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Abstract Train speed trajectory optimization is a
significant issue in railway traffic systems, and it plays a
key role in determining energy consumption and travel
time of trains. Due to the complexity of real-world
operational environments, a variety of factors can lead to
the uncertainty in energy-consumption. To appropriately
characterize the uncertainties and generate a robust speed
trajectory, this study specifically proposes distance-speed
networks over the inter-station and treats the uncertainty
with respect to energy consumption as discrete sample-
based random variables with correlation. The problem of
interest is formulated as a stochastic constrained shortest
path problem with travel time threshold constraints in
which the expected total energy consumption is treated as
the evaluation index. To generate an approximate optimal
solution, a Lagrangian relaxation algorithm combined with
dynamic programming algorithm is proposed to solve the
optimal solutions. Numerical examples are implemented
and analyzed to demonstrate the performance of proposed
approaches.

Keywords train speed trajectory optimization, railway
operation, stochastic programming

1 Introduction

A train speed trajectory, which is regarded as an
operational guidance to drivers and an integral part of an

automatic train operation (ATO) system, specifies the
movement of a single train over an inter-station or a
railway line. Trains controlled on the railway line
according to speed trajectory guarantee well-organized
traffic. Focusing on the operational requirement of
automation and efficiency, target speed trajectory is usually
required to pre-generate real-time tracking of ATO
controller as guidance during the train operation with the
aim of preventing collision of the automatic train
protection (ATP) system. Figure 1 illustrates the train
operation process in real-world applications. To optimize
speed trajectories, some indicators such as punctuality,
riding comfort, energy efficiency, and switching frequency
between various driving modes are considered; at the same
time, considering track condition, stopping point, maximal
allowable speed of ATP system, and vehicle/carriage data
(which includes train mass and traction/braking perfor-
mance). Guided by pre-generated target speed trajectories,
the ATO controller or operator then releases the control
instructions to drive the train on the transit line.
Owing to its inherent significance, the train speed

trajectory optimization problem has attracted significant
attention from researchers and engineers in recent decades.
One of the popular topics is how to generate an energy-
efficient speed trajectory to further reduce operation cost.
With the assumption that trains can completely track the
target speed trajectory, three methodologies have been
proposed to optimize the speed curve to reduce operational
energy consumption; these methodologies consists of
analytical methods, numerical algorithms, and intelligence
algorithms. Based on the optimal control theory, analytical
methods, which include maximum principle (e.g., Asnis
et al., 1985; Howlett, 2000; Liu and Golovitcher, 2003)
and dynamic programming (e.g., Ko et al., 2004; Calderaro
et al., 2014), require good properties of the considered
objectives and aim to obtain optimal solutions even for
complex problems. Some measures have suggested to
improve properties of the objective function in speed curve
optimization, such as simplification of certain conditions in
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the modeling process. Along this line, Howlett (2000) used
Pontryagin principle to determine an optimal driving
strategy of continuous and direct controls for fuel
consumption minimization within a given running time.
Liu and Golovitcher (2003) described an analytical process
with maximum principle to compute the optimal operating
successions of a rail vehicle to minimize energy consump-
tion. Khmelnitsky (2000) determined a detailed program
for traction and brake applications to minimize energy
consumption with a variable grade profile subject to
arbitrary speed restrictions, where the optimal solution was
obtained from the maximum principle analysis. Ko et al.
(2004) investigated Bellman’s dynamic programming to
optimize train running speed with the objective of
minimizing total consumed energy. Calderaro et al.
(2014) used dynamic programming to find a set of
pseudo-optimal speed cycles to minimize the electrical
energy used for traction operations.
Compared with analytical methods, numerical algo-

rithms can make a trade-off between accuracy and
computational time. These algorithms, which have a less
strict objective function, include gradient method and
sequential quadratic programming. For instance, Miyatake
and Matsuda (2009) pointed out that the charging/
discharging command of on-board energy storage and
vehicle speed profile should be optimized together based
on optimality analysis; they developed a mathematical
model based on sequential quadratic programming.
Miyatake and Ko (2010) introduced dynamic program-
ming, gradient method, and sequential quadratic program-
ming to find energy-saving train speed profiles and
compared the performance of the three methods. In
addition, intelligent algorithms were proposed by simulat-
ing natural processes such as ant feeding, natural
evolutionary law, and human intelligence process to find
the near-optimal speed trajectories to achieve the mini-
mum/maximum objective function during optimization.
These algorithms include ant colony algorithm, genetic
algorithm, tabu search, and simulated annealing algorithm.
Ke et al. (2009)considered the speed curve optimization of

