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Abstract In large cities with heavily congested metro
lines, unexpected disturbances often occur, which may
cause severe delay of multiple trains, blockage of partial
lines, and reduction of passenger service. Metro dispatch-
ers have taken a practical strategy of rescheduling the
timetable and adding several backup trains in storage
tracks to alleviate waiting passengers from crowding the
platforms and recover from such disruptions. In this study,
we first develop a mixed integer programming model to
determine the optimal train rescheduling plan with
considerations of in-service and backup trains. The aim
of train rescheduling is to frequently dispatch trains to
evacuate delayed passengers after the disruption. Given the
nonlinearity of the model, several linearization techniques
are adapted to reformulate the model into an equivalent
linear model that can be easily handled by the optimization
software. Numerical experiments are implemented to
verify the effectiveness of the proposed train rescheduling
approach.

Keywords train rescheduling, backup train, metro line,
disruption, timetable

1 Introduction

Metro network is the main component of public transpor-
tation systems and is typically regarded as the “main
arteries” of large cities because this network punctually
delivers many passengers to their destinations, which is
particularly convenient for tide commuters (Vuchic, 2005).
Until now, the Beijing Metro system operates with 17 lines

totaling for 570 km. In 2016, the Beijing Metro system has
carried approximately 10 million passengers in average
(Beijing Subway, 2016). In addition, the metro network
can evidently release the road traffic congestion problems
in large cities, such as Beijing, Tokyo, Singapore, and Los
Angeles, because this network accounts for a large part of
traveling demands (Yin et al., 2014).
Meanwhile, the dramatic expansion of residents in

recent years has pressured the urban metro systems in
China to address the increasing passenger demands. On the
one hand, increasing passenger demands overload the
trains, thus causing many issues in metro systems
management. Many frequent perturbances, such as the
breakdown of singling systems, vehicles, and platform
screen doors (PSD), typically delay the daily operations of
metro trains for several minutes or over 10 min (Yin et al.,
2016a, 2016b). Consequently, these disturbances evidently
reduce the reliability of equipment and infrastructure. For
example, in the first quarter of 2017, Beijing Metro has
reported at least 327 faults due to train breakdown and 81
faults from PSDs. Although most of these accidents only
last for several minutes, these perturbances still delay
many train services. On the other hand, as passenger
demands increase, any small perturbance that delays the
trains can still cause severe subsequent issues (Gao et al.,
2016). For example, the numbers of waiting passengers
double during peak hours when trains are three minutes
delayed. Similarly, delay causes over-crowded platforms
and even results in safety issues, such as panic-stricken
stampede.
Therefore, taking an emergency response plan in case of

disruptions, such as evacuating waiting passengers at
platforms to immediately recover the normal operational
state, is significantly practical. The train rescheduling
approach is commonly regarded as the primary approach
of the metro dispatchers in response to disruption
scenarios. Currently, metro trains operate with high
frequency and short following headway during peak
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hours in large cities. Maintaining appropriate train
following headway in avoiding the potential collision
between two trains is critical and difficult for metro
dispatchers. In addition, most of the existing metro lines
are constructed with several storage tracks that enable
metro dispatchers to store a backup train for rescheduling
purposes in case of disruptions. Thus, if we want to add a
backup train under disrupted scenarios, then we must first
consider the current information of all the existing service
trains along the metro line. Then, we must carefully
reschedule their departure and arrival times to realize a
globally coordinated train dispatching plan between
existing and new trains with guaranteed safety train
following margin.
The contribution of this paper is the development of a

new approach in rescheduling the timetable of trains for a
metro line that explicitly involves backup trains. In
particular, an optimization model is proposed to generate
an optimal train schedule considering in-service and new
backup trains in disrupted situations. The model reformu-
lation proves that the nonlinear model can be linearized
and efficiently solved by exact algorithms or optimization
software.

