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Abstract This paper presents a review of methodologies
for analyzing stochastic manufacturing and service
systems. On the basis of the scale and level of details of
operations, we can study stochastic systems using micro-,
meso-, and macro-scopic models. Such a classification
unifies stochastic modeling theory. For each model type,
we highlight the advantages and disadvantages and the
applicable situations. Micro-scopic models are based on
quasi-birth-and-death process because of the phase-type
distributed service times and/or Markov arrival processes.
Such models are appropriate for modeling the detailed
operations of a manufacturing system with relatively small
number of servers (production facilities). By contrast,
meso-scopic and macro-scopic models are based on the
functional central limit theorem (FCLT) and functional
strong law of large numbers (FSLLN), respectively, under
heavy-traffic regimes. These high-level models are appro-
priate for modeling large-scale service systems with many
servers, such as call centers or large service networks. This
review will help practitioners select the appropriate level of
modeling to enhance their understanding of the dynamic
behavior of manufacturing or service systems. Enhanced
understanding will ensure that optimal policies can be
designed to improve system performance. Researchers in
operation analytics and optimization of manufacturing and
logistics also benefit from such a review.

Keywords stochastic modeling, QBD process, PH dis-
tribution, heavy traffic limits, diffusion process

1 Introduction

A manufacturing or service system can be studied as a
Markovian model because of random factors such as
customer order time or amount, job processing time, and/or
the reliability of machines or servers. Buzacott and
Shanthikumar (1993) proposed a systematic treatment of
modeling stochastic manufacturing systems. For stochastic
service systems, a typical example is a large call center.
Koole and Mandelbaum (2002) surveyed several stochas-
tic models on telephone call centers. Both types of
stochastic systems can be modeled as a waiting line or a
queueing model of Markovian type. The main distinction
between a manufacturing and a service system is usually
the scale (or the size) of the system, which is measured by
the number of servers. Manufacturing systems are typically
involved with a small number of servers, whereas service
systems, such as call centers, have a large number of
servers. Such a difference entails different modeling
approaches. In this paper, we briefly review the modeling
hierarchy for analyzing stochastic manufacturing or
service systems. We consider three levels of modeling ––
micro-, meso-, and macro-scopic models –– and identify
the advantages and disadvantages of each model type.
This paper is structured as follows: Section 2 defines the

three levels of modeling and presents the related literature.
Section 3 provides typical example of each modeling type
in detail (for full details, we refer to the related literature).
Section 4 concludes the paper.

2 Stochastic modeling hierarchy

The main approach to modeling a stochastic system is to
formulate a Markovian process for the state variable of
interest. For example, a production system in a make-to-
order mode is a typical setting. Assuming that the
production process for a product is triggered by a randomly
arriving customer order, such a random arrival process is
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modeled as a Poisson process. If the production time of
completing the ordered product is also random, the model
generally has independent and identically distributed
(i.i.d.) service random variables. Considering a production
system with c facilities (machines), we can model the
process of fulfilling these orders as a basic M/G/c queue.
We generally call each service request as a “customer” and
the service provider as a “server”. Numerous factors, such
as customers with different priorities, servers subject to
failures or absence, customer reneging or balking, and
customer retrial or feedback, can definitely be considered.
We intend to model the details of the system dynamics of
this system type and treat the queue length or the waiting
time as the main performance measure. Therefore, as long
as the i.i.d. service times and/or Poisson process arrivals
can be justified, we can obtain the stationary distribution of
the queue length or waiting time by developing a
Markovian process.
Considering that the system’s scale is small (only a few

servers) and the details of the system dynamics are desired,
we call this type of queueing system as a micro-scopic
model. This type of models is mainly continuous-time
Markov chains (CTMCs). The main approach is to
generalize the exponential distribution to phase-type
(PH) distribution to model the time interval and to
generalize the Poisson process to Markov arrival process
(MAP) to model the counting (or arrival) process. With
these two generalizations, we can theoretically model the
G/G/c queue with any desired accuracy if the number of c
servers is not large (small-scale system) because a PH-
distributed random variable can estimate any arbitrarily
distributed non-negative variable (like service time) and
MAP can approximate any arbitrary counting process (like
customer arrivals) (Neuts, 1981; He, 2014). The cost of
using this approximation approach is the increase of the
state space of the CTMC. For example, the basic birth-and-
death (BD) process for M/M/c queue will be extended to
quasi-birth-and-death (QBD) process for MAP/PH/c
queue. Although the dense property of PH distribution
and MAP enables us to develop the CTMC for a G/G/c
queue with any desired accuracy, the “curse of dimension-
ality” or the explosion of the state space will make the
model an NP-hard problem for a system with a large
number of servers. However, given that most manufactur-
ing systems are of small scales, the micro-scopic model
still works well and produces detailed performance
measure, such as the stationary distribution of the queue
length for these stable systems.
As mentioned earlier, service systems such as call