trains to reduce energy consumption on different signal
block modes, that is, fixed block signaling and moving
block signaling (Ke et al., 2012), which were solved by
max-min ant algorithm. Kim and Chien (2011) developed
simulated annealing algorithm to search for the optimal
train operation for energy consumption minimization by
considering track alignment, speed limit, and schedule
adherence. Considering usage of regenerative energy
between two trains, Tang et al. (2015) optimized the
speed profile of one of the trains to reduce power
consumption by enhancing genetic algorithm, which was
calculated by the established electric model.
In practice, incomplete accurate tracking performance of

ATO controller occurs. Thus, some studies have coordi-
nated the optimized target speed trajectory with ATO
controller performance to search for punctual and energy-
saving strategies. For instance, Liu et al. (2015) proposed a
more accurate model of energy calculation with ATO
strategies to optimize the energy-saving speed curve by
modifying the tabu search algorithm. Cao et al. (2016)
proposed an optimization method of the recommended
speed profile by considering the ATO tracking strategy,
which was solved by the modified max-min ant algorithm.
In addition, Wang et al. (2013) made a trade-off between
energy consumption and riding comfort to search for the
optimal trajectory through a pseudo-spectral method with
varying line resistance, speed restrictions, and maximum
traction force. Dominguez et al. (2012) designed optimal
ATO speed profiles of metro trains to minimize the net
energy at substations using the modular simulator
considering the energy recovered from regenerative
brake and stored in an on-board energy storage device.
Majority of the existing studies mainly focused on

deterministic environments in which all the involved
parameters are set as deterministic quantities. In the
process of finding energy-efficient speed trajectories,
various factors can lead to unreliable energy-consumption
performance due to the complexity of the operation
environment. For instance, in the Beijing metro system,
the passenger demand during peak hours is typically much

Fig. 1 Illustration of a driving system
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larger than that during off-peak hours. Thus, even with the
same speed trajectory, the energy consumption fluctuates
between different service periods. In addition, the
difference in the performance of individual trains exist,
which leads to the uncertainty in energy consumption
during actual operations. Recognizing these significant
characteristics, the present study intends to investigate how
a robust train speed trajectory over an inter-station is
generated by considering the randomness/fluctuation of the
energy consumption in the operation process. This is a
novel idea because no related research has been found until
today.
In detail, this study aims to contribute the following to

the field of speed trajectory optimization: (1) represent the
speed-distance space into a specified network by discretiz-
ing the distance into different intervals, and construct the
velocity shift link between different velocity stamps by
considering all possible acceleration rates; (2) use a
sample-based link energy consumption to capture the
uncertainty in the operation process; (3) formulate a
problem as stochastic constrained shortest path to generate
energy-efficient speed trajectories; and (4) design a
combination of Lagrangian relaxation and dynamic
programming algorithms to search for optimal solutions
to the proposed model.
The rest of the paper is organized as follows. In Section

2, we provide a detailed statement of the problem of
interest. In Section 3, we construct the speed-distance
network for all potential speed trajectories. Section 4
formulates this problem as a stochastic constrained shortest
path problem to generate the robust speed trajectory for the
practical operations. A heuristic algorithm, which is a
combination of Lagrangian relaxation and dynamic
programming algorithms, is proposed to search for the
near-optimal solution to the proposed model in Section 5.
Numerical examples are implemented to demonstrate the
performance of the proposed approaches in Section 6.
Finally, we draw a conclusion.

