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Abstract This study aims to solve a typical long-term
strategic decision problem on supply chain network design
with consideration to uncertain demands. Existing methods
for these problems are either deterministic or limited in
scale. We analyze the impact of uncertainty on demand
based on actual large data from industrial companies.
Deterministic equivalent model with nonanticipativity
constraints, branch-and-fix coordination, sample average
approximation (SAA) with Bayesian bootstrap, and Latin
hypercube sampling were adopted to analyze stochastic
demands. A computational study of supply chain network
with front-ends in Europe and back-ends in Asia is
presented to highlight the importance of stochastic factors
in these problems and the efficiency of our proposed
solution approach.

Keywords supply chain network, stochastic demand,
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1 Introduction

A multi-national corporation focused on constructing a
detailed and robust supply chain network (SCN). This
research area is known as supply chain management
(SCM). SCM is categorized into strategic, tactical, and
operational phases across a planning horizon (Bender
et al., 2002). These phases are differentiated based on
strategy detail levels. The strategic phase emphasizes
selecting facilities, defining facility purposes, and building
a network of suppliers, manufacturers, transporters,
retailers, and customers. The tactical phase emphasizes

procurement, production schedules and standards, and
transportation solutions. The operational phase emphasizes
demand forecasting, inventory management, and material
flows. Strategic decisions, which often require a tremen-
dous amount of investment, have long-term effects on a
supply chain. These decisions cannot be easily changed
once they are made (Badri, 1999). Therefore, this study
focuses on the SCN design problem, which is one of the
long-term decision problems.
A long-term decision is considered robust only when it

can last under different types of market influences for a
long period of time. Transportation costs, which resulted
from facility location selection, already contributed up to
50%–60% of the total distribution costs of a company
(Frank, 2002). Given that the products are not mainly
transported directly from the manufacturing sites to the
customers but through different types of facilities, such as
distribution centers (DCs), the time spent on production,
transportation, and storage must also be considered in
facility location selection. We also observe that an
acceptable facility location provides a decrease of 5% to
15% in logistic costs while maintaining or improving
customer satisfaction (Ballou, 2001). Consequently, place-
ment of facilities at optimal locations and removal of
redundant facilities ensure that the supply chain effectively
performs while maintaining low costs, short cycle time,
and satisfied requirements (Sule, 2001).
The major factor that complicates long-term SCN

decision-making process is uncertainty. Any part of the
supply chain may vary over time, and a difference between
the current and future situations usually completely alters
the decisions. Potential uncertainty sources include
demands, supplies, costs, lead times, laws, regulations,
and exchange rates (Acar et al., 2010). The models
constructed in this paper incorporate uncertain demands to
obtain a robust answer to SCN problems. In the existing
literature, a large number of studies on deterministic SCN
design problem was conducted, and various methods on
stochastic demand SCN with limited size were introduced.
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A common assumption is that demand follows a certain
distribution. While our work is a case study from an actual
industrial project, the actual demand data are large but
extremely random; thus, providing assumptions is difficult.
Therefore, we propose two methods, namely deterministic
equivalent method (DEM) and sample average approx-
imation (SAA) method, to solve supply network design
problems with large and random uncertain demands. In the
DEM method, we present a splitting variable representa-
tion of the problem via each instance to jointly optimize the
sub-problems. The branch-and-fix coordination (BFC)
approach is introduced to coordinate the branch fix phase
execution for location selection such that the nonanticipa-
tivity constraints are also satisfied. While SAA method is
optimizing the average objectives of multiple instances of
the model with multiple samples of the random elements.
Over the entire year, a few elements usually have no
demand; thus, the demand data are sparse and limited.
Bayesian bootstrap is one of the approaches in generating
samples for random elements. Bayesian bootstrap simu-
lates the posterior distribution of a random element with
limited amount of available data (Rubin, 1981). Latin
hypercube sampling (LHS) is another method of generat-
ing samples for random elements. LHS generates samples
by partitioning each distribution into N intervals of equal
probability and selecting one sample from each interval
(Stein, 1987). Thus, the possibility of samples clustering
together in sampling methods, such as Monte Carlo
sampling, is avoided.
In summary, the contributions of this paper are as

follows.
1. We develop a multi-product, multi-shipment level

model with realistic logistic constraints to solve an actual
industrial strategy decision-making problem.
2. We present innovative approaches to solve the

stochastic model with consideration to stochastic demands.
3. We explore the two efficient sampling techniques in

the SAA methods.
4. We present that our method could solve large-scale

decision-making problems with large but random data.
The remainder of the paper is organized as follows. In

Section 2, we review the existing work on the present SCN
design. We propose the deterministic model formulation in
Section 3. The DEMmethod and SAAmodel are discussed
in Section 4. We report the extensive experimental results
of the actual case in Section 5. Section 6 concludes the
paper.

