
RESEARCH ARTICLE

Zhongshun SHI, Zewen HUANG, Leyuan SHI

Two-stage scheduling on batch and single machines with
limited waiting time constraint

© The Author(s) 2017. Published by Higher Education Press. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0)

Abstract This study addresses the problem of two-stage
scheduling on batch and single machines with limited
waiting time constraint; thus, the makespan is minimized.
A mixed-integer linear programming model is proposed
for this problem. Three tight lower bounds and a heuristic
algorithm are developed. The worst-case performance of
the proposed algorithm is discussed. A hybrid differential
evolution algorithm is also developed to improve the
solution quantity. Numerical results show that the hybrid
algorithm is capable of obtaining high-quality solutions
and exhibits a competitive performance

Keywords batch machine, flow shop, makespan, limited
waiting time

1 Introduction

This study focuses on a hybrid two-stage flow shop
scheduling problem. In the first stage, all of the jobs must
be processed on a batch machine. The batch machine can
simultaneously process several jobs up to its capacity. In
the second stage, a single machine handles these jobs
individually. In the two stages, the waiting time that
elapses between the completion time of the first stage and

the start time of the second stage is limited.
This problem is prompted by the heat treatment process

in a real rocket assembly plant. The sheet metals must be
heated in an oven to eliminate stress-corrosion to meet the
requirements of rocket-driven spacecraft. These sheet
metals are moved to a single machine for further trimming
after heat treatment. The sheet metals must be processed
within 2 h; otherwise, the trimming operation cannot be
conducted because the sheet metals become hard, thereby
leading to waste of materials. The heat treatment operation
is a bottleneck process. On one hand, the heat treatment
process is time-consuming. On the other hand, forming
batches and the sequence that should be followed mainly
depend on the manual experience. The two factors cause
unbalanced production and low efficiency.
Batch machines can find their widespread applications

in various industrial systems, such as heat treatment ovens
in the steel industry, burn-in operation in the semiconduc-
tor final test, and oxidation and diffusion in wafer
fabrication. The two-stage scheduling problem on batch
and single machines has attracted considerable interest.
Ahmadi et al. (1992) first studied the problem and
proposed a full batch–longest processing time (LPT) rule
in order to minimize the makespan and a full batch
dealing–shortest processing time heuristic to minimize the
total completion time. Consequently, Hoogeveen and
Velde (1998) considered the objective of minimizing
total completion time, and proposed a Lagrangian lower
bound whose time complexity is O(nlogn) based on the
concept of positional completion time. Gong et al. (2010)
considered the two-stage scheduling problem to minimize
the sum of the makespan and total blocking time. The
batch remains in the batch machine if the single machine
was busy after completing one batch. Several approxima-
tion algorithms were proposed. Zhang et al. (2017)
analyzed the two-stage batch scheduling problem with
incompatible job families and a limited buffer. Approx-
imation and hybrid differential evolution algorithms were
proposed.

Received May 1, 2017; accepted August 26, 2017

Zhongshun SHI
Department of Industrial & Systems Engineering, University of
Wisconsin-Madison, WI Madison 53706, USA

Zewen HUANG
Department of Industrial Engineering & Management, Peking Uni-
versity, Beijing 100871, China

Leyuan SHI (✉)
Department of Industrial & Systems Engineering, University of
Wisconsin-Madison, WI Madison 53706, USA; Department of Indus-
trial Engineering & Management, Peking University, Beijing 100871,
China
E-mail: leyuan@coe.pku.edu.cn

Front. Eng. Manag. 2017, 4(3): 368–374
DOI 10.15302/J-FEM-2017034



All of the reviewed research ignored the limited waiting
time constraint. Only a few studies addressed the problems
related to the two-stage scheduling with the batch machine
and limited waiting time constraint. Su (2003) considered
the nonidentical limited waiting time constraint for the
two-stage scheduling problem, and proposed a mixed-
integer linear model and a heuristic algorithm to minimize
the makespan. However, the number of jobs in the
computational experiments is minimal. The lower bound
proposed by Su (2003) is calculated by relaxing the limited
waiting time constraint. In the current study, we investigate
the two-stage scheduling problem with identical limited
waiting time. The problem size is extended in the
experiments, and we derive three fast-computing lower
bounds. Chung et al. (2016) examined the two-stage
scheduling problem with limited waiting time constraint
and considered the release time and nonidentical job sizes.
However, in the study of Huang et al. (2017), the
mathematical programming model was revised and several
properties of this kind of problem were identified.
In the current study, a mixed-integer linear programming