2 Problem statements

In the process of determining optimal speed trajectory for
trains, two evaluation indexes are considered when a train
traverses along the railway line with a given speed
trajectory; these are travel time and energy consumption.
The travel time index corresponds to service quality in the
transportation process because the railway system is
widely regarded as one of the time-efficient transportation
modes due to its punctuality and convenience. By contrast,
the energy consumption index is essentially associated
with the travel cost in the operation process. Generally, the
variation tendency of inter-station travel time and energy
consumption take opposite directions because high opera-
tion speed leads to increased energy usage and reduced
inter-station travel time accordingly. To make a trade-off

between these two indexes, the existing literature always
treats this problem as a multi-objective programming
model and uses some traditional methods to handle two
objectives, such as the linear weighted method and ideal
point method. In these methods, the trajectory is optimized
by considering the compromise between travel time and
energy consumption.
In real-world applications, trains are required to operate

in accordance with predetermined timetable in which the
link travel time is set in the planning stage. Each train is
scheduled to travel on the railway line according to given
arrival and departure times at each station. For energy-
saving operations, finding energy-efficient speed trajec-
tories is also needed to further reduce travel costs. Thus, a
speed trajectory optimization problem within the pre-
specified travel time is at hand, which is also a significant
issue for practical operations.
Energy consumption with respect to train operation

mainly consists of two parts: one is traction and braking
energy consumption, and the other is auxiliary energy
consumed by auxiliary facilities such as lighting, air
conditioning, and ventilation systems. However, since the
auxiliary energy consumption is unrelated to the objective
of this study, we only emphasize decreasing the traction
and braking energy consumption in the speed trajectory
optimization process. For practical operations, we have to
specifically consider the different control modes in the
train traversing process, including traction, cruising,
coasting, and braking operations. In general, traction and
cruising operations aim to keep or enhance the train speeds
during operations. The coasting operation intends to
decrease the speed through the resistance force (including
air resistance, wheel resistance, grade resistance, and
frictional resistance), and the braking operation is
employed to finally stop the trains at stations. For these
control modes, the coasting operation does not consume
the traction energy, and the energy consumption occurs for
the other three modes. With these analyses, the problem
considered in this study is essentially to determine the
sequence of operation statuses and their transfer sites along
the railway lines, with the purpose of minimizing the
energy consumption under the guaranteed travel time.
To clearly characterize train speed trajectories, we

provide the illustration in Fig. 2 to show the detailed
operations in the movement process of a train.

Fig. 2 Illustration of speed trajectory over an inter-station
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Figure 2 illustrates the speed-distance trajectory over a
given railway section, where the sites x0 and x6 on the x -
coordinate correspond to the origin and destination
stations, respectively, and any site along this coordinate
specifically maps to a location on this inter-station. The y -
coordinate represents the dimension of velocity. Typically,
this speed trajectory consists of four types of operations.
When a train leaves the site x0, it needs to accelerate to site
x1. This interval corresponds to traction operation. At site
x1, the train is required to change from acceleration
operation to coasting operation up to site x2. There after,
the cruising operation is employed to keep the constant
speed over interval ½x2,x3�. Then, the acceleration operation
is reused to enhance the speed of the train in interval
½x3,x4�. In interval ½x4,x5�, the coasting operation is used
again until site x5. Finally, the braking operation is
implemented in the last section to stop the train at the
end of the section. In this process, the generated speed
trajectory cannot exceed the pre-specified speed limit.
This illustration suggests that finding an optimal speed-

distance trajectory is essentially specifying the sequence of
traverse modes and the mode shift points along the inter-
station. Generally, the pre-specified speed trajectory
corresponds to two features, that is, travel time and energy
consumption. To reduce energy consumption, choosing the
optimal speed-distance trajectory with the guaranteed
travel time requirement is needed. Note that this problem
is essentially a complex nonlinear decision-making process
that is difficult to solve effectively through analytical
methods. Therefore, a variety of heuristics with various
searching strategies, such as genetic algorithm and local
search, have been used in the literature to find the
approximate optimal solutions.

3 Speed-distance network

In the literature, trajectory optimization is always inves-
tigated in a certain environment, that is, all the involved
parameters in the problem are assumed to be deterministic.
However, various factors can lead to uncertainties in
energy consumption, such as passenger loading amount
and train performance. Therefore, in the process of
optimizing train trajectories, considering uncertain factors
is important in generating robust train trajectories. This
study aims to investigate the method for producing robust
train trajectories through a stochastic constrained shortest
path model. To ensure comprehensiveness of this paper,
we introduce the approaches to deal with the problem.
To employ the shortest path model, we first introduce the

discretization method for this trajectory optimization
problem, in which the entire speed-distance space is
discretized into different stages, over which all the possible
speed variations can be represented as a variety of links
between different speed stamps. By using this method, we