2 Literature review

The train scheduling/rescheduling problem aims to gen-
erate/regenerate a timetable employed by trains in railway
lines, which lays the foundation of railway management/
operations and has attracted tremendous attention in recent
years (Zhou and Zhong, 2007; Cacchiani and Toth, 2012;
Cacchiani et al., 2014; Wang et al., 2015; Huang et al.,
2016; Altazin et al., 2017; Yin et al., 2017).
In general, given that the generated train timetable is

usually unchanged in a certain time period (e.g., days or
months), the train scheduling problem is usually addressed
in the planning stage. For example, Beijing Metro
developed several kinds of timetables that correspond to
weekday, weekend, and holiday train operation plans. In
this sense, the objective of the train scheduling problem is
commonly influenced by the number of trains, transport
capacity, train energy consumption, and estimated passen-
ger waiting time. For example, Niu and Zhou (2013)
formulated a nonlinear optimization model by considering
the train scheduling problem of a metro line with time-
dependent and oversaturated demand. A genetic algorithm
with binary coding was adopted to obtain the timetabling
scheme. Wang et al. (2017) proposed a two-stage
optimization approach to generate the optimal train
schedule and circulation plan to minimize the number of
required trains in daily metro line operation. Barrena et al.
(2014) developed two nonlinear mathematical models to
obtain an uneven train schedule that coordinates with the

dynamic passenger demand to minimize the passenger
waiting time in metro stations. Yin et al. (2017) formulated
two mixed-integer linear programming (MILP) models
that explicitly consider dynamic passenger demands and
train operation curves on each segment to save energy
consumption, utilize the regenerative braking energy of
trains, and achieve a trade-off between passenger waiting
time.
Different from the train scheduling problem in the

planning phase, the train rescheduling problem immedi-
ately requires regeneration of a new timetable to
compensate the damage of perturbances strictly limited
by the computational speed issue (Cacchiani et al., 2014).
In mainline railway systems, many works have already
been undertaken (e.g., Corman and Quaglietta, 2015; Yang
et al., 2014; Meng and Zhou, 2014) to generate a
rescheduled train timetable in case of unexpected inci-
dents. However, a few studies have focused on reschedul-
ing a metro line after a disruption. Gao et al. (2016)
proposed to reschedule the metro train timetable by using
the stop-skipping strategy after a disruption and developed
a mathematical model with linearization and decomposi-
tion techniques in reducing computational complexity.
Altazin et al. (2017) accomplished a similar research.
Nevertheless, application of the stop-skipping strategy is
usually not allowed in practical metro train rescheduling
process because stop-skipping would even increase the
travel time of some passengers. Yin et al. (2016a) proposed
a train timetable rescheduling model based on time-variant
and uncertain passenger demands. Minimizing the travel-
ing time of passengers can be obtained by using an
approximated dynamic programming method in the
rescheduled timetable. However, the model cannot help
overcome large delays nor evacuate over-crowded waiting
passengers after a disruption. Li et al. (2017) developed an
integrated approach for metro train regulation with a
passenger flow control strategy. The problem was
formulated into a quadratic programming model and
efficiently solved by optimal control methods. Gao et al.
(2017) proposed a real-time rescheduling strategy for
urban rail lines considering the feedback information of
faults (or disturbances) in the environment. In particular,
they compared the metro train rescheduling performance
with or without feedback information of faults. Despite
insufficient quantitative analyses, Yamamura et al. (2014)
investigated a few practical approaches to reduce delays in
Tozai Line, Tokyo.
Typically, most existing metro lines are designed with

several train storage sidings (or storage tracks) between
two stations, which can be used for backup train storage for
emergency usages. By contrast, the literature on utilizing
backup trains has not studied recovery from disruptions. In
this paper, we will explicitly address the train rescheduling
problem by adding backup trains to recover from a
disruption in a double-direction metro line.
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3 Model formulation

In this section, we first present the general symbols and
decision variables used in this paper. A mathematical
model, which includes basic constraints and objective
function, was then developed and reformulated into an
MILP model using several linearization techniques.

3.1 Symbols and decision variables

KE Set of existing trains in the metro line
KF Set of future trains that depart from the origin station
KA Set of newly added backup trains to the metro line

from train storage sidings
ke Number of considered existing trains
kf Number of considered future trains
ka Number of added backup trains
k , l Index of trains, k,l 2 KE [KF [KA
S Set of physical stations in the considered metro line
Sk Set of stations that are involved in train service k
i,  j Index of stations, i 2 Sk
ST Index of the turn-around station
Tturn Turn-around time at station ST
dmax
i Maximum train dwelling time at each station
dmin
i Minimum train dwelling time at each station
hmin Minimum train following headway between two

consecutive trains
riþ1,i Train running time between station i and i + 1

Decision variables:
xk,i Arrival time at station i in service k (Integer variable)
yk,i Departure time from station i in service k (Integer

variable)
zk,l Train order indicator (0–1 variable). For each l 2 KA

and k 2 KE [KF , zk,l ¼ 1 if train l departs after train k;
otherwise, zk,l ¼ 0.
pk,l Train order indicator (0–1 variable). For each k,l 2