model is proposed to describe the problem. Three lower
bounds and a heuristic algorithm, together with the worst-
case analysis, are proposed. The hybrid differential
evolution algorithm (HDE) algorithm integrating the
solution of the heuristic algorithm is developed to improve
the solution quantity. The numerical experiments are
conducted to test the performance of the hybrid algorithm.
The remainder of this paper is organized as follows:

Section 2 presents the problem definition and mathematical
formulation. Section 3 discusses the development of three
lower bounds for this problem and presents a heuristic
algorithm and the worst-case analysis. Section 4 describes
the proposed HDE algorithm. Section 5 presents the
numerical experiments. Section 6 concludes this paper.

2 Problem description and formulation

We first provide a formal description of the problem. n jobs
will be processed on one batch machine and one single
machine. In the first stage, these jobs are divided into
several batches to be processed on the batch machine. In
the second stage, the jobs are processed individually in an
arbitrary sequence on the single machine. All of the jobs
are available at the beginning of the time horizon and have
identical size. Each batch machine can handle several jobs
simultaneously up to its capacity b. The waiting time, the
time that elapses between the completion time of the first
stage and the start time of the second stage, is limited by w
for each job. The processing time of each batch is t, which
is independent of the jobs. The processing time of job i on
the single machine is pi, i = 1,…,n. Without loss of
generality, we sort the jobs in nonincreasing order of pi,
where p1≥p2≥…≥pn. Preemption is restricted on the

batch and single machines. The objective is to determine
the batch forms, batch sequence, and job sequence to
minimize the makespan.
Before formulating the problem, we introduce a property

in Lemma 1, which was proven by Su (2003).
Lemma 1. (Su, 2003) An optimal schedule exists, in

which the jobs in each batch are consecutively sequenced
at the second stage.
According to Lemma 1, each batch can be regarded as a

job given the batch forms. For convenience, the notations
and variables are summarized as follows.
Notations
n: the number of jobs
b: the batch capacity
t: the processing time of batches on the batch machine
w: the limited waiting time
pi: the processing time on a single machine for job i
Variables
xij: xij = 1 if job i is assigned to batch j, otherwise, xij = 0,

i = 1,…,n, j = 1,…,n
yij: yij = 1 if job i is in batch j, and pi is the maximum

processing time of batch j on the single machine;
otherwise, yij = 0
sj: starting time of batch j on the batch machine, j = 1,…,

n
cj: completion time of batch j on the single machine, j =

1,…,n
Cmax: the makespan
On the basis of Lemma 1 and the presented variables, the

problem can be formulated as the following mixed-integer
linear programming model:

min Cmax (1)

s:t:
Xn

j¼1
xij ¼ 1,  8i ¼ 1,:::,n, (2)

Xn

i¼1
xij£b,  8j ¼ 1,:::,n, (3)

s1 ¼ 0, (4)

sj³sðj – 1Þ þ txði, j – 1Þ, 8i ¼ 1,:::,n, j ¼ 2,:::,n, (5)

cj³sj þ txij þ
Xn

k¼1
xkjpk ,  8i ¼ 1,:::,n, j ¼ 1,:::,n, (6)

cj³cj – 1 þ
Xn

i¼1
xijpi,  8j ¼ 2,:::,n, (7)

yij£xij,8i ¼ 1,:::,n, j ¼ 1,:::,n, (8)

yij³xij –
Xi – 1

k¼0
xkj, 8i ¼ 1,:::,n, j ¼ 1,:::,n, (9)

Xn

i¼1
yij£1, 8j ¼ 1,:::,n, (10)

Zhongshun SHI et al. Two-stage scheduling with limited waiting time constraint 369



cj –
Xn

i¼1
yijpi – sj – t£w, 8j ¼ 1,:::,n, (11)