centers are usually of large scale with hundreds or
thousands of servers. Clearly, the micro-scopic model
does not work. The main issue in such a system is on how
the system can be staffed to ensure that sufficient level of
customer service can be achieved. One feature of this type
of systems is that the traffic is heavy and most of the time
servers are busy or even overloaded with customer

abandonments (this condition is in sharp contrast to a
manufacturing system receiving customer orders). There-
fore, the adoption of heavy-traffic methods for the
approximation of performance measures is an appropriate
approach. Another characteristic of the service system is
the time-varying arrival rate. If the system manager is only
concerned with the average (first moment) performance
measure such as mean queue length or mean waiting time,
then the macro-scopic model with appropriate time and
space scaling, also called fluid model, is appropriate.
However, for a one-stage queueing system (like M/G/c
type), the fluid model does not capture the random
variability of the system dynamics. For a stable system
(the arrival rate is less than the service rate), the fluid limit
becomes zero; for an unstable system (the arrival rate is
greater than the service rate), the fluid limit becomes a
linear function of time with slope of l –�, where l and �
are the arrival rate and service rate, respectively. To capture
the randomness of the queue length process or to
stochastically refine the fluid model, the meso-scopic
model needs to be considered by using the diffusion space
scaling. This two-level modeling hierarchy was first
proposed and discussed by Chen and Mandelbaum
(1994). Heavy-traffic conditions can be identified by
taking the limit via space and time scaling. Whitt (2002)
presented different modes of determining the heavy-traffic
limit.
The advantage of using macro- or meso-scopic models is

that the approximation is increasingly improving when the
system scale is becoming large and the traffic load is
becoming heavy. These models will thus complement the
micro-scopic models and are appropriate in analyzing
large-scale service systems such as call centers or large
queue networks.

3 Examples of micro-, meso-, and marco-
scopic models

3.1 A micro-scopic model of a production system

As mentioned earlier, the micro-scopic model is appro-
priate for analyzing manufacturing systems with a small
number of servers. We present a practical example in hot-
rolling process for slabs in the steel industry. When a
customer order arrives, it will trigger several slabs (order
size) to proceed to the hot-rolling process. Given that order
arrivals are random, the requests for the sets of slabs for the
hot-rolling process (called jobs or customers) are also
random and can be modeled as a Poisson process with
arrival rate l. We only consider the first stage of this hot-
rolling process which is “pre-heating”. These jobs
triggered by customer orders will thus be pre-heated by a
few pre-heating furnaces. Real data analysis (Jia et al.,
2017) reveals that pre-heating times follow a PH distribu-
tion (best-fit distribution). Owing to the limited nature of
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this operation, the process can be modeled as an M/PH/c-
type multi-server queue. The pre-heating system usually
consists of only two to four furnaces (e.g., expensive and
large facilities in Shanghai Baogang Steel Company). We
can use the micro-scopic model to analyze this pre-heating
operation and estimate the expected delay time of customer
order and other related performance measures. The system
can be formulated as QBD process if we define the state
space as follows:

Define:

NðtÞ: The number of customers in the system at time t;
JiðtÞ: The phase of the PH service time at time t for

server i.