KA ,pk,l ¼ 1 if train l departs after train k; otherwise,
pk,l ¼ 0.
We use Fig. 1 as an example to explain the definitions of

the preceding symbols and decision variables presented in
this study. In this example, we consider a metro line with
eight physical stations, that is, jSj ¼ 8. Two storage sidings

dwelling two backup trains, which are between stations 1
and 2, as well as 6 and 7, exist. In this study, we assume
that the power supply system has broken down at station 4
and blocked the following trains at stations or segments. At
the current time t0, the disruption is over, that is, the power
supply system is fixed, and many passengers are still left
stranded in stations. We focus on rescheduling the
timetable using backup trains in the storage lines during
the disruption recovery period. In particular, this study
explicitly considers three kinds of service trains during the
recovery period starting from time t0. First, a few trains that
have already traveled into the metro line are termed as
existing trains, that is, set KE (for example, existing trains 1
to 4 in Fig. 1). When disruption begins the recovery period,
these existing trains dwell at different stations along the
metro line. The second kind of train is the backup train,
that is, backup trains 1 and 2 in storage sidings. The third
kind of train refers to trains that have not yet departed from
the origin station 1. In this study, we call these trains as
future trains, that is, set KF . As the existing and backup
trains have traveled through a few stations and segments,
we have Sk ¼ f2,3,4,5,6,7,8g for existing train service
1,Sk ¼ f3,4,5,6,7,8g for existing train service 2, and Sk ¼
f7,8g for backup train service 2. For simplicity, the train
service is simplified as “train” in the following sections of
this paper.
The set of decision variables includes the arrival and

departure times of these trains. Particularly, given that this
paper aims to optimize the rescheduled timetable for three
kinds of trains involved, adding these backup trains
notably influence the train orders. For example, if the
original train order is K ¼ fe1,e2,⋯f1,f2,⋯gwith the addi-
tion of backup trains a1 and a2 into the operation, then
many feasible choices are obtained for the rescheduled
train order, that is, K ¼ fe1,a1,e2,⋯f1,a2,f2,⋯g and K ¼
fe1,e2,a1,⋯f1,f2,a2,⋯g. Therefore, we also define two sets
of train order indicators, namely zk,l and pk,l, to represent
the train orders in the rescheduled timetable.

3.2 Constraints

Next, we introduce the basic constraints for the train
rescheduling problem with backup trains, such as train

Fig. 1 Illustration of adding backup trains in metro lines
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running time, dwelling time, headway, and turn-around
constraints.
Running time constraints

xk,iþ1 – yk,i ¼ riþ1,i   for  k

2 KE [KF [KA   and  i,iþ 1 2 Sk (1)

In this study, we assume that the running time on each
segment ði,  iþ 1Þ between station i and station i + 1 is a
constant value riþ1,i (Yin et al., 2016c). Therefore, for each
k 2 KE [KF [KA, arrival and departure times are
restricted by this set of constraints as depicted in inequality
(1).
Dwelling time constraints

yk,i – xk,i£dmax
i   for  k 2 KE [KF [KA   and  i 2 Sk (2)

yk,i – xk,i³dmin
i   for  k 2 KE [KF [KA   and  i 2 Sk (3)

The two sets of constraints have established the upper
and lower bounds for the dwelling times of trains at each
station. Given that trains have already gone through a part
of these stations, service stations for trains are actually
different.
Train headway constraints
Guaranteeing the minimum train following headway is

the most important constraint for normal circumstances
and emergency cases to maintain the safety of trains and
avoid potential collisions. For normal circumstances,
guaranteeing the safety headway is relatively easy because
the train running orders are always fixed with respect to the
metro line, and trains will follow one another according to
the pre-determined timetable. However, adding the backup
trains into the metro line is different because the safety
headway needs stability between the new and in-service
trains. In particular, the insertion of these backup trains into
the original timetable essentially changes the original train
running orders, which require modifications on the
traditional headway constraints in prior studies. Specifi-
cally, we propose three sets of constraints as follows.
(1) Train headway constraints for the in-service trains

ykþ1,i – yk,i³hmin   for  k 2 KE [KF   and  i 2 Sk (4)

xkþ1,i – xk,i³hmin   for  k 2 KE [KF   and  i 2 Sk (5)