Cmax³cj 8j ¼ 1,:::,n, (12)

xij 2 f0,1g, 8i ¼ 1,:::,n, j ¼ 1,:::,n, (13)

yij 2 f0,1g, 8i ¼ 1,:::,n, j ¼ 1,:::,n: (14)

The objective function (1) is used to minimize the
makespan. Constraint (2) ensures that one job can be
assigned to only one batch. Constraint (3) guarantees that
the number of jobs assigned to one batch cannot exceed the
batch capacity. Constraint (4) indicates that the first batch
can be started at time 0. Constraint (5) ensures that the start
time of one batch should be no smaller than the standard
completion time of the previous batch. Constraint (6)
ensures that the completion time of one batch should be
larger than or equal to the sum of the start time of the
current batch, processing time on the batch machine, and
total processing time on the single machine. Constraint (7)
indicates that the completion time of one batch should be
larger than or equal to the sum of the completion time of
the previous batch and the total processing time on the
single machine. Constraints (8)–(10) define the maximum
processing time of jobs in one batch on the single machine.
Constraint (8) ensures that yij = 0 if job i is not in batch j.

Constraint (9) ensures that yij = 1 when xij –
Xi – 1

k¼0
xkj ¼ 1,

where x0j = 0. Constraint (10) guarantees that one of yij for
each batch j is equal to 1 for i = 1,…, n at most. Constraint
(11) ensures that the waiting time of the jobs in one batch
must be less than or equal to the limited waiting time w.
Constraint (12) defines the makespan. Constraints (13) and
(14) are the range of the variables.
The problem is NP-hard because the special case with

b = 1 has been proven to be NP-hard (Yang and Chern,
1995). In this study, we focus on developing an efficient
heuristic algorithm. The lower bounds and worst-case
analysis are also provided.

3 Heuristic algorithm and lower bounds

The objective is to minimize the makespan. Each idle time
of the single machine increases the makespan. The single
machine demonstrates an idle time when the jobs of one
batch are completed on the single machine before the
subsequent batch is finished on the batch machine. Thus,
we should balance the processing time on the batch and
single machines by considering the batch capacity and
limited waiting time constraints to avoid idle time. The
proposed algorithm, denoted as balanced batch and single
processing (BBSP), is described as follows:

BBSP
Step 1. Sort jobs in the nonincreasing order of pi to

obtain a job list for i = 1, 2, …, n.
Step 2. Assign the first job in the current list to the last

position of batch j = 1. Remove this job from the list.
Step 3. Select the last job in the current list as the

candidate for batch j.
� If the following conditions are met simultaneously,

then assign this candidate job to batch j, remove this job
from the list, and repeat Step 3.

– The total number of jobs in batch j + 1 (the
candidate job) is less than or equal to b.

– The sum of the processing time on the single
machine of jobs, excluding the job in the last position in
batch j and the processing time of the candidate job, is less
than or equal to w.

– The sum of the processing time on the single
machine of jobs in batch j is less than t.
� Else, j = j + 1 and repeat Step 2.
Step 4. If all of the jobs are assigned to batches, then

proceed to Step 5.
Step 5. Calculate the sum of the processing time of jobs

on the single machine as Pj for each batch j. Then, the
batches are processed in the nonincreasing order of Pj, j =
1, 2, …, n.
Step 6. The jobs in one batch are processed consecu-

tively on the single machine and start at the larger value
between the completion time of the previous batch on the
single machine and the completion time of this batch on the
batch machine considering the limited waiting time
constraint.
Step 7. Record the schedule π1 and calculate the

makespan Obj(π1).
Step 8. Adjust Step 3 as “Select the first job in the

current list as the candidate for batch j.” Repeat Steps 2–6
to obtain another schedule π2. Calculate the makespan
Obj(π2)..
Step 9. Identify the index: opt = agrminuObj(πu), u = 1,2.

Return the schedule πopt.