finally construct a speed-distance variation network
between origin and destination stations. As a result, the
dynamic programming algorithm can be used to solve the
optimal train trajectory. Figure 3 illustrates this discretiza-
tion process.
As shown in Fig. 3, a speed-distance network is

constructed over a section between two adjacent stations
in which the speed and distance are all discretized in the 2D
coordinate of distance and speed. In practice, this network
can be regarded as an approximation of the original train
trajectory space (that is, the area below the speed limit line
over the inter-station). Specifically, the distance can be
decomposed into a series of discrete sites by using a small
distance interval with length δ (e.g., δ ¼ 1 m). Over each
discrete site, the potential velocity limit is also discretized
into different speed stamps. Through this method, the
entire feasible region of the speed trajectory can be
discretized into various representative speed-distance
nodes, over which the speed-distance network has to be
constructed.

To prepare the network, we have to consider the tradeoff
between representation accuracy and complexity. Theore-
tically, if a much larger interval is used to discretize the
speed-distance region, the accuracy of the generated
optimal speed trajectory cannot be fully guaranteed,
while the computational complexity can be decreased to
significantly. On the contrary, if a small discretized interval
is adopted, accuracy can be improved and complexity can
be increased. In the speed-distance network, each speed
trajectory can be represented by a path from the origin to
the destination. Each link in this network is typically
associated with two performance indicators, namely, link
travel time and link energy consumption. The link travel
time can be guaranteed if we take a suitable acceleration
rate in practical operations. However, the link energy
consumption may vary due to different train performances,
driver habits, and loading number of passengers. In
practice, we can use data to capture the randomness of
the energy consumption over various links. The detailed
process of calculating the link travel time and energy
consumption is given in the following.
In the data preparation, acceleration and deceleration

Fig. 3 Illustration of speed-distance network over an inter-station
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rates can also be discretized into K cases denoted by
a1,a2,⋯,aK . Determining the links in the speed-distance
network is easier with these acceleration rates. For
instance, for each discretized speed-distance node Awith
speed v1, we can adopt various acceleration rates to deduce
all the potential speed in the next stage according to
Newton’s laws of motion. Typically, if acceleration rate ak
is adopted, then we can obtain the speed (denoted by v2) at
the next stage. According to the equation

δ ¼ v1t þ
1

2
akt

2, (1)

we can deduce the travel time with each acceleration rate
ak as

t ¼ – v1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ 2akδ

p
ak

  ak³0ð Þ,

t ¼ – v1 –
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ 2akδ

p
ak

  ak<0ð Þ: (2)

Then, according to Newton’s laws of motion, we obtain
the following speed at the next stage:

v2 ¼ v1 þ akt: (3)

In the process of data preparation, if we enumerate all
the possible acceleration rates, the potential links rooted at
node A can be deduced. Through this method, we can
finally construct the speed-distance network to find energy-
efficient speed trajectories in which the link travel time can
be predetermined by the method.
As stated, even in each link, a variety of complex factors

can lead to the randomness of energy consumption. To
capture the randomness, this study uses the following
method to produce random data. First, we provide a
constant quality of the involved trains, denoted by m.
Then, we calculate the total energy consumption Eij on a
specific link ði,jÞ with travel time Tij and acceleration ak by
simulation. That is,

Eij ¼ �!
t2Tij

FvðtÞdt: (4)

In the preceding equation, parameter � is a transfer
coefficient between the mechanical energy and electricity
energy. F ¼ mak þ Fb, if ak³0; F ¼ jmak j –Fb, if ak<0,
where Fb is the resistance referring to Ghoseiriet et al.
(2004), and Fb ¼ mgðA1vðtÞ2 þ A2vðtÞ þ A3Þ.With this
information, we then treat the random link energy
consumption (denoted by Eij) as

Eij ¼ Eij þ �, (5)

in which � is a random variable to show the energy-
consumption fluctuation incurred by the uncertain factors.
In real-world operations, time efficiency is an important

index to evaluate the service quality of train operations.
For the speed trajectory optimization, since the travel time
in an inter-station is restricted within a time threshold to
guarantee service quality, this problem can be finally
formulated as a constrained shortest path problem in the
proposed distance-speed trajectory network, which is
discussed in detail in the following section.