With this set of constraints, we first guarantee that the
existing and future trains determined by the original
timetable will maintain the similar train running order
under safety train following margin.
(2) Train headway constraints between in-service and

backup trains
If the decision variable zk,l ¼ 1, then the following

constraints are added into the model:

ykþ1,i – yl,i³hmin

yl,i – yk,i³hmin

for i2Sl,  k,k þ 12KE [KF ,  l2KA

(

(6)

When the decision variable zk,l ¼ 1, the added train l is
right between service train k+ 1 and train k. The preceding
constraints then guarantee the safety train following
headway between each added train l, in-service trains k,
and k + 1 for k,k þ 1 2 KE [KF ,  l 2 KA.
(3) Train headway constraints between backup trains
If the decision variable pk,l ¼ 1, then the following

constraints are added into the model:

yl,i – yk,i³hmin   for   i 2 Sl [ Sk ,  k,  l 2 KA (7)

Similarly, the preceding constraints guarantee the safety
train following headway between the added trains l and k
for k,l 2 KA.
Train order constraints
The following constraints guarantee departure of these

backup trains. Specifically, each train should depart from
the storage track to the metro line.X

k 2KE [KF

zk,l ¼ 1  for  l 2 KA (8)

In addition, we also need to restrict the decision variable
pk,l, which actually determines the departure order of
added backup trains.X

l 2KA

pk,l£1  for  k 2 KA (9)

X
l2KA

X
k 2KA

pl,k ¼ ka – 1 (10)

pk,l ¼ 0  for  k,  l 2 KA,  k ¼ l (11)

Remark 2.1 Notably, constraint (9) indicates that for each
backup train k, one train l at most departs right after train k.
Specifically, constraint (9) defines the running order of
these backup trains. Constraint (10) assumes the departure
of all these backup trains, and the last backup train to
depart has a departure indicator of zero. Constraint (11)
defines that for each train k, the departure indicator pk,l is
zero with respect to train k itself.
An illustration example is shown in Fig. 2, in which we

consider three backup trains (numbered as 1, 2, and 3),
three existing trains, and four future trains. Evidently, the
three backup trains depart after existing train 1, existing
train 2, and future train 3. Therefore, zke1,1 ¼ 1, zke2,2 ¼ 1,
and zkf 3,3 ¼ 1 define the backup train departure orders, in
which ke1, ke2, kf 3 represent existing train 1, existing train
2, and future train 3, respectively. Moreover, given that
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backup train 2 follows backup train 1 and backup train 3
follows backup train 2, we can denote the train departure
order among the three backup trains from this example,
where p1,2 ¼ 1 and p2,3 ¼ 1. In this sense, we haveX
l2KA

X
k2KA

pl,k ¼ ka – 1 ¼ 2 . In addition, the preceding train

order constraints guarantee the train departure orders for
the three kinds of trains.
Train turn-around constraints

yk,iþ1 – yk,i ¼ Tturn   for  k 2 KE [KF [KA   and  i ¼ ST
(11)

This constraint guarantees that each train uses time Tturn
to turn their running direction at the turn-around station.

3.3 Objective function

After a disruption in metro lines, the primary objective for
dispatchers is to enhance the transport capacity of the
disrupted metro system, evacuate dwelling passengers at
each station, and immediately recover normal operational
states. Specifically, frequently dispatching trains is
required to fill the gap between overflowing passenger
demand and disrupted line carrying capacity. Therefore,
this study particularly considers the arrival time of the last
train as the objective function. Notably, two possibilities
exist with respect to the last train. The last train may be
regarded as one of the future trains in KF or one of the
backup trains KA. Thus, we aim to minimize the objective
function as follows:

minZ ¼ min max ykf ,I , 
X
k 2KA

1 –
X
l 2KA

pk,l

 !
yk,I

( )
(12)

Remark 2.2 In the preceding equation, the left side of the
max function, that is, ykf ,I , represents the departure time of
the last future train kf at the destination station I. However,
the order of backup trains is actually not pre-given but
determined by decision variable pk,l. In this study, the right
side of the max function essentially denotes the departure
time of the last backup train at the destination.
Based on the preceding formulations, constraints (1)–

(11) and the objective function (12) can obtain the train
rescheduling model with backup trains. Nevertheless, this
model contains two sets of if-then constraints (6) and (7),
and the objective function (12) has a max function with
quadratic formulations. Thus, solving through commercial
solvers, such as CPLEX or Gurobi, is difficult. Therefore,
we reformulate this model through several linearization
techniques to efficiently solve the following content.