Three lower bounds are derived to test the performance
of the BBSP algorithm. On one hand, the makespan
includes the processing time of at least the first batch on the
batch machine and the sum of the processing time of all
jobs on the single machine. Thus, we can obtain the lower
bound LB1 ¼ t þ

Xn

i¼1
pi, directly. On the other hand, the

makespan is no larger than the total batch processing time
and the sum of the processing time of jobs that are in the
last batch. The number of batches is no less thandn=be.
Thus, we can derive another lower bound, LB2 ¼
dn=bet þ pn.
If the limited waiting time constraint is relaxed, then the

relaxed problem can be solved optimally by the full batch–
LPT policy (Ahmadi et al., 1992). This rule works as
follows: the jobs are sorted in the nonincreasing order of pi,
i = 1,2,…,n and formed full batches continuously as much
as possible. Then, the batch with the first b LPT on the
single machine is processed first on the batch machine. The

370 Front. Eng. Manag. 2017, 4(3): 368–374



makespan of the relaxed problem achieved by the full
batch–LPT policy is a lower bound of the investigated
problem, which is denoted as LB3.
These three lower bounds are used to test the efficiency

of the proposed algorithm. In the numerical experiments,
the maximum value of the three lower bounds, LB = max
{LB1,LB2,LB3}, is used as the final test measurement.
Then, we present an upper bound of the proposed

algorithm to conduct the worst-case analysis in Lemma 2.
Lemma 2. We let Z represent the objective value

achieved by the BBSP algorithm. Then, we derive:

Z£nt þ
Xn

i¼1
pi:

Proof. If we let each batch consist of only one job and
schedule it using the LPT first rule, then we can obtain
another feasible schedule π3 and denote the related
makespan as Obj(π3). The job sequence on the single
machine of schedule π3 is the same as the schedule π2 of
the proposed algorithm. However, given that the comple-
tion time on the batch machine for each job in π3 becomes
less than or equal to that of π2, we derive Z£Obj(π2)£
Obj(π3).
For Obj(π3), we assume that p1≥...≥pk≥t≥p

(k+ 1)≥...≥pn, where 0£k£n. For 1< i£n, k≥2, we
increase the processing time of each batch to the same as
the processing time on the single machine and we derive:

Objðπ3Þ£t þ
Xk – 1

i¼1
pi þ

Xn

i¼kþ1
t þ pn£nt þ

Xn

i¼1
pi:

When k = 0 or k = 1, Objðπ3Þ£nt þ
Xn

i¼1
pi. This

equation completes the proof.
On the basis of the lower and upper bounds, we

formulate Theorem 1.
Theorem 1. The worst-case ratio of the BBSP algorithm

is bounded by b + 1, where b is the batch capacity.
Proof. We let Z*

opt denote the optimal objective value
and Z represent the objective value achieved by the BBSP
algorithm. Then, we derive

Z

Z*
opt

£1þ UB – LB1

LB2
£1þ ðn – 1Þt

n

b

l m
t

£1þ nt

n=bt
¼ 1þ b:

This equation completes the proof.
The BBSP algorithm can obtain the optimal solution for

the problem when the processing time of the batches on the
batch machine is less than or equal to the smallest
processing time of jobs on the single machine.
Lemma 3. When pn> t, the BBSP algorithm provides

an optimal schedule for the problem.
Proof. When pn> t, the upper bound achieved by

assigning each batch with one job can be calculated as
t þ

Xn

i¼1
pi, which is equal to the lower bound LB1,

indicating that the BBSP algorithm provides an optimal
schedule for the problem.

4 A HDE-based method

The HDE algorithm integrating the solution of the BBSP
algorithm is proposed to further improve the solution
quantity. Differential evolution (DE) was proposed by
Storn and Price (1997) and is widely applied to various
optimization problems (Fu et al., 2012; Wang et al., 2013;
Shao and Pi, 2015; Zhang et al., 2017). Several notations
and operators used in DE are briefly presented in this
section. Fu et al. (2012) may be reviewed for the details.
Notations
� TimeLimit: the maximum running time;
� MaxSame: the maximum number of successive

generations with the same objective value;
� PS: the population size;
� best(g): the best objective value at generation g;
� Xi(g):the ith individual of the D-dimensional search

space at generation g;
� Xi(g) = [si,1(g),si,2(g),…,si,D(g)];
� Vi(g+ 1): a mutant individual for each target indivi-