Assuming that the service time’s PH distribution is
represented as ðβ,SÞ with m phases, the system state space
is fNðtÞ; J1ðtÞ; J2ðtÞ; :::; JcðtÞg where NðtÞ ¼ 0,1,:::; JiðtÞ
¼ 1,2,:::,m; i ¼ 1,2,:::,c. We also assume that the PH

representation of the service time is ðβ, SÞ and with t ¼
– S$e where S is a transition rate matrix among the m
phases (for example, from State i to State j, the transition
rate should be sij) and e is the column vector of 1’s (all
elements are 1) with appropriate dimension.
Figure 1 shows the state transition diagram of the QBD

process for this operation, and Fig. 2 presents a specific
example with three servers (furnaces). In these diagrams
(without showing the service time phase), we use the first
number in the state node to represent the number of
customers in the system and “0” to represent all servers that
are on (it can be set to 1 to represent a model with
changeable staffing levels as in Jia et al. (2017)). Each
server node below each state node represents the service
phase of each busy server.
We present more details about the QBD model for a

three-server case.
The infinitesimal generator can be written as follows:

Q ¼

– lI lβ

– S$e – lI þ S lI � β

S01 – lI þ S2 lI � β

S02 – lI þ S3 lI

S03 – lI þ S3 lI

A2 A1 A0

::: :::

2
66666666666664

3
77777777777775

Fig. 1 State transition diagram of an M/PH/c queue
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S01 ¼ ð – S$eÞ � I þ I � ð – S$eÞ,

S02 ¼ ð – S$eÞ � I � I þ I � ð – S$eÞ � I þ I � I

� ð – S$eÞ,

S03 ¼ ð – S$e$βÞ � I � I þ I � ð – S$e$βÞ � I þ I � I

� ð – S$e$βÞ,

S2¼S � I þ I � S,

S3¼S � I � I þ I � S � I þ I � I � S,

A0 ¼ lI , A1 ¼ – lI þ S3, A2 ¼ S03,

where � is the Kronecker multiplication operation. With
this model, we can obtain the stationary queue length
distribution as a matrix geometric solution (Neuts, 1981).
In this model, πQ ¼ 0, where π ¼ ½π0,π1,:::� and πi is the
stationary probability vector for level i. If we have D levels
of boundary states, then we can find stationary distribution
as πi ¼ πDR

i –D, i ¼ Dþ 1,Dþ 2, :::, where R is the rate
matrix which is the minimal nonnegative solution to the
equation quadratic matrix equation R2A2 þ RA1 þ A0¼0,
which can be numerically solved by using iteration
algorithm (Neuts, 1981).
The boundary state probability vectors can be obtained

by solving a finite number of equations and the normal-

ization condition
X1
i¼0

πie ¼ 1. In this case, the rate matrix

can be computed by using several alternative algorithms
available (Neuts, 1981; Latouche and Ramaswami, 1999).
Many important performance measures, such as expected
queue length and the probability that the queue length
exceeds a critical level, can be obtained with the queue
length distribution. We can also handle both low-traffic and
heavy-traffic situations. By contrast, the meso- or marco-

scopic models may fail to produce useful performance
measures for low-traffic conditions. However, the dis-
advantage is that the size of the state space is exponentially
increasing with the number of servers. That is, for a c-
server system with PH-distributed service time of m
phases, the QBD process will have mc states. Dealing with
a large number of servers for micro-scopic models is thus
like an NP-hard problem.
For a queueing model developed for the steel industry,

we aim to determine the optimal number of servers. If we
turn on an excessive number of reheating furnaces, then the
productivity will be increased, but the company will also
have the idle cost, which will increase the total cost of the
hot rolling process. By contrast, when the number of
reheating furnaces is excessively small, the production cost
will be reduced, but the order waiting time will increase or
the waiting cost will be high. Therefore, a tradeoff between
the furnace idle cost and the order waiting cost must be
considered to determine the optimal number of furnaces.
The micro-scopic model can help decision makers by
providing the performance information of the system. Jia
et al. (2017) presented a sophisticated model based on the
M/PH/c in the steel industry.

3.2 Meso-scopic and macro-scopic models for a service
system

Although the PH distribution and MAP turn several
general stochastic systems into Markovian ones, the micro-
scopic model can only treat small-scale systems such as a
single-stage queue with only a few number of servers. For
large-scale service systems, the micro-scopic model is
impractical to use because of the “curse of dimensionality”
mentioned in the previous section. A large-scale system
usually implies a single-stage queue with a large number of
servers such as call centers or a queueing network with
many service stations of either a single server or many
servers. Furthermore, customers can be either of single or
multiple classes, and servers can be either homogeneous or
heterogeneous. For these large-scale systems, we have to