2 Literature review

2.1 Deterministic SCN models

The simplest type of SCN location problem is a single-
period single-objective deterministic problem with single
or multiple commodities. Geoffrion and Graves (1974)

solved a multi-commodity single-period single-objective
deterministic capitated problem by using Benders decom-
position. However, they did not separate transportation
variables for plant-to-DC and DC-to-customer shipments
but used quadruply subscripted variables to prevent the
loss of commodity origin information. Canel and Khuma-
wala (1997) studied the impact of international trade
agreements on a company and proposed a multi-period
model that allows companies to select facility locations
globally. They also included a large variety of possible
costs that might be incurred. They obtained an exact
optimal solution with an acceptable computational effi-
ciency by using branch-and-bound (BNB) algorithm.
Kouvelis and Rosenblatt (2002) considered a multi-period
SCN problem with governmental incentives, tariff, local
rules, and taxation. They solved the model by using a
mathematical programming software GAMS/OSL2. Klose
and Drexl (2005) reviewed different models for solving
deterministic distribution location problem. Chakravarty
(2005) solved a similar problem with the assistance of an
efficient search procedure and Kuhn–Tucker equation.
Facility location, production quantities, export and import
quantities were also studied. Similarly, Wilhelm et al.
(2005) studied a multi-period SCN problem under the
North American Free Trade Agreement with consideration
to shipment types, material flows, safety labor, and local
and international rules. Eskigun et al. (2005) considered
several possible shipment strategies in their model. The
proposed model in the present study focuses on the
different types of conveyance. By contrast, their model
focused on the different steps in shipment. Lagrangian
heuristics, greedy heuristics, and sub-gradient algorithm
were applied to reach the solution. Altiparmak et al. (2006)
constructed an SCN model which simultaneously analyzed
total cost, customer service level, and capacity utilization.
However, these objectives are conflicting. They applied a
genetic algorithm to obtain a set of Pareto-optimal
solutions. The study was divided into two stages: weight
approach and simulated annealing, which were used
accordingly. Similarly, Cordeau et al. (2006) integrated
the selection of shipment types with deterministic SCN
problem. BNB and Benders decomposition were used to
reach the solution.

2.2 Stochastic supply chain network models

Erlebacher and Meller (2000) proposed a stochastic multi-
objective capitated p-median model to incorporate SCN
and inventory. The NP-hard problem was solved by a self-
developed heuristic. Similarly, Sabri and Beamon (2000)
used the e-constraint and iterative procedure between
strategic and operational sub-models to solve their multi-
objective stochastic model, which analyzed conflicting
objectives, namely total cost and SCN volume flexibility.
Alonso-Ayuso et al. (2003) presented a scheme to handle
multi-stage decision problems with uncertainties. They
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discretized the model into different scenarios. The best
solution can be reached by analyzing different scenarios
using the DEM model, nonanticipativity constraints, and
BFC. Guillén et al. (2005) studied the interactions between
conflicting objectives, namely net present value, customer
satisfaction level, and financial risk, by using a multi-
objective stochastic model. They obtained the answer
using Pareto-optimal solutions and e-constraint. Shen and
Qi (2007) proposed a model to incorporate SCN, safety
stock, customer service level, and transportation routing.
The stochastic and multi-period model was solved by
Lagrangian relaxation-based heuristics and BNB.
The considerable impact of uncertain demands on SCN