dual Xi(g);
� Ui(g + 1): a trial individual for each target individual

Xi(g) and the corresponding mutant individual Vi(g+ 1);
� l2[0,1],F2[0,2],CR2[0,1]: three control variables;
� rand(j): the jth random number, which is uniformly

distributed from [0,1];
� randn(i): a randomly selected index from the set of

{1,2,…,D};
� f (n): the objective value.
Operators
Mutation operator

Viðg þ 1Þ ¼ XαðgÞ þ l*ðbestðgÞ–XαðgÞ
þ F*ðXβðgÞ–XgðgÞÞ: (15)

Crossover operator

ui,jðg þ 1Þ

¼
ui,jðg þ 1Þ if ðrandðjÞ£CRÞ or j ¼ randnðiÞ
xi,jðg þ 1Þ otherwise

(
:

(16)

Selection operator

Xi ðg þ 1Þ ¼
Uiðg þ 1Þ if f ðUiðg þ 1ÞÞ<f ðXiðgÞÞ
xiðgÞ otherwise

(
:

(17)

The code value in each job is a real number from [0, 1].
Then, the jobs are sequenced in nonincreasing order of the
code values. The batches are formed greedily given a job
sequence. From the first job, jobs are continuously
assigned to each batch as much as possible considering
the batch capacity and limited waiting time constraints.

Zhongshun SHI et al. Two-stage scheduling with limited waiting time constraint 371



Then, the batches are processed in the nonincreasing order
of the sum of the processing time of jobs in each batch. The
procedures of the HDE algorithm are described as follows:

HDE
Step 1. Initialization
� Set g = 0;
� Generate PS–1 individuals randomly and integrate the

solution of the BBSP algorithm as one individual;
� Calculate the objective value of each individual;
� Calculate best(g).
Step 2. Evolution
� For each individual,

– Use mutation operator (15) to obtain a mutant
individual;

– Use crossover operator (16) to obtain a trial
individual;

– Calculate the objective value of this individual;
– Use selection operator (17) to obtain the

individual of the next generation.
� End for
� Set g = g + 1 and update best(g) and the best solution.
Step 3. Termination
� If the TimeLimit or MaxSame is reached, then proceed

to Step 4;
� Else, repeat Step 2.
Step 4. Return the solution with the best objective value.

The worst-case analysis in Theorem 1 is also applicable
to the HDE algorithm because the HDE algorithm
integrates the solutions of the BBSP algorithm.

5 Numerical experiments

In this section, the computational experiments are
conducted to test the performances of the proposed
formulation and algorithm. All the tests are run on a
64bit Windows 10 platform with Intel Core 3.2 GHz CPU
and 8.0 GB RAM. The mathematical formulation is solved
using CPLEX 12.6 under default configuration, with a time
limit of 3600 s. The heuristic algorithms are coded in
MATLAB.

5.1 Problem instance generation

The problem case is presented in the form of combination
“n–b,” where n is the number of jobs and b is the batch
capacity. As used by Su (2003) and Zhang et al. (2017), we
present the instance generation rule as follows:
The processing time on the single machine is an integer

randomly generated from the uniform distribution [1, 10].
We let the processing time of one batch in the batch
machine be an integer randomly generated from the

uniform distribution 10,
b

n

Xn

i¼1
pi þ 10

i�
. because the

batch machine is time-consuming. We denote the sum of

the first b LPTon the single machine as Pmax. If the limited
waiting time is larger than, Pmax, then the limited waiting
time constraint is pointless. Thus, we let the limited
waiting time be an integer randomly generated from the

uniform distribution
b

n

Xn

i¼1
pi,Pmax

� �
. We let G1 and G2

denote two sizes of instances. The configuration of each
group is expressed as follows:

G1 : n ¼ f8, 12, 16, 20g and b ¼ f2, 4g,

G2 : n ¼ f50,100,200,400g and b ¼ f10, 20g:
For each combination, we generate 20 instances to test

the performance of the proposed algorithm.
The values of the parameters used in the HDE algorithm

are presented as follows:

� TimeLimit ¼ 600 s;

� MaxSame ¼ 30;