Fig. 2 A manufacturing system with three production facilities modeled as an M/PH/3 queue
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adopt the meso- or marco-scopic models. In this subsec-
tion, we provide two simple but typical examples.
The first example is to develop the meso-scopic model

for a single-stage service process via reflected Brownian
motion (RBM)-based approximations. In this model, the
building block is the G/G/1 queue. After approximating the
performance measure of G/G/1, we extend it to G/G/s
system. Let AðtÞ be the number of customers that arrived
from time 0 to t, and SðtÞ the number of customers the
server would process from time 0 to t if the server was busy
during (0, t). Given that the interarrival times and service
times are i.i.d., the processes fAðtÞ,t³0g and fSðtÞ,t³0g
are renewal processes. Therefore, for a large t, AðtÞ is
estimated to be normally distributed with mean lt and
variance lC2

at, where C2
a is the squared coefficient of

variation for the interarrival time. In addition, for a large t,
SðtÞ is normally distributed with mean �t and variance
�C2

s t, where C2
s is the squared coefficient of variation for

the service time. Approximation (for some large constant
T ) of fAðtÞ,t³Tg and fSðtÞ,t³Tg by Gaussian processes,
in particular, Brownian motions (BMs), is practical. This
approach is a reasonable approximation and can be
justified rigorously by appropriately adopting a scaling
argument as done by Chen and Yao (2001). A stochastic
model based on BM or generally a diffusion process is
called a meso-scopic model as it is an approximation under
heavy-traffic condition but retains the random variation
component. We first present the relevant performance
measures for the queue in terms of AðtÞ and SðtÞ.
Let X ðtÞ denote the number of customers in the G/G/1

queue at time t with X ð0Þ ¼ x0, a given finite constant
number of customers initially. To present X ðtÞ in terms of
AðtÞ and SðtÞ, the duration in which the server was busy
and idle during (0, t) needs to be determined. Thus, let B(t)
and I(t), respectively, denote the total time the server has
been busy and idle from time 0 to t. We emphasize that the
server is work conserving, which means that the server
would be idle if and only if the system has no customers.
This condition is equivalent to BðtÞ þ IðtÞ ¼ t. Thus, we
can present an expression for X ðtÞ as X ðtÞ ¼ x0þ
AðtÞ – SðBðtÞÞ. By using the centering, we can re-write
the expression as X ðtÞ ¼ UðtÞ þ V ðtÞ where UðtÞ ¼
x0 þ ðl –�Þt þ ðAðtÞ – ltÞ – ðSðBðtÞÞ –�BðtÞÞ and V ðtÞ ¼
�IðtÞ. Computing the expected value and variance of U(t)
for large t yields E½UðtÞ� ¼ x0 þ ðl –�Þt, Var½UðtÞ� �
lC2

at þ lC2
s t because U(t) is approximated by a drifted BM

via Donsker’s theorem. Although E[U(t)] is exact for any t,
Var[U(t)] is reasonable only for a large t, that is, in the
asymptotic case. X ðtÞ and V ðtÞ can be specifically
determined by satisfying the following conditions:

X tð Þ³0,
dV ðtÞ
dt

³0 with V ð0Þ ¼ 0, and X tð ÞdV ðtÞ
dt

¼ 0:

Furthermore, they can be expressed in terms of U(t) as
follows:

V ðtÞ ¼ sup
0£s£t

maxf –UðsÞ,0g,

and X ðtÞ ¼ UðtÞ þ sup
0£s£t

max f –UðsÞ,0g:

The proof of these relations can be found in the work of
Chen and Yao (2001). On the basis of the characteristics of
this result, X ðtÞ is called the reflected process of U(t) and
V(t) is the regulator of U(t). The fX ðtÞ,t³0g process is
then a corresponding RBM. Using heavy-traffic approxi-
mations for queueing process, we focus on the workload
process (which is inherently continuous) as an RBM.
Considering that the RBM is a continuous function of the
BM, according to continuous mapping theorem, we can
conclude that X ðtÞ will approach the queue length process
limit. By denotingW(t) as the workload at time t, Chen and
Yao (2001) used the approximation to relate the workload
in the system to the number in the system. Evidently, if
fX ðtÞ,t³0g is an RBM with initial state x0, drift ðl –�Þ,
and variance lðC2