problems attracted significant attention from researchers.
Laval et al. (2005) proposed a stochastic SCN model for
Hewlett–Packard. They extrapolated data for non-existent
cases, grouped similar scenarios, and used representative
scenarios to optimize their model. They highlighted the
possibility of introducing bias during data extrapolation
and the necessity of data verification by experts. Owen and
Daskin (1998) provided a holistic overview of the previous
studies to solve stochastic location problems. Probabilistic,
queuing, and scenario planning models have been
frequently used. Variables are incorporated into probabil-
istic models with their distributions. Gregg et al. (1988)
proposed a solution to allocate public libraries in New
York City by using service demand distributions. They also
discussed the impact of stochastic demands on location
decisions using sensitivity analysis. Queuing models are
frequently used to represent stochastic customer demands
as stochastic customer arrival rates. Averbakh and Berman
(1997) studied the problem of placing a vehicle in a
congested network with consideration to customer arrival
rates. They defined customer waiting time as the objective
and formulated the problem as a demand arrival Poisson
process. A self-defined procedure was deployed to obtain
the optimal solution as a function of stochastic customer
demands. Scenario planning models are used to identify
solutions with the most promising outcomes of decision
maker-defined uncertainty-incorporated scenarios. Mir-
Hassani et al. (2000) proposed a two-stage model for
multi-period SCN capacity planning. Benders decomposi-
tion was used to solve this stochastic SCN problem with
uncertain demand. Tsiakis et al. (2001) proposed a two-
stage model for multiproduct, multi-echelon SCN design
problems. However, only three demand scenarios were
considered in their paper. Kouvelis and Yu (2013)
proposed a method to for decision making with uncertain-
ties in the collected data. They discussed the construction
of a comprehensively discrete mathematical programming
framework to search for the worst scenario. Petridis (2015)
provided the optimal design of a multiproduct, multi-
echelon supply network under uncertainty of demand,
which is normally distributed.
The preceding works mentioned show the various

methods that deal with stochastic demand in the SCN

design problem; however, none of these methods use
actual raw, large, and random industrial data. Thus, solving
the problem and providing a distribution fitting assumption
is difficult, especially when the raw demand data are
sparse. Therefore, the present study aims to solve
stochastic SCN design problems by using large but
random data.

3 Deterministic model formulations

3.1 Model background

The company SCN comprises a series of operations,
including fabrication and sorting at front = ends (FEs),
assembly and final test at back-ends (BEs), and several
inventory points and distribution centers, which are called
die banks (DBs). The Company’s FEs are located in
Europe whereas its BEs are located in Asia Pacific
(APAC). A supply network design is similar to the
“storage at distributor and carrier delivery” design. This
design functions under an integrated system of push and
pull processes. Figures 1 and 2 provide an overview of the
SCN of the company.
Push process is used in anticipation of a customer order.

Materials, semi-finished products, or final products are
prepared in advance by forecasting customer demands.
This procedure reduces the amount of time spent between
receiving customer order and fulfilling the order. However,
ensuring that products are available when a customer order
arrives requires a high inventory level on hand. Thus, the
inventory cost increases, diminishing the overall profit. By
contrast, the pull process is used in response to a customer
order. Products are only manufactured or assembled after
receiving the order. A considerable amount of time is spent
between receiving the order and fulfilling the order.
However, the inventory level and cost are reduced. The
company adopts a mixture of both processes to achieve a
balance between responsiveness to customer order and cost
efficiency.
DBs are the most important part of SCN because they

are disposition points for semi-finished products (Christian
and Thomas, 2014). DBs behave as a boundary that
separates the push from the pull process. Products are
fabricated at FEs based on make-to-forecast strategy and
then shipped to DBs. Subsequently, when customers place
their orders, the assembling facilities (AssyLocations) at
BEs use the product inventories at DBs for the assembly,
which is based on the assemble-to-order strategy (Dinesh,
2010). Moreover, DBs serve as decentralization points of
product batches because different products are packed and
shipped together in batches when they have the same
designated FE and sales code. Thus, economies of scale are
achieved, and transportation cost is reduced.
Therefore, considering the supply chain strategies that

the company adopted and the considerable importance of
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DBs, the present study assists the company in making
decisions regarding the suitable places in APAC to
construct DBs. In this section, we develop the determinis-
tic model with the following assumptions.
� For confidential agreement reasons, we simplify the

network into three layers: FE, BE, and DB. The four
candidate DB locations include Batam, Singapore, Phi-
lippines, and Shanghai. A few sites in BE can also be
potential DBs. FE and BE locations cannot be published
for confidential reasons and thus are represented in capital
letters.
� Transportation and storage costs are included in the

total cost, whereas other costs, such as inventory, order,
and shortage costs, are excluded.
� The model describes the reality as much as possible.