3.4 Model Reformulation

In this section, we reformulate constraints (6) and (7) into
equivalent linear constraints. Similarly, the max function is
reformulated into objective function (12) by introducing a
set of intermedia variables and constraints.
Lemma 1. For i 2 Sl,  k 2 KE [KF ,  l 2 KA, constraint (6)
can be equivalently replaced by the following linear
constraints:

Fig. 2 Illustration of train rescheduled timetable with backup trains
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ykþ1,i – yl,i þ ð1 – zk,lÞ$M³hmin,

yl,i – yk,i þ ð1 – zk,lÞ$M³hmin,

where M is a sufficiently large positive value.
Lemma 2. For   i 2 Sl [ Sk ,  k,  l 2 KA, constraint (7) can be
equivalently replaced by the following linear constraints:

yl,i – yk,i þ ð1 – pk,lÞ$M³hmin:

Lemma 3. The objective function (12) can be replaced by
formulation with additional variables and constraints.
min  w
With additional constraints:

ykf ,I£w (13)

yk,I –M$
X
l2KA

pk,l£w  for  k 2 KA (14)

ykf ,I³w – ð1 – l1Þ$M (15)

yk,I þM$
X
l 2KA

pk,l³w – ð1 – l2Þ$M   for  k 2 KA (16)

l1 þ l2 ¼ 1, (17)

in which w is a continuous variable, and l1 and l2 are 0–1
integer variables. Clearly, the preceding objective function
and constraints are all manageable linear expressions.
Proof:
Verifying Lemmas 1–2 is not difficult because we

simply adopt a big-M method to represent the if-then rules.
Therefore, we omit the proofs in this paper and only focus
on the proof of Lemma 3, that is, the linearization of the
objective function.
First, we reformulate the max function. For simplifica-

tion, we use Z ¼ maxfY1,Y2g to represent the original
objective function, in which Y1 ¼ ykf ,I and Y2 ¼

X
k2KA

1 –
X
l2KA

pk,l

 !
yk,I . For the max function in this formula-

tion, we introduce a continuous variable w, and two 0–1
integer variables l1 and l2. Thus, the objective function Z
can be rewritten as follows:

Z ¼ w, (18)

Y1£w, (19)

Y2£w, (20)

Y1³w – ð1 – l1Þ$M , (21)

Y2³w – ð1 – l2Þ$M , (22)

l1 þ l2 ¼ 1: (23)

Thus, if Y1 ¼ Y2, then the preceding constraints can be
guaranteed, and Z will be equal to the maximum between
Y1 and Y2. When Y1 > Y2, we can combine inequalities
(19) and (21)

w³Y1 > Y2³w – ð1 – l2Þ$M ,

which is rewritten as ð1 – l2Þ$M > 0. Thus, we have
l2 ¼ 0 and l1 ¼ 1. Taking back the two values to
inequalities (21) and (22), the two following inequalities
are obtained:

Y1³w

Y2³w –M

Given that we have Y1³w and Y1³w, we have Y1 ¼ w
and Z ¼ Y1, which is actually the larger value between Y1
and Y2. Similarly, we have Z ¼ Y2 if Y2 is larger than Y1.
Therefore, we prove that the original objective function
can be equivalently reformulated by (18)–(23).
Next, we focus on the linearization of Y2 ¼

X
k2KA

1 –
X
l2KA

pk,l

 !
yk,I , which has a quadratic function with

respect to variables Z and Y . According to constraints (9)–
(11), we note that

X
k 2KA

1 –
X
l 2KA

pk,l

 !
¼ ka –

X
k 2KA

X
l2KA

pk,l

¼ ka – ðka – 1Þ
¼ 1:

Given that
X
l2KA

pk,l is also an integer variable between 0

and 1, only one of yk,I when 1 –
X
l2KA

pk,l ¼ 1will evidently

be added. Specifically, constraints Y2£w and Y2³w – ð1
– l2Þ$M can be reformulated as:

yk,I –M$
X
l2KA

pk,l£w  for  k 2 KA

yk,I þM$
X
l2KA

pk,l³w – ð1 – l2Þ$M   for  k 2 KA

According to the preceding derivations, we can thus
prove Lemma 3.
Through the model reformulation approach, we for-

mulate the train rescheduling problem with backup trains
as an MILP model given as follows:

Jiateng YIN et al. Metro train rescheduling by adding backup trains under disrupted scenarios 423



min   w

s:t:    xk,iþ1 – yk,i ¼ ri                           8k 2 KE [KF [KA,   i,iþ 1 2 Sk

        yk,i – xk,i£dmax
i                         8k 2 KE [KF [KA,   i 2 Sk

        yk,i – xk,i³dmin
i                          8k 2 KE [KF [KA,   i 2 Sk

        ykþ1,i – yk,i³hmin                        8k 2 KE [KF ,   i 2 Sk

        xkþ1,i – xk,i³hmin                        8k 2 KE [KF ,   i 2 Sk

        yk,iþ1 – yk,i ¼ Tturn                        8k 2 KE [KF [KA,i ¼ ST

        ykþ1,i – yl,i þ ð1 – zk,lÞ$M³hmin     8i 2 Sl,  k 2 KE [KF ,  l 2 KA

        yl,i – yk,i þ ð1 – zk,lÞ$M³hmin       8i 2 Sl,  k 2 KE [KF ,  l 2 KA

        yl,i – yk,i þ ð1 – pk,lÞ$M³hmin       8i 2 Sl [ Sk ,  k,  l 2 KA

      
X

k 2KE [KF

zk,l ¼ 1                             8l 2 KA

        
X
l2KA

pk,l ¼ 1                               8k 2 KA

        
X
l2KA

X
k 2KA

pl,k ¼ ka – 1

         pk,l ¼ 0                                   8k,  l 2 KA,k ¼ l

        Constraints  ð13Þ – ð17Þ 
        x,y 2 N ,  z,p 2 f0,1g

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

4 Numerical experiments

In this section, we adopt several numerical experiments to
test the effectiveness of the proposed approach. The
proposed model is coded in Visual Studio Cþþ 2012 on a
Windows 8 personal computer. We use the commercial
ILOG CPLEX 12.3 Academic Version to solve the
formulated model.

4.1 Parameter settings

As shown in Fig. 3, a two-direction metro line with eight
stations and three storage sidings is considered to be the
traffic environment. The three backup trains, which depart
from stations 3, 5, and 7, are located in each storage track.
We assume that an error has occurred in this metro line and
severely delayed trains. After the disruption, three existing
trains are located in stations 2, 4, and 6. Moreover, five
future trains that will depart from station 1 are considered
in this numerical experiment. The running time for the
trains on each segment is set as 120 s. The minimum and
maximum dwelling times of trains are set as 30 and 50 s,
respectively.

4.2 Results analyses

First, we test the model for the 11 trains with a minimum

headway of 200 s. Notably, the proposed model is
eventually formulated into an MILP model, which can be
handled by a few commercial solvers, such as CPLEX or
LINGO. In our study, the model is coded in a Visual Studio
environment using Cþþ language, and the model is then
solved by CPLEX. Typically, CPLEX takes approximately
0.2 s to solve the model with this scale into an optimality of
0%, which is very time-efficient.
Figure 4 illustrates the optimal train rescheduling

timetable with three backup trains plotted by red solid
lines. The rescheduled timetable shows that all three kinds
of trains, that is, existing trains (termed as E-Train), backup
trains (termed as A-Train), and future trains (termed as F-
Train), are completely separated from each other to
guarantee the safety train following headway in a metro
line. Interestingly, the backup trains are dispatched at
different times and stations. For example, backup train 1
departs between existing trains 2 and 3, whereas the two
other backup trains depart between future trains 1 and 2.
Consequently, E-trains 1 and 2 have insufficient time due
to headway constraints; hence, no backup train can be
inserted between the two trains. In addition, E-train 3
evidently dwells at each station for a long time to allot
sufficient margins for the insertion of backup train 1.
Table 1 demonstrates the optimal rescheduled timetable

for these trains, with two values in each bracket
representing arrival and departure times of each train at
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the stations. “-” represents that the train does not go
through this station in the considered time horizon. The
table also shows that the optimized departure time of the
last train from station 8 is 2430 s, which is actually the
earliest time that these trains can be dispatched into this