a þ C2
s Þ, then fW ðtÞ,t³0g is also an

RBM with initial state x0=�, drift ðl –�Þ=�, and variance
lðC2

a þ C2
s Þ=�2 when W ðtÞ ¼ X ðtÞ=�. For the G/G/1

queue described earlier, considering that we approximated
the workload process fW ðtÞ,t³0g as an RBM, we have
the expected workload in steady state as lðC2

a þ C2
s Þ= 

½2ð1 – �Þ�2�, which is the approximation to the expected
waiting time of a customer. Other performance measures
such as Lq, W, and L, can then be obtained by using
Lq ¼ lWq, W ¼ Wq þ 1=� and L ¼ lW . Such an approx-
imation only needs the mean and variance of the
interarrival time and service time instead of the entire
distribution. This G/G/1 queue approximation can be
extended to the multi-server case or G/G/s queue. Under
the first come first serve (FCFS) discipline in a stable
system, the average total system time can be approximated
by

w � 1

�
þ �2C2

s þ C2
a

2lð1 – �Þ ,

where � ¼ l=ðs�Þ. This approximation is appropriate for
G/M/s systems and can be proved using fluid and diffusion
scaling (Halfin and Whitt, 1981). In addition, an empirical
approximation for G/G/s queues (originally developed for
M/G/s queues) is

w � 1

�
þ αs

�

1

1 – �

� �
C2
a þ C2

s

2s

� �
,

where as should be chosen such that

αs ¼
�s þ �

2
if � > 0:7

�
tþ1
2 if � < 0:7

8><
>: :

Hence, we briefly describe the diffusion approximation
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to a multi-server queue under heavy-traffic condition
(extensive literature is available in this area; Whitt, 2002).
The main idea is to obtain the stochastic process limits as
approximations of the actual stochastic processes. These
limits are either deterministic processes called fluid limits
or stochastic processes called diffusion limits that use
appropriate scaling methods for time and space. Clearly,
fluid limits correspond to macro-scopic models and
diffusion limits correspond to meso-scopic models. We
start with the fluid limit scaling. Let A(t) be the number of
arrivals into a system during (0, t). The average arrival rate
is l, which is expressed as

l ¼ lim
t↕ ↓1

AðtÞ
t

,

based on the strong law of large numbers (SLLN).
To obtain the fluid limit of the discrete arrival process

fAðtÞ, t³0g, we define

An tð Þ ¼ AðntÞ
n

,

for any n> 0 and t≥0. We show that as n↕ ↓1, AnðtÞ↕ ↓lt,
which we refer to as the fluid limit. This result can be seen
as the functional strong law of large numbers (FSLLN), a
generalization of the SLLN. Similarly, we define ÂnðtÞ as

Ân tð Þ ¼ ffiffiffi
n

p
AnðtÞ – lt
� � ¼ AðntÞ – nltffiffiffi

n
p ,

for any n> 0 and t≥0. We would like to study ÂnðtÞ as
n↕ ↓1 , which we will call diffusion scaling. Such a
scaling is similar to magnifying the fluid space scaling by a
factor

ffiffiffi
n

p
after centering. In this way, some random

fluctuations around the center can be captured. ÂnðtÞ
converges to a BM with drift 0 and variance term lC2

a as
n↕ ↓1 . Such a result is called the FCLT, also called
Donsker’s theorem, a generalization of central limit
theorem. Similar to the arrival process, the service time
process when scaled in a similar manner also converges to
a BM. Thus, approximate expressions for the distribution
of waiting times or system times can be obtained using the
diffusion approximation when the traffic intensity is close
to one (heavy-traffic approximations).
The main goal in a diffusion approximation is to obtain

the transient or steady-state distribution of a stochastic
process fZðtÞ,t³0g (this value is usually the number in the
system process fX ðtÞ,t³0g but we will keep it more
generic in this case). For a detailed description, see Gautam
(2012). The process is scaled by a factor “n” across time
and

ffiffiffi
n

p
across “space”. Thus, we define

Ẑ n tð Þ ¼ ZðntÞ – ZðntÞffiffiffi
n

p :