4 Mathematical formulation

In this section, we formulate the problem as a stochastic
programming model in which the randomness of energy
consumption is specifically considered. The core issue in
the formulation process is to determine the representation
method for the random link travel time. Theoretically, two
discretization methods can be employed to characterize
randomness. One method is by using the independent
discrete random variables associated with different links to
capture the randomness of energy consumption, and the
other is by using the sample-based discrete random
variable with specific correlation over the entire speed-
distance network. In the present study, we have adopted the
second method to characterize the randomness of energy
consumption. In practice, this type of representation is
reasonable because each service train can provide sample
data for the link energy consumption in real-world
applications. Thus, the focus of this study is to generate
a robust speed trajectory in the speed-distance network
with the given sample-based random data, such that the
expected energy consumption is minimized. To formulate
the problem of interest, we first introduce the following
notations and parameters:
N : set of nodes in speed-distance network,
A: set of arcs in speed-distance network,
ðN ,AÞ: input speed-distance network,
i,j: indexes of nodes in the network,
ði,jÞ: directed link from node i to j,
tij: link travel time on link ði,jÞ,
eωij : link energy consumption over sample ω,
ω: index of sample ω,
pω: probability of sample ω,
Ω: set of sample.
To find an optimal speed trajectory with the least

expected energy consumption, this problem turns out to be
a path-finding problem in the speed-distance network.
Thus, we aim to formulate this problem as a stochastic
constrained shortest path problem by using an approach
similar to that proposed by Wang et al. (2016). To
formulate this optimization problem, we introduce the
decision variables involved in the problem of interest.
yωij is the binary indicator of selecting link ði,jÞ over

sample ω. If link ði,jÞ over sample ω is selected, then
yωij ¼ 1; otherwise, yωij ¼ 0.
Using these decision variables, we have to introduce the
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system constraints in the speed trajectory searching
process. As shown in the network, this problem essentially
needs to find a path from the origin to the destination over
different samples. Therefore, the flow balance constraint is
formulated as follows for each sample:

X
ði,jÞ 2A

yωij –
X

ðj,iÞ 2A

yωji ¼
1, if   i ¼ O,

– 1,   if   i ¼ D,  ω 2 Ω,

0,     otherwise:

8><
>: (6)

In this formulation, the objective is to provide a unique
speed trajectory as a guide for all the trains in real-world
applications. As the flow balance constraint can only
provide a sample-based speed trajectory for each sample,
all the generated trajectories must not overlap each other
because such a condition would cause difficulty. To
generate an operational trajectory for all the trains under
various operation conditions, this study intends to provide
a robust solution for practical operations. For this purpose,
we introduce the following unique speed trajectory
constraint:

yω
í

ij ¼ yω
î

ij , ω#, ω$2 Ω: (7)

Note that constraint (7) can be further reformulated as a
total of jΩj equality constraints:

y1ij ¼ y2ij, y
2
ij ¼ y3ij, :::, y

jΩj – 1
ij ¼ yjΩjij , yjΩjij ¼ y1ij: (8)

In addition, to transfer the passengers within the shortest
possible time, the travel time should be guaranteed over
each inter-station. For instance, on the level of schedule,
we pre-specify the inter-station travel time in advance,
denoted by T. Then, on the level of control, we have to
ensure that regardless of the final speed profile produced,
the link travel time should not exceed the time threshold
for orderly operations according to the train schedule.
Thus, to find the optimal solution, we have to add a time
threshold side constraint to keep the travel time, as given in
the following equation:X

ði,jÞ 2A

yωij $tij£T : (9)

In this problem, different evaluation indexes can be used
to evaluate the speed trajectory selection strategy. If the
energy consumption is used as the evaluation index, the
sample-based total energy consumption can be calculated
as E½Yω� ¼

X
ði,jÞ2A

eωij , ω 2 Ω. The expected constrained

shortest path problem can then be formulated as follows by
considering the probability of each sample:

E½Y � ¼
X
ω2Ω

X
ði,jÞ 2A

pω$e
ω
ij $y

ω
ij : (10)

The train-speed trajectory problem can be formulated as
the following stochastic constrained shortest path problem:

min E½Y �
s:t:

flow  balance  constraints

unique  trajectory  constraints

side  constraints

binary variable  constraints

:

8>>>>>>>>>><
>>>>>>>>>>:

(11)

In this model, the purpose is to find a robust speed
trajectory with the least expected energy consumption. The
first constraint aims to generate a series of sample-based
speed trajectories, the second constraint imposes the
unique trajectory constraint for the final results, and the
third constraint requires that the inter-station travel time
cannot exceed the pre-specified time threshold.