For example, in a few constraints, different components
that share the same project code must ship to the same hub.

3.2 Notations

The following notations are used in the model.

I: Set of FEs. i ¼

1   D

2    K

3    R

4    V  

8>>>><
>>>>:

J: Set of DBs. j ¼

1  Batam

2  Singapore

3  Philippines

4  Shanghai 

8>>>><
>>>>:

K: Set of BEs. k ¼

1   P　

2    S

3    B

4   U  

8>>>><
>>>>:

C: Set of Product Types. c 2 f1:::270g
S: Set of Shipment Levels.

s ¼

1  ð  0,  25  Þproducts
2  ½25,50Þproducts
3  ½50,100Þproducts
4  ½100,150Þproducts 
5  ½150,750Þproducts
6  ½750,1500Þproducts
7  ½1500,3750Þproducts

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Fig. 2 Supply chain strategies of the company

Fig. 1 Company SCN design
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The decision variables and parameters are illustrated in
Tables 1 and 2, respectively.
Our objective function minimizes the total annual cost,

including transportation costs of product shipment from
FEs to DBs, transportation costs of product shipment from
DBs to BEs, storage costs of DBs, and fixed transportation
cost between Batam and site U. The function is defined as
follows:

Min  Z ¼ rEUROSGD

X
i

X
j

X
s

X
c

αijcs$  c
α
ijs

 

X
j

X
k

X
s

X
c

βjkcs$  c
β
jks þ

X
j

fjrj$M !
þ
X
t

δ$  C   r$  T$ W :

Subject to:

X
j

X
s
Xijcs³

X
k
dikc8i,c, (1)

X
j

X
s
Yjkcs³

X
k
dikc   8i,c, (2)

X
i

X
s
Xijcs ¼

X
k

X
s
Yjkcs   8j,c, (3)

dikc – Ls <K$  #
Ls
ikc   Us – dikc£K$  #Us

ikc

#Ls
ikc þ #Us

ikc – 1£K$  ηikcs    8i,k,c,s, (4Þ–ð6)
X

j
αijcs ¼

X
k
ηikcs   8i,c,s, (7)

X
j
βjkcs ¼

X
i
ηikcs   8k,c,s, (8)

Table 1 Decision variables

Decision variables Description

Xijcs No. of type c products shipped from FE i to DB j by shipment level s

Yjkcs No. of type c products shipped from DB j to BE k by shipment level s

αijcs 1 if type c products are shipped from FE i to DB j by shipment level s, 0 otherwise

βjkcs 1 if type c products are shipped from DB j to BE k by shipment level s, 0 otherwise

γj 1 if DB j is selected, 0 otherwise

δ 1 if the route between Batam and U is selected (as it is a monthly fixed cost), 0 otherwise

ζLsikc 1 if demand dikc is larger than or equal to the lower bound of shipment level s, 0 otherwise

ζUs
ikc

1 if demand dikc is smaller than the upper bound of shipment level s, 0 otherwise

ηikcs 1 if shipment level s is used for demanddikc, 0 otherwise

θcl 1 if demand of type c products is nonzero, 0 otherwise

Table 2 Parameters used in the model

Parameters Description

dikc Demand of type c products from BE k, which is supposed to be produced at designated FE i

Ls Lower bound of shipment level s

Us Upper bound of shipment level s

cαijs Transportation cost from FE i to DB j per carton by shipment level s in EURO

cβjks Transportation cost from DB j to BE k per carton by shipment level s in EURO

cg Transportation cost between B and U per trip in SGD

fj Storage cost of DB j per month in EURO

rSGDEuro Exchange rate from EURO to SGD (based on the exchange rate on 27/10/16)

(rSGDEuro = 1.52)

M No. of months per year (M = 12)

W No. of weeks per year (W = 52)

T No. of trips between B and U per week (t = 7)

K A large integer (K = 100000)
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X
i

X
k
dikc£k$  �c    8c, (9)

X
i

X
j

X
s
αijcs ¼ �c    8c, (10)

X
j

X
k

X
s
βjkcs ¼ �c    8c, (11)