� PS ¼ 2n, D ¼ n, CR ¼ 0:5, F ¼ 0:7, l ¼ 0:4:

5.2 Numerical results and analysis

Table 1 lists the problem size that can be solved to
optimality with the first 10 instances in each combination.
The #Opt column shows the number of instances solved to
optimality within 1 h by the mixed integer linear
programming model. The Time column shows the average
time for the instances solved to optimality by the
mathematical model. The Gap column shows the gap
between the results of the HDE algorithm and optimal
solutions. When no instance in one combination is solved
to optimality within 1 h by using the formulation, #Opt is
zero and the Time and Gap columns display “-.” In the
table, the problem size that can be solved to optimality by
the mathematical model is reported as 12 jobs within 1 h on
a single PC. The Gap column shows that the HDE
algorithm can also obtain optimal solutions.
Table 2 presents the results for instances in G1. The n–b

column represents the combination between the number of

Table 1 Comparison with optimal solutions of instances in G1

n–b #Opt Time/s Gap/%

8–2 10 2.07 0.00

8–4 10 0.16 0.00

12–2 2 1.65 0.00

12–4 10 9.08 0.00

16–2 0 – –

16–4 4 36.54 0.00

20–2 0 – –

20–4 0 – –

372 Front. Eng. Manag. 2017, 4(3): 368–374



jobs and the batch capacity. The AvgG-HDE column
displays the average gap between the objective value
achieved by the HDE algorithm and the lower bound. The
MaxG-HDE column shows the maximum gap between the
objective value achieved by the HDE algorithm and the
lower bound. The T-HDE column presents the average
time (in seconds) for the HDE algorithm. The AvgG-Su
column indicates the average gap between the objective
value achieved by the algorithm proposed by Su (2003)
and the lower bound. The T-Su column shows the average
time (in seconds) for the algorithm proposed by Su (2003).
We first calculate the gap and record the time for each
instance in this combination when calculating the average
gap and time for one combination. Then, we calculate the
average gap and time.
Table 2 indicates that the solution times used by the

HDE algorithm and the algorithm proposed by Su (2003)
are all minimal. The maximum gap for the HDE algorithm
is 0.65% in the combination 20–4. For the other
combinations, the HDE algorithm can obtain optimal
solutions. These results show that the HDE algorithm has a
good performance for the instances in small-sized
problems. All of the average gaps are smaller in the
HDE algorithm than in the algorithm proposed by Su
(2003). This finding indicates that the HDE algorithm can
obtain better solutions than the algorithm proposed by Su
(2003).
The t test is conducted to verify this observation. We

establish the null hypothesis H0 as AvgG-HDE-AvgG-
Su≥0 and the alternative hypothesis H1 as AvgG-HDE-
AvgG-Su< 0. Table 2 displays that all of the p-values are
less than the 5% significance level, which supports the
observation that the HDE algorithm is more competitive
than the algorithm proposed by Su (2003) for instances in
G1.
Table 3 shows the results for instances in G2. The

columns are similar to the columns in Table 2. The
maximum gap for the HDE algorithm is 3.49% in the
combination 200–20. For combinations 50–20 and 100–
20, all of the instances are solved to optimality. The results
of the t test show that the HDE algorithm can obtain better
solutions than the algorithm proposed by Su (2003) for
instances in G2.

6 Conclusions

In this study, we analyze the two-stage flow shop
scheduling problem including batch and single machines.
Limited waiting constraint is considered to minimize the
makespan. A mixed-integer linear programming model is
proposed for this problem. Three tight lower bounds and a
heuristic algorithm are developed. The worst-case perfor-
mance of the proposed algorithm is discussed. The HDE
algorithm integrating the solution of the heuristic algo-
rithm is developed to improve the solution quantity. The