5 Solution algorithm

In Wang et al. (2016), since the Lagrangian relaxation-
based algorithm demonstrates its effectiveness in solving
the stochastic constrained shortest path problem, this study
also proposes a similar algorithm to solve the model, which
is detailed in the following discussion.
First, we reformulate and relax the hard constraints,

namely, unique trajectory constraints and side constraint,
by using Lagrangian relaxation approach. Specifically, the
Lagrangian multipliers associated with unique speed
trajectory constraints and siding constraints, denoted by
lωij³0, 8ði,jÞ 2 A,ω 2 Ω, and �ω³0, ω 2 Ω, respectively,
are introduced to construct the following relaxed model:

Rðl,�Þ ¼ min
X
ω2Ω

X
ði,jÞ 2A

pω$e
ω
ij $y

ω
ij

þ
X

ði,jÞ 2A

X
ω2Ω

lωij ðyωij – yωþ1
ij Þ þ l

jΩj
ij ðyjΩjij – y1ijÞ

 !

þ
X
ω2Ω

�ω
X

ði,jÞ 2A

yωij $tij – T

0
@

1
A

s:t:   f low  balance  constraints

binary  variable  constriants:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(12)

By regrouping the variables of the objective function in
the relaxed model (12), we can rewrite this model as
follows:

Rðl,�Þ ¼ min
X
ω2Ω

X
ði,jÞ 2A

ðpω$eωij þ �ω$tij þ g
ω
ij Þ$yωij

–
X
ω2Ω

�ω$T

s:t: flow  balance  constraints

binary  variable  constraints

8>>>>>><
>>>>>>:

(13)
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where g1
ij ¼ l1ij – l

jΩj
ij ,gω

ij ¼ lωij – l
ω – 1
ij ,ω ¼ 2,3,⋯,jΩj:

With given multipliers lωij³0, 8ði,jÞ 2 A, ω 2 Ω, and
�ω³0, ω 2 Ω, the relaxed model (13) can be further
decomposed into a total of jΩj standard shortest path
problems with generalized link cost csij ¼ pω$t

s
ij þ �ω$tij þ

gω
ij and a Lagrangian multiplier related constant. In detail,

the decomposed standard shortest path problem over
sample ω can be formulated as follows.
SPðωÞ:
Rωðl,�Þ ¼ min

X
ði,jÞ 2A

ðpω$eωij þ �ω$tij þ gω
ij Þ$yωij

s:t: flow  balance  constraints

binary  variable  constraints

:

8>><
>>: (14)

For the optimal objective functions between the relaxed
model and subproblems, we can deduce the following
relationship. In detail, for any given Lagrangian multiplier
vector ðl, �Þ, we have

Rðl, �Þ ¼
X
ω2Ω

Rωðl, �Þ –
X
ω2Ω

�ω$T : (15)

In addition, the Lagrangian dual problem can be
formulated as follows:

L ¼ maxl, �³0Rðl, �Þ:

In the following discussion, the subgradient and
dynamic programming algorithms can be integrated to
search for an approximate optimal solution to the original
problem. The subgradient algorithm is used to generate the
smallest gap between the lower and upper bounds, in
which the best upper bound is treated as the approximate
optimal objective function. Theoretically, a small duality
gap corresponds to a high-quality solution. Once the lower
and upper bounds overlap, the exact optimal solution is
finally determined.
During the solution process, the subgradient algorithm

can be treated as the out-loop algorithm framework to
solve the Lagrangian dual problem, which aims to improve
the lower bound of the original problem iteratively. At each
iteration with the fixed Lagrangian multipliers, we have to
solve the relaxed model to obtain its optimal objective.
According to the decomposed models, solving the
deterministic shortest path problems over different samples
is necessary. Note that the speed-distance network is a
single-direction network with directed links; thus, dynamic
programming can be employed to find the shortest path
problem in the given speed-distance network. In addition,
we can generate a total of jΩj speed trajectories (that is,
satisfying the siding constraint)when solving the sample-
based shortest path problem. If the generated trajectories
are feasible solutions to the original model, they will be
used to update the upper bound of the searching process.
In the subgradient algorithm, the solution process is a