The term ZðntÞ is the deterministic fluid model of the

stochastic process fZðtÞ,t³0g by fluid scaling. Usually,
ZðntÞ ¼ E½ZðntÞ� or is a heuristic approximation for it,
indicating that the fluid model is focused on the first
moment value. Therefore, the fluid model is called a
macro-scopic model. Assuming that the deterministic fluid
limit ZðntÞ exists and can be computed, the meso-scopic
model is mainly intended to study Ẑ nðtÞ,t³0

� �
, which

captures the randomness feature of the process. The
application of appropriate space scaling reveals that as
n↕ ↓1 , the stochastic process Ẑ nðtÞ,t³0

� �
converges to

a diffusion process. A diffusion process is a continuous-
time stochastic process with almost certainly continuous
sample paths and satisfies the Markov property. Examples
of diffusion processes are BM, Ornstein-Uhlenbeck
process, Brownian bridge process, and branching process.
The diffusion process can be expressed as Ẑ1ðtÞ,t³0

� �
.

For detailed information, see Whitt (2004). The key idea of
diffusion approximation is to start by using the properties
of Ẑ1ðtÞ,t³0

� �
such as the stationary distribution of

Ẑ1ð1Þ. For large n, Ẑ nð1Þ is approximately equal in
distribution to Ẑ1ð1Þ. We can thus estimate the
distribution for Zð1Þ using Zð1Þ ¼ Zð1Þ＋ ffiffiffi

n
p

Ẑ nð1Þ
such that Ẑ nð1Þ � Ẑ1ð1Þ.
We use an M/M/s queue to illustrate the development of

meso-scopic model first. Whitt (2004) has presented
general cases such as the G/G/s or M/G/s queue. For
M/M/s queues, the Markov property leads to diffusion
processes. However, in the G/G/s queue, although the
marginal distribution at any time in steady state converges
to Gaussian, the process itself may not be a diffusion
process (because the Markov property would not be
satisfied). For such an M/M/s queue, let X(t) be the number
of customers in the system at time t. We are interested in
applying diffusion scaling to the stochastic process
fX ðtÞ,t³0g. Further, we define

X̂ n tð Þ ¼ X ðntÞ –X ðntÞffiffiffi
n

p ,

for any n> 0 and t≥0. As a heuristic approximation for
the fluid model, we use the well-known steady-state
system size L for the M/M/s queue

L ¼ l

�
þ p0ðl=�Þsl

s!s�½1 – l=ðs�Þ�2 ,

where

p0 ¼
Xs – 1
n¼0

1

n!
ðl=�Þn

� �
þ ðl=�Þs

s!

1

1 – l=ðs�Þ

" # – 1

:

Given that L＝E½X ð1Þ�, for large nt, we use the
approximation X ðntÞ ¼ L. We can thus study the diffusion
scaled process as
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X̂ n tð Þ ¼ X ðntÞ – Lffiffiffi
n

p ,

by increasing n and show that this process converges to a
diffusion process under three different scalings for n.
In the first scaling, we consider a sequence of M/M/s

queues where m and s are held constant and only l is
increased to ensure that r approaches 1. We can use the
scale n ¼ 1=ð1 – �Þ2 to ensure that n increases as r
increases. This condition is a special case of general
scaling called by Halfin and Whitt (1981) as the regime.
It can be shown that X̂ nðt=nÞ ¼ ðX ðtÞ – LÞ= ffiffiffi

n
p

process
converges to a diffusion process as n is scaled. This scaling
can be used when the system has high traffic intensity but
not a large number of servers.
The next scaling is to fix ρ but increase l and s. In this

scaling, we consider a sequence of M/M/s queues where μ
and ρ are held constant but l and s are increased to ensure
that s approaches1. We use the scale n = s to ensure that n
increases as s increases. Again, it can be shown that

X̂ n t=nð Þ ¼ X ðtÞ – Lffiffiffi
n

p ,

X̂ nðt=nÞ,t³0
� �

process converges to a diffusion process
as n is scaled. This scaling would be more powerful if the
scaled time is also available, that is, plotted X̂ nðtÞ instead
of X̂ nðt=nÞ. This scaling could be used when the system
has a large number of servers but not a high traffic
intensity.
The third scaling is based on Halfin and Whitt’s (1981)

regime. We use the scale n ¼ s to ensure that n increases as
s increases and let �↕ ↓1 in such a way that β is held
constant where β ¼ ð1 – �Þ ffiffi

s
p

. Under this scaling,
X̂ nðt=nÞ,t³0

� �
process converges to a diffusion process.