Table 2 Performance of the HDE algorithm for instances in G1

n–b AvgG-HDE/% MaxG-HDE/% T-HDE/s AvgG-Su/% T-Su/s p-value

8–2 0.00 0.00 0.03 3.26 0.00 6.76E-06

8–4 0.00 0.00 0.03 3.71 0.00 2.09E-04

12–2 0.00 0.00 0.05 2.42 0.00 1.13E-05

12–4 0.00 0.00 0.05 5.04 0.00 1.93E-06

16–2 0.00 0.00 0.08 1.60 0.00 6.68E-07

16–4 0.00 0.00 0.07 5.96 0.00 1.07E-07

20–2 0.00 0.00 0.10 1.04 0.01 8.08E-06

20–4 0.03 0.65 0.12 4.82 0.01 8.74E-09

Table 3 Performance of the HDE algorithm for instances in G2

n–b AvgG-HDE/% MaxG-HDE/% T-HDE/s AvgG-Su/% T-Su/s p-value

50–10 0.62 2.58 0.34 5.25 0.03 7.72E-08

50–20 0.00 0.00 0.26 1.97 0.02 5.09E-05

100–10 0.95 2.34 1.10 3.39 0.25 1.61E-08

100–20 0.00 0.00 0.79 1.91 0.16 1.01E-04

200–10 0.90 2.28 6.44 2.34 1.92 1.87E-07

200–20 1.00 3.49 4.36 3.17 1.23 3.94E-06

400–10 0.81 2.94 36.99 1.28 15.26 3.48E-02

400–20 1.12 2.09 19.52 2.16 9.68 2.23E-10

Zhongshun SHI et al. Two-stage scheduling with limited waiting time constraint 373



numerical results show that the proposed hybrid algorithm
can obtain high-quality solutions and exhibit a competitive
performance. Future work should be focused on develop-
ing a constant approximation algorithm for this problem to
achieve a good computational performance.

Acknowledgements This research was supported in part by National
Natural Science Foundation of China (Grant Nos. 71690232 and 71371015)
and by National Science Foundation (Grant Nos. CMMI-1435800 and
CMMI-1536978).

References

Ahmadi J H, Ahmadi R H, Dasu S, Tang C S (1992). Batching and

scheduling jobs on batch and discrete processors. Operations

Research, 39(4): 750–763

Chung T P, Sun H, Liao C J (2016). Two new approaches for a two-stage

hybrid flow shop problem with a single batch processing machine

under waiting time constraint. Computers & Industrial Engineering,

in press (https://doi.org/10.1016/j.cie.2016.11.031)

Fu Q, Sivakumar A I, Li K P (2012). Optimisation of flow-shop

scheduling with batch processor and limited buffer. International

Journal of Production Research, 50(8): 2267–2285

Gong H, Tang L, Duin C W (2010). A two-stage flow shop scheduling

problem on a batching machine and a discrete machine with blocking

and shared setup times. Computers & Operations Research, 37(5):

960–969

Hoogeveen H, Velde S (1998). Scheduling by positional completion

times: analysis of a two-stage flow shop problem with a batching

machine. Mathematical Programming, 82(1–2): 273–289

Huang Z, Shi Z, Zhang C, Shi L (2017). A note on “Two new approaches

for a two-stage hybrid flow shop problem with a single batch

processing machine under waiting time constrain”. Computers &

Industrial Engineering, 110: 590–593

Shao W, Pi D (2015). A self-guided differential evolution with

neighborhood search for permutation flow shop scheduling. Expert

Systems with Applications, 51: 161–176

Storn R, Price K (1997). Differential evolution-a simple and efficient

heuristic for global optimization over continuous spaces. Journal of

Global Optimization, 11(4): 341–359

Su L H (2003). A hybrid two-stage flow shop with limited waiting time

constraints. Computers & Industrial Engineering, 44(3): 409–424

Wang H Y, Lu Y B, Peng W L (2013). Permutation flow-shop

scheduling using a hybrid differential evolution algorithm. Interna-

tional Journal of Computing Science and Mathematics, 4(3): 298–

307

Yang D L, Chern M S (1995). A two-machine flow shop scheduling

problem with limited waiting time constraints. Computers &

Industrial Engineering, 28(1): 63–70

Zhang C, Shi Z, Huang Z, Wu Y, Shi L (2017). Flow shop scheduling

with a batch processor and limited buffer. International Journal of

Production Research, 55(11): 3217–3233

374 Front. Eng. Manag. 2017, 4(3): 368–374


	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12