Xijcs£K$  αijcs    8i,j,c,s, (12)

Yjkcs£K$  βikcs    8j,k,c,s, (13)

X
i

X
s

X
c
αijcs£K$  rj    8j, (14)

X
k

X
s

X
c
βjkcs£K$  rj    8j, (15)

X
c

X
s
β14cs£K$  δ  8j ​ , (16)

Xijcs,Yjkcs³0, (17)

αijcs,βjkcs,rj,δ,#
Ls
ikc,#

Us
ikc,ηikcs,�c 2 f0,1g   8i,j,k,c,s, (18)

Constraint sets (1) and (2) guarantee that the demand for
type c products is satisfied by the type c products shipped
from FE i to DB j and from DB j to BE k. Equation (3)
imposes a balance between the number of type c products
shipped from FEs to a specific DB j and the number of type
c products shipped from that DB to BEs. Constraint sets
(4), (5), (6), (7), and (8) ensure an appropriate shipment
level to be selected to transport a specific product type
based on its demand. Constraint sets (9), (10), and (11)
state that a specific product type only has at most one
designated FE, DB, and BE, as well as one shipment level.
Constraint sets (12) and (13) ensure that shipment routes
with a specific shipment level from FEs to DBs and from
DBs to BEs can only be activated when a few products are
shipped along these routes. Constraint sets (14) and (15)
are connecting constraints to guarantee products passing
through if the site is chosen as DB. Constraint (16) checks
if shipment route between Batam and U is activated.
Finally, constraint sets (17) and (18) are the non-negativity
and binary restrictions on decision variables, respectively.

4 Stochastic programming method

4.1 Deterministic equivalent model

The variance of demand values of a specific product type
can be extremely large, and a few demand values are equal
to zero. Therefore, the demands for the product types in
one year are rather random and uncertain. We divided the
analysis into two methods to obtain a systematic approach
of analyzing uncertain demands. In the first method, we

apply the idea of DEM with nonanticipativity constraints
and BFC scheme to obtain the final decision by inputting
the exact one year demand data into the deterministic
model. Alonso-Ayuso et al. (2003) introduced this method
to solve mixed 0–1 programs under uncertainty in the
objective function coefficients or parameters, which are the
storage costs in our base model. This method also
considers multiple values of a parameter as multiple
instances of the deterministic model and simultaneously
solves these instances. Similarly, we split our one year
demand into 12 instances and used these instances to
represent the DEM model.
A DEMmodel defines our base model as follows, where

W is the set that contains all the instances, w is an instance
in set W with the probabilitypw, yw denotes the set of
binary DB location decision variables of instance w, and xw

denotes the set of other decision variables of instances. A
and B are coefficient sets of xw and yw in the objective
function, respectively.
Minimize Z ¼

X
w2W Pwðαwxw þ bwywÞ,

Subject to: A xw þ B yw ¼ hw    8w 2 W
yw 2 f0,1g8w 2 W,x³0.
In our problem, we present a splitting variable

representation of the problem for each month; thus, each
month could be regarded as a sub-problem with equal
probability. The DEM model can be easily solved by
jointly optimizing the sub-problems. Unfortunately, the
product demands in each instance are different from the
others, and the instances are separately optimized; thus,
two or more different final decisions can be observed. As
such, explicitly adding the nonanticipativity constraints to
the DEM model is essential. The nonanticipativity
constraints force the final decisions of all the instances to
be the same and should not be arbitrarily changed. The
nonanticipativity constraints are as follows:

xw – xwþ1 ¼ 0  8w 2 W:

We adopt the idea of BFC scheme and fixed DB location
decision variables, which are exactly the same for all the
instances and branched on the other DB location decision
variables, to efficiently satisfy the nonanticipativity
constraints in the DEM model. Therefore, the problem is
broken into sub-problems, which can be jointly optimized
with less effort. A simple example of the BFC scheme is
shown in Fig. 3 as follows.
In our DEM model, we split the problem into sub-

problems by month; thus, the probability pw is equal to 1.

Fig. 3 BFC on DB decision variables

Yuan WANG et al. A case study on sample average approximation method for stochastic supply chain network design problem 343



In other words, our DEM model is deterministic because it
utilized the previous fixed demand data. Hence, we
introduce another method to analyze the stochastic
demand.