point-to-point search in which the subgradient direction is
treated as the searching direction of the current point. Once
the number of iterations reaches a predetermined threshold,
or the duality gap is below a given level ε, the searching
process is terminated, and the best upper bound is
outputted as a close-to-optimal solution to the original
problem. The detailed procedure of the designed algorithm
is discussed in the following.
Algorithm. Lagrangian relaxation algorithm to solve

model (11).
Step 1: Initialization
Set iteration number η ¼ 1.
Initialize the Lagrangian multipliers lωij³0, 8ði,jÞ 2

A,ω 2 Ω and �ω³0, ω 2 Ω.
Step 2: Solution to relaxed model
Solve subproblems by the dynamic programming

algorithm, and find a speed trajectory for each sample.
We denote the objective value of the relaxed model at the
current iteration as the lower bound.
Step 3: Update of upper bound
If the speed trajectory derived from a subproblem is not

feasible to the original model (11), we adjust it as a feasible
one through the K -shortest path algorithm. We set the
objective value of each feasible solution to the original
model as the current upper bound and update the upper
bound at iteration η by the minimum. We calculate the
relative gap between the upper and lower bounds at
iteration η.
Step 4: Update of Lagrangian multipliers
We update the Lagrangian multipliers lωij and �ω by

subgradients lωij þ �ηðyωij – yωþ1
ij Þ and �ωþ�η

X
ði,jÞ2A

yωij $tij

0
@

– T !, where �η is the step size at iteration η.

Step 5: Termination condition test
If η is less than a predetermined maximum iteration

number or the relative gap is less than a pre-specified
value, we terminate the algorithm; otherwise, η ¼ ηþ 1,
and we return to Step 2.

6 Numerical examples

This section describes the series of numerical experiments
implemented to test the effectiveness and performance of
the proposed approaches. To solve the model in the
examples, the designed heuristic algorithm is coded by
C++ in Microsoft Visual Studio 2008 software and
performed on a PC with 4.00GB memory and 3.40GHz
processor.
In the experimental design, we considered a railway

segment between two stations with a total length of
1000 m. To construct the speed-distance network, we
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further subdivided this inter-station into 100 sites with the
same length, that is, 10 m for each site and a total of 100
stages in the railway segment. Theoretically, the length of
each site can be set as smaller if we want to describe the
speed-distance more accurately, which will lead to an
increase in computational time. According to the real-
world operation conditions, the speed limit in distance
intervals [0,200] and [800,1000] is 55  km$h – 1 (about
15 m$s – 1), and that of the [200,800] distance intervalis
80  km$h – 1 (about 22 m$s – 1). During implementation, this
algorithm is terminated if the total number of iterations
exceeds 15 or the relative gap is less than 0.001%. The best
solution generated among the iterations is the approximate
optimal solution to the model.
In each distance site, the potential velocity also has to be

discretized into different speed stamps. First, the accelera-
tion rates are assumed to be discretized into five cases,
that is, 1 m$s – 2, 0.5 m$s – 2, 0 m$s – 2, – 0.5 m$s – 2, and
– 1 m$s – 2. Second, in the acceleration stages, that is, the
distance interval [0, 200], we assume that the acceleration
rates are 1 m$s – 2, 0.5 m$s – 2, and 0 m$s – 2. In the
deceleration stages, that is, the distance interval [800,
1000], three acceleration rates were obtained, namely,
0 m$s – 2, – 0.5 m$s – 2, and – 1 m$s – 2. In the distance
interval [200, 800], all five cases were taken in the
operation process. In this experiment, we determined the
speed with the acceleration 1 m$s – 2 or – 1 m$s – 2 as the
maximum speed in each stage under the acceleration or
deceleration process. For example, as the initial speed is 0,
the speed increases to approximately 4.5 m$s – 1 with the
acceleration 1 m$s – 2, and we denote this speed as the
maximum in the first stage. In addition, we assume that a
total of five different speed stamps exist in each stage; thus,
we decrease the maximum speed by 0.5 m$s – 1 gradually.
The five different speed stamps should be 4.5 m$s – 1,
4.0 m$s – 1, 3.5 m$s – 1, 3.0 m$s – 1, and 2.5 m$s – 1 when
the train operates in the first 10 m. In practice, more than
five speeds are generated with the given acceleration rates
at each stage; therefore, we correct all the speeds in the
current stage as five, given the speed stamps for simplicity.
With the speeds in two adjacent stages, we construct their
relationships by links, and two indicators(travel time and
random energy consumption) are associated with each
link.
As stated, the proposed model has two critical