metro line. Clearly, the short transmission time of these
trains allows the evacuation of more passengers in a certain
period, and the system recovers to normal states. In
addition, the train headway constraints guarantee all these
trains at each station. Specifically, for any of these trains,
departure time from each station is larger than 200s
compared with its former train.
Then, we also test the model for different minimum

headway times of 11 trains, and the model is solved in the
environment with the aid of CPLEX. We demonstrate their
performances in Table 2, which involve the departure time
of the last train from the last station, the average train
departure time, and the computational time.
Table 2 shows that the computational time is within 1 s,

which satisfies the real-time requirements in practical
operations. In addition, the departure time of the last train
and the average departure time are increased with long
headway time between successive trains, which is
consistent with our practical experiences. We also show
rescheduled timetables under 120 and 150 s headway in
Figs. 5 and 6, respectively, to demonstrate the effects of
headway time. In Fig. 5 with short train following
headway, all these backup trains are added between the

Fig. 3 Two-direction metro line in numerical experiments

Fig. 4 Optimal train rescheduling timetable with backup trains
under 200 s headway

Table 1 Rescheduled train timetable with backup trains

1 2 3 4 5 6 7 8

E-train 1 (-, -) (-, -) (-, -) (-, -) (-, -) (0,30) (150,200) (320,350)

E-train 2 (-, -) (-, -) (-, -) (0,30) (150,180) (300,330) (450,480) (600,630)

E-train 3 (0,0) (0,30) (150,200) (320,370) (490,540) (660,710) (830,880) (1000,1030)

A-train 1 (-, -) (-, -) (-, -) (-, -) (-, -) (-, -) (650,680) (800,830)

A-train 2 (-, -) (-, -) (-, -) (-, -) (930,960) (1080,1110) (1230,1280) (1400,1430)

A-train 3 (-, -) (-, -) (790,820) (940,990) (1110,1160) (1280,1310) (1430,1480) (1600,1630)

F-train 1 (30,60) (180,230) (350,400) (520,570) (690,740) (860,910) (1030,1080) (1200,1230)

F-train 2 (670,700) (820,870) (990,1040) (1160,1210) (1330,1380) (1500,1530) (1650,1680) (1800,1830)

F-train 3 (870,900) (1020,1070) (1190,1240) (1360,1410) (1530,1580) (1700,1730) (1850,1880) (2000,2030)

F-train 4 (1070,1100) (1220,1270) (1390,1440) (1560,1610) (1730,1780) (1900,1930) (2050,2080) (2200,2230)

F-train 5 (1350,1380) (1500,1530) (1650,1680) (1800,1830) (1950,1980) (2100,2130) (2250,2280) (2400,2430)
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existing trains, which shorten the time for dispatching
future trains and evacuating delayed passengers at each
station. For the case of long headway, that is, hmin = 150 s,
Fig. 6 demonstrates that only two trains can be inserted
between the existing trains, and one backup train has to
depart between future trains. Therefore, we conclude that
the train following headway (commonly determined by the
train signaling system) essentially affects the rescheduling
performance with backup trains. Therefore, a good train

signaling system and short train following headway can
considerably improve the feasibility of the rescheduling
task with the aid of backup trains in storage tracks.

5 Conclusions

Given the increased demands of commuters in large cities,
urban metro lines have been unified into an integrated
system with high complexity that is extremely vulnerable
to perturbances. Thus, managing this complex system in
case of disruptions has become a practically significant yet
theoretically challenging problem. In this paper, we have
proposed a new approach for the rescheduling of metro
trains after disruption using backup trains. In particular,
this train rescheduling problem has been rigorously
formulated into an MILP model considering train depar-
ture orders. Through model reformulation, the original
model has been transformed into an equitant MILP model
manageable for CPLEX. Numerical experiments have
shown that the proposed approach can add backup trains
into the rescheduled timetable under the train following
headway constraints. Similarly, the results showed the
relationship between train following headway and the
feasibility of adding backup trains.
Adding backup trains is a practical and effective strategy

that can be easily implemented in real-world operations for
the metro system to recover from disruptions because most
existing metro lines are designed with several train storage
sidings. Our future research will focus on the backup train
rescheduling problem that explicitly considers the model-
ing of passenger volumes. On the contrary, introducing
passenger modeling in our formulations leads to the
nonlinearity of formulations. Therefore, future studies
must focus on designing efficient algorithms.
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