4.2 Sample average approximation method

For the second method, investigating the final decision
based on the exact one-year demand data are insufficient to
make a conclusion because the demand values are highly
uncertain. The demand values in the future might alter the
current decision. Therefore, the underlying demand
distribution of each product type must be identified, and
the analysis must be extended to more demand values. We
adopted the idea of SAA from Kim et al. (2015) to solve
OR problems by optimizing the average objective value of
multiple model instances based on multiple samples
generated from stochastic distributions. We applied two
sampling methods, namely Bayesian bootstrap and LHS,
due to limited data points to draw the demand distribu-
tions; both methods are useful in this situation.

4.2.1 Two-stage stochastic model

We present the two-stage stochastic model, which assumes
that all parameters in stage one are known while a few
parameters in stage two are unknown, to extend the
previous deterministic model to a stochastic setting. The
first stage comprises the location decisions y, and the
second stage comprises all costs related in an optimal
fashion under the realized uncertain demands. The general
formulation of the two-stage stochastic model is expressed
as follows:
Minimize fðyÞ ¼ cTyþ E½Qðy,εÞ�,
Subject to: 8  y  2 Y  inf0,1g,

where Q(y, ε) is the optimal objective function of the
second-stage problem.
Minimize qTx,
Subject to: A xs þ B ys ¼ hs       8s 2 S
x³0,

where s 2 S denotes an unknown scenario in stage one but
is known when the decisions at stage two are made, and S
is the set of all scenarios.

4.2.2 Sample average approximations

The two-stage stochastic models are extremely difficult to
solve because the cost expectation E½Qðy,εÞ�  in the
objective is complicated. Thus, we deal with the problem
by using the SAA method. The basic idea of the SAA
method is using random samples to approximate the
expected objective function of a stochastic problem, as
shown in the following equation. With random samplings,
the problem becomes deterministic and solvable by
optimization techniques. The proposed SAA procedures

are described as follows.

min
y2Y

~f N Yð Þ :¼ cTyþ 1

N

XN
n¼1

Q y,2 nð Þ
( )

:

Step 1: Generate M independent samples with the
sample size N. Then, solve the corresponding M
independent SAA problems

min
y2Y

cTyþ 1

N

XN
n¼1

Q y,�nj
� �( )

:

Step 2: Compute the sample average:

ZN ,M :¼ 1

ðMÞ
XM
j¼1

ðZj
N Þ:

Let z* denote the actual optimal value given that zN ,M is
an unbiased estimation of EzN . Thus, EzN£z* and the
estimator zN ,M provide a statistical lower bound of the
optimal objective value.
Step 3: Estimate the actual objective function value as

follows:

~f N# yð Þ :¼ cTyþ 1

N#

XN#
n¼1

Q y,�nj
� �

:

We evaluate the M candidate solutions in a large size
N#, where ~ZN#ðyÞ is an unbiased estimator of f ðyÞ, and
~ZN#ðyÞ is an upper bound of Z*.
Step 4: Compute the optimality gap as follows:

~ZN#ðyÞ – ZN ,M .

4.2.3 Sampling methods

Each sample di which is used in SAA, is obtained by using
Bayesian bootstrap or LHS method. On the one hand,
Bayesian bootstrap simulates the posterior parameter
distributions instead of simulating distributions of a
statistical estimator of that parameter, similar to the study
of Rubin (1981). On the other hand, LHS generates
random samples of parameters by partitioning the
distributions and selecting one sample from each partition
to prevent samples from clustering together Stein (1987).

5 Experiments

In this section, we first separately introduce the results
from DEM model and SAA method. Then, the compara-
tive results are presented to evaluate the performance of
our proposed methods. IBM ILOG Cplex Optimization
Studio Version 12.5 is used to run the model under an
environment, which comprises an Intel (R) Core (TM) i5-
3570 CPU, 3.40 GHz processors, and an 8 GB RAM. The
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demand samples are generated based on Bayesian boot-
strap and LHS methods in Rstudio. Library packages,
Bayesian bootstrap and LHS were used.

