. In other words, the last two overlapped
stations are stable.

5.1 Relevant parameters

To complete the questionnaire relevant to passengers’ flow
of D–K route with revealed preference (RP) and stated
preference (SP), the questionnaire was handed out in bus
stations, which are near subway stations, during the
waiting time of passengers. Basic information about
passengers and travel information of the RP data, as well
as fare, travel distance, and travel intention of SP data are
obtained.
The travel data of D–K bus and Light Rail No. 3 present

the average rate data of passengers’ arrival for D–K route
and Light Rail No. 3 (person/min) with the distribution of
the passengers. Data are shown in Table 3.
This study aims to optimize bus frequency considering

the overlapped stations of Light Rail No. 3 and D–K bus.
Table 4 presents the passengers’ arrival rates of Light Rail
Route No. 3 at each overlapped station.
On the basis of the bus condition of Dalian city,

determine vb = 4.4 km$h–1, vB = 18 km$h–1, vR =
56.1 km$h–1, HR = 1/30 h, and OR = 1/10 h. Public
transport fares in Dalian city are shown in Table 5.
Calibration values are calculated by least squares calibra-
tion. The values are as follows: �= 0.9, b1 = – 0.3, b2 =
– 0.2. After establishing the basic model of passengers for
choosing bus or rail transit, the values of walking distance
(W) should be determined. The probability of their choice
for bus and rail transit can be determined. According to the
survey data, the average distances are 600 and 1500 m for
passengers from starting point to bus and rail transit
stations, respectively. Thus, the walking distance para-
meters for bus and rail transit are determined at 0.6 and 1.5
km, respectively.
The parameter values of the frequency optimization

model are shown in Table 6.

5.2 Calculation results

Set the departure time interval of Light Rail Route No. 3 as
10 min. Change the frequency of the D–K bus route, and
substitute the parameter values in Eqs. (14) and (15). The
sharing ratios of D–K bus route and Light Rail Route No. 3
under different bus frequencies are obtained, as shown in
Fig. 5.

Fig. 2 Flowchart of SCE-UA
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Public sharing rate is used in the upper-level model
according to the arrival rate of a bus and the number of
passengers choosing the bus on each station. The profit of
bus operators per vehicle every day under different bus
frequencies is then obtained. Results are shown in Fig. 6.

Fig. 3 Overlapped stations of Light Rail Route No. 3

Fig. 4 Overlapped stations of D–K bus

Table 3 Passenger’s arrival rate in the D–K route stations

Station Passengers’ arrival rate Station Passengers’ arrival rate

1 14.07 14 6.38

2 8.52 15 5.23

3 15.08 16 5.36

4 13.27 17 6.47

5 15.97 18 3.28

6 5.78 19 4.05

7 8.67 20 3.1

8 9.43 21 1.52

9 4.83 22 0.25

10 6.7 23 0.13

11 3.8 24 0.03

12 7.78 25 0

13 4.9

Table 4 Passengers’ arrival rates of Light Rail Route No. 3 at each

overlapped station

Station Passengers’ arrival rate

1 28.33

2 17.28

3 18.62

4 14.91

5 10.4

6 10.13

7 15.58
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Table 5 Two types of public transport fares

Public transport mode Base price/CNY Increasing ticket policy

D–K route 2 Before 10 km, fare will start at 2 CNYand increase every 4 km by 0.5 CNY; ticket prices up to 3 CNY

Light Rail Route No. 3 of
Dalian

5
Before 4.1 km, fare will start at 2 CNYand increase every 4.4 km by 1 CNYuntil the fare reaches 10

CNY

Table 6 Parameter values of frequency optimization model

T D Cv
c Co

c

7200 s 16 h 128 CNY$d–1 per vehicle 1.6 CNY$km–1

Cs
c C l l

280 CNY$d–1 1000 CNY$d–1 27.4 km 2.5

Fig. 5 Sharing ratios of D–K bus route and Light Rail Route No. 3 under different bus frequencies

Fig. 6 Bus operator’s profit under different bus frequencies
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As shown in Fig. 6, the biggest profit is 3859 CNY$d–1

when bus frequency is 25 per hour. When bus frequency is
less than 25 per hour, the profit of bus operators will
increase constantly with the increase of the bus sharing
rate. By contrast, when the bus frequency is more than
25 per hour, the profit will decrease with the increase of the
bus sharing rate. This condition can be attributed to the fact
that passenger revenue is insufficient to sustain additional
bus operating costs when sharing rate increases slowly. For
managers, they should keep the bus frequency at 25 per
hour and attempt to balance the sharing ratio of bus and
light rail in order to maximize profit.
Finally, the paper discusses the results and analyzes the

validity of the model. Under the environment of clusters
(window platform), the model is solved by simulation,
whereas the algorithm is solved by MATLAB 2013. The
D–K route frequency is maintained at 25 per hour. Test
results are obtained after similar calculations for 20 times
are shown in Table 7.
As shown in Table 7, uncertain simulations result in 10

different profit results. The mean absolute percentage error
(MAPE) is calculated, which is only 3.17%. The MAPE is
satisfactory, and the final result is valid.

5.3 Convergence test

In the upper-level model, the bus frequencies of the
algorithms of GA, HJA, ACO, and SCE-UA with the
increase of generation are shown in Fig. 7.
As shown in Fig. 7, with the increase of generation, bus

frequency continuously decreases and eventually stabilizes
at 25. Thus, all four methods can satisfy the convergence
test, which are feasible. However, SCE-UA achieves the
optimal solution by only 80 iterations, which has the fastest
convergence speed. Therefore, compared with other
commonly used optimization algorithms, SCE-UA is a
heuristic algorithm that can efficiently solve the upper-
level model and is evidently feasible and superior.

6 Conclusions

A bi-level model is used in this study to obtain optimal bus
frequency. In the upper-level model, the frequency
optimization model is established, and a heuristic algo-
rithm called SCE-UA is used to solve it. The lower-level
model is a Logit model based on agent simulation for
traffic mode split. To analyze the variation of sharing ratio
between rail transport and bus, this study establishes the
competition model of bus and rail transport. As the bus
headway increases, the share ratio of bus gradually
increases, and the share ratio of rail transport gradually
decreases. The law is also influenced by the fare system
and the passengers’ walking distance to the station.
Passengers can choose their traffic mode by calculating
their utility. Final results show that when the bus headway
comes to 25 per hour, the profit of bus operators is
maximized. The profit will decrease as the bus headway
increases further because the growth rate of the sharing
ratio gradually slows down. SCE-UA is evidently feasible

Table 7 Results of 10-time tests on bus operator’s profit with 25 per hour bus frequency

Test times 1 2 3 4 5

Bus operator’s profit/CNY 3859 3835 3866 3853 3901

Test times 6 7 8 9 10

Bus operator’s profit/CNY 3872 3850 3861 3881 3927

Fig. 7 Bus frequencies of GA, HJA, ACO, and SCE-UA
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and outperforms the three other optimization algorithms.
SCE-UA is an efficient heuristic algorithm for solving the
upper-level model in this study.
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