This scaling would be more powerful if we were to have
scaled time as well, that is, plotted X̂ nðtÞ instead of
X̂ nðt=nÞ. This scaling is practical to use when the system
has both high traffic intensity and a large number of servers
(which is typical in inbound call centers). Such a system is
called quality and efficiency driven. Evidently, the first two
scalings are special cases of this scaling. Clearly, E X̂ nðtÞ

� �
converges to zero because E½X ðntÞ�  would be L. Halfin
and Whitt (1981) presented the probability behavior for
X̂ nðtÞ as t↕ ↓1 and n↕ ↓1. If we define

X̂ n tð Þ ¼ X ðntÞ – sffiffiffi
n

p ,

and use the scale n ¼ s, then lim
n↕ ↓1P X̂ nð1Þ³0

	 
 ¼ �,

where θ is a constant satisfying 0< θ< 1. We provide an
intuition for the first one and subsequently describe θ. For
X̂ nðtÞ³0, the process converges to an RBM with negative
drift (because for X ðntÞ³s, the CTMC is a BD process
with constant parameters l and sm, which is a random walk

that converges to a BM upon scaling). However, for
X̂ nðtÞ<0, the process converges to an Ornstein-Uhlenbeck
process (because for X ðntÞ<s, the CTMC is a BD process
with parameters l and X ðntÞ�, which is a randomwalk that
converges to an Ornstein-Uhlenbeck process upon scal-
ing). Such a property also holds for G/M/s queues.
Therefore, the probability in which X̂ nðtÞ³0 can be
obtained as t↕ ↓1 and n↕ ↓1. Thus, under the scaling
n ¼ s,

PfX ð1Þ³sg↕ ↓�,

where � ¼ ½1þ ffiffiffiffiffi
2π

p
βφðβÞexpðβ2=2Þ� – 1, and φ(x) is the

probability that a standard normal random variable is less
than x. Thus, with probability q, an arriving customer in
steady state will experience a delay. Notably, q can be
obtained with the other two scalings considered earlier. In
those cases, qwould only be 0 or 1. In particular, if we fix s
and increase l, then q approaches 1 (that is, an arriving
request with probability 1 will be delayed for service to
begin). Such a case is said to be in efficiency driven (ED)
regime. By contrast, if we fix r but increase l and s, then q
approaches zero (that is, an arriving customer with
probability 1 will find a free server). This case is said to
be in quality driven regime. Aside from these probability
measures, we can also obtain the expected queue length for
either the stationary or transient system (Halfin and Whitt,
1981). A major advantage of the meso-scopic model is that
we can obtain major performance measures for large-scale
service systems consisting hundreds of servers under
heavy-traffic conditions. These systems are practical in the
service sector.
Next, we discuss the macro-scopic models or fluid

models. The fluid model itself is useful in studying the
stability of networks and analyzing queues with time-
varying arrivals. For a traditional single-stage multi-server
queue, because of the first moment nature, the stable,
critically loaded, and overloaded cases correspond to
simple queue length results of zero, the same as the initial
content, and linearly increase with time, respectively
(Whitt, 2002). Thus, to provide an interesting case, we
consider a multi-server queue with a special feature,
namely, overloaded with customer abandonment behavior.
We use a Markovian M/M/s/r+M queue as an example to
demonstrate the benefit of using the macro-scopic model or
fluid deterministic model, in which r+M represents a
finite waiting room r-s and the time to abandon is
exponentially distributed with rate α. The analysis is
based on Whitt (2004), and we only present a few simple
fluid model results. Overloaded queue is also called a
queue under the ED regime, as mentioned earlier. Consider
a sequence of M/M/s/r+M queues indexed by s, which is
the number of servers and we would use to scale. In
particular, ls and rs are the scaled arrival rate and system
capacity, respectively. However, the service rate m and
abandonment rate α are not scaled. In addition, the traffic
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intensity r is not scaled and remains fixed for the entire
sequence of queues with r> 1.
Define

q ¼ �ð� – 1Þ
α

, ls ¼ �s�, rs ¼ s ηþ 1ð Þ,

where η>q to ensure that asymptotically no arriving
customers are rejected due to a full system (Whitt, 2004).
With this scaling, we can obtain the meso-scopic model by
using the diffusion scaling as presented above. Let XsðtÞ be
the number of customers in the system at time t when s
servers are used. We define the diffusion term as follows:

X̂ s tð Þ ¼
XsðtÞ –X sðtÞffiffi

s
p ,

where XsðtÞ is a deterministic marco-scopic model of XsðtÞ.
We use a heuristic approximation for the deterministic
quantity XsðtÞ, which is where XsðtÞ tends to linger around
in the ED regime. In particular, we select XsðtÞ as an
“equilibrium” point where the system growth rate equals
the shrinkage rate. Thus, we have XsðtÞ as the solution to
the flow balance equation

ls ¼ s�þ XsðtÞ – s
� �

α,

by estimating that XsðtÞ must be greater than s (as �>1
results in ls>minfi,sg� for any i³0). We have the
following:

Xs tð Þ ¼ ls – s�

α
þ s ¼ 1þ qð Þs,

where the last equality is achieved by using the expressions
for ls and q. Thus, we represent the diffusion term as

X̂ s tð Þ ¼
XsðtÞ – ð1þ qÞsffiffi

s
p for all t³0:

Whitt (2004) showed that the stochastic process
X̂ sðtÞ,t³0

� �
as s↕ ↓1 converges to an Ornstein-

Uhlenbeck diffusion process. In this case, we focus on the
fluid model only. Let E½Qsð1Þ� be the expected steady-
state number of customers waiting in queue. Under heavy
traffic conditions, for large t, we have XsðtÞ � sþ
E½Qsð1Þ�. Thus, E½Qsð1Þ� � qs � ð� – 1Þs=α. We can
also obtain the abandonment probability, which is denoted
by PsðabÞ. The relation lsPsðabÞ ¼ αE½Qsð1Þ� shows that
PsðabÞ ¼ ð� – 1Þ=�. Such simple performance measures
indicate the advantage of using the macro-scopic model.
We only present a small sample of the fluid model results in
this case. Detailed studies on fluid models can be found in
Whitt (2004; 2005; 2006). In theory, when the scaling
conditions (i.e., heavy-traffic condition) are satisfied, the
meso- and micro-scopic models must generate acceptable
approximations. In practice, we can use simulations to
verify the accuracy of using these approximations.
In contrast to these meso-scopic and micro-scopic

models, the micro-scopic model cannot handle a system

with a large number of servers and its performance
measures can be obtained only by numerical approach.
The examples in this section demonstrate the strengths

and weaknesses of each type of modeling in this stochastic
modeling hierarchy. Different levels of models comple-
ment one another to better represent the stochastic
manufacturing and service systems in practice.

4 Conclusions

We present different levels of modeling stochastic systems
subject to congestions (queues). Micro-scopic models are
practical in analyzing manufacturing systems with a small
number of production facilities (servers). Using PH
distribution and MAP to model the random service times
and the customer arrivals makes continuous-time Markov
chain flexible in modeling a real-world system. In theory,
the PH distribution can approximate any non-negative
continuous distribution and the MAP can approximate any
non-renewal process. In practice, this condition implies
that real data can be used to estimate the parameters of PH
distribution and MAP to make the model fit the real system
well. Another benefit of using the micro-scopic model is
that we can obtain the stationary distribution of the system
size. However, this level of modeling is not appropriate for
analyzing large-scale systems, such as a call center with
hundreds of servers or a queue network with many nodes
or service stations. For these large-scale service systems,
we can rely on meso-scopic and macro-scopic models. For
these two levels, we consider the scaled processes of
system size or customer waiting time and obtain the
performance measures based on FLLNs and FCLTs. The
macro-scopic model is the deterministic fluid model. The
meso-scopic model becomes the diffusion model by
adding the stochastic refinements to the fluid model.
With the meso-scopic model, we can obtain probability-
based performance measures as the macro-scopic model
only provides first moment-based performance measures.
Given that these two higher levels of modeling are based
on stochastic process limits, they can be used as powerful
tools to study large-scale service systems. In addition,
several closed-form formulas for major performance
measures may be obtained. Finally, the meso- or macro-
scopic models can be used to analyze not only stationary
systems but also transient systems. In practice, the
appropriate level of modeling should be selected depend-
ing on the situation.
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