parameters to influence the final optimal solutions; these
are travel time budget and number of considered samples.
The results are discussed in the following section.
Impact of upper limit of total travel time. In this
experiment, we attempt to discuss the sensitivity of
approximate optimal solution under different upper limits
of total travel times, where we assume that the random
energy consumption in each link has a total of 10 samples.
Table 1 shows the computational results by varying the

upper limit of the total travel time between 80s and 89s.
Evidently, all the relative gaps are less than 15.00%, where
eight cases have relative gaps within 10.00%. This
condition implies that the algorithm can obtain the high-
quality solution with acceptable relative gaps between the
upper and lower bounds. Also, note that the objective
value, which is the expected energy consumption, is highly
sensitive to the upper limit of the total travel time, which
indicates that we have to carefully determine the upper
limit in the solution process. The best upper limit should be
84s in this experiment, with the smallest relative gap of
5.10%.

To further show the sensitivity of approximate optimal
solution to the upper limit of travel time, Fig. 4 depicts the
corresponding speed trajectories with different upper limits
by different color curves. The figure suggests that the
speed trajectories differ from each other when we vary the
upper limit of the total travel time. Specifically, the speed
trajectories significantly change when the speed increases
from approximately 12 m$s – 1 to 15 m$s – 1 in the accel-
eration operation and decreases from 15 m$s – 1 to
10 m$s – 1 in the coasting operation.
Impact of different sample size. To verify the computa-
tional efficiency of the proposed algorithm, Fig. 5 presents
six sets of experiments with different link energy
consumption sample sizes, namely, 5, 10, 15, 20, 25, and
30. Moreover, we assume that the total travel time is less
than 84s. Figure 5 implies that the computational times
almost increased linearly with the increase in sample size,
which indicates that the sample size has a considerable
effect on computational efficiency. Particularly, in each
iteration of the algorithm, the most time-consuming step is
the generation of the optimal speed trajectory in each
sample. Correspondingly, the approximate solutions,
which are speed trajectories with different sample sizes,
are depicted in Fig. 6. The maximum speed does not reach
the speed limit of 22 m$s – 1 when the sample size is 30,

Table 1 Computational results with different upper limits

Upper limit/s Upper bound/kWh Lower bound/kWh Relative gap/%

80 30.9875 28.1129 9.27

81 30.9710 29.1205 5.97

82 30.9913 27.5204 11.20

83 30.9980 26.5900 14.19

84 30.9575 29.3766 5.10

85 30.9577 28.8425 6.83

86 30.9659 28.4730 8.05

87 30.9766 28.7174 7.29

88 30.9487 28.6147 7.54

89 30.9729 28.3621 8.42
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and the maximum speeds of other cases reach this speed
limit.

7 Conclusions

Optimal speed trajectory plays a key role in urban rail
transit systems. In this study, a novel method was
presented to effectively formulate the problem of interest.
The distance-speed network between two adjacent stations
was constructed by dividing the distance into multiple sites
of the same length, and the velocity shift link was
constructed between different velocity stamps. The
problem of interest is formulated as the shortest path
problem. Moreover, due to the uncertainty of energy
consumption, the sample-based method was adopted to

Fig. 4 Speed trajectories with different upper limits

Fig. 5 Computational times with different samples

Fig. 6 Speed trajectories with different samples
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depict randomness in the operation process. Considering
the energy consumption and travel time of the involved
train, a stochastic constrained shortest path model was
formulated to illustrate the near-to-optimal speed trajec-
tory. Finally, a Lagrangian relaxation-based algorithm was
designed to solve the proposed model effectively, and its
performance was demonstrated by a series of experiments.
In future research, we intend to focus on the optimal

speed trajectories of multiple trains because in practice,
more than one train operate at a single station. We also
recognize that recovery energy is generated in the process
of braking operations, and integrating the use of
regenerative energy for multiple trains would be a
meaningful research direction.
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