5.1 DEM results

Different from the DEM model which comprises multi-
stage decision variables and proposed by Alonso-Ayuso
et al. (2003), DB location decision variables in our
deterministic-based model are simultaneously provided
only once. Thus, the model has only one stage.
We obtain the final decision result matrix by separately

running the base model for 12 months, as shown in
Table 3. The result shows that the final decisions across 12
months are nearly the same. DB Philippines and DB
Shanghai are selected all the time. The only difference
occurred in November 2016 and January 2017, in which
decision differs between DB Batam and DB Singapore.

Z  min ¼ minfZig   8i,
where Zi ¼ Minmize 

X
w2W   Pwðαwxw þ bwywÞ, and

i denotes the set of cases, i 2 f1,2,3,4g.
Table 4 shows that selecting DB Batam provides the

lowest total cost of S$108400.32. The highest total cost of
S$117467.97 was incurred when all DBs are selected due
to a large increase in the storage cost. Therefore, the
optimal decision from the DEM method is selecting DBs
Batam, Philippines, and Shanghai with the lowest total cost
of S$108400.32.

5.2 SAA results

We obtain 20 groups with a demand sample size of 50 by

each sampling method after running the Bayesian boot-
strap and LHS packages on Rstudio. Noticeably, by
solving the SAA model with the generated demand
samples, both sampling methods indicate that the first
DB decision (selecting Batam, Philippines, and Shanghai)
provides the lowest average objectives compared to the
other DB decision sets. However, directly concluding that
the first DB decision (selecting Batam, Philippines, and
Shanghai) is the optimal decision does not consider the
occasionality when the low average objective is caused by
generated low demands. Thus, we evaluate each potential
location(s) option in a large demand sample size of 500, as
generated by the Bayesian bootstrap and LHS methods.
We assume that a sample size of 500 is most likely to avoid
such occasionality.
We observe that both methods highlight that the DB

decision of selecting DBs Batam, Philippines, and
Shanghai is the optimal decision that provides the lowest
total cost. This result coincides with the result obtained
from the DEM model with BFC in Subsection 4. We also
provide the top three solution results with their corre-
sponding gap in each solution in Table 5. The table shows
that both sample techniques can generate robust near
optimal solutions.

5.3 Comparison results

In this subsection, we compare our proposed results with
the deterministic model in Section 3 using simple annual
average demand input. Most of the literature in determi-
nistic environment simply assumed that the demand is the
average number. The purpose of this comparison is to
show the difference between large data input and one
simple average input. The comparative results are shown in

Table 3 DB decisions obtained based on 12-month demands

Month Batam Singapore Philippines Shanghai Objective (S$)

Jul-16 1 0 1 1 110,689.6

Aug-16 1 0 1 1 121,579.5

Sep-16 1 0 1 1 124,029.2

Oct-16 1 0 1 1 121,665.8

Nov-16 0 1 1 1 128,591.7

Dec-16 1 0 1 1 121,233.4

Jan-17 0 1 1 1 124,160.3

Feb-17 1 0 1 1 111,106.9

Mar-17 1 0 1 1 102,843

Apr-17 1 0 1 1 91,406.94

May–17 1 0 1 1 78,181.76

Jun-17 1 0 1 1 64,648.94

Next, we fix the decisions on DBs Philippines and Shanghai in one case and
branched the decisions on DBs Batam and Singapore into four cases, as shown in
Fig. 3. We run the base model in each case with 12-month product demand data
and obtain the minimum total cost as shown in the objective function of the
following modified DEM model.

Table 4 Objectives obtained based on 12-month demands for four

cases defined by BFC

Month
Batam = 0

Singapore = 0
Batam = 0

Singapore = 1
Batam = 1

Singapore = 0
Batam = 1

Singapore = 1

Jul-16 9,539.40 9,559.51 9,224.13 10,009.09

Aug-16 10,589.77 10,277.75 10,131.62 10,722.50

Sep-16 10,702.54 10,544.21 10,335.76 10,961.02

Oct-16 10,660.80 10,363.03 10,138.82 10,717.72

Nov-16 11,509.58 10,715.97 10,764.60 11,107.57

Dec-16 10,579.95 10,374.62 10,102.78 10,779.61

Jan-17 11,026.95 10,346.69 10,353.65 10,713.01

Feb-17 9,590.83 9,463.51 9,258.91 9,884.18

Mar-17 8,972.40 9,073.50 8,570.25 9,480.6

Apr-17 7,941.56 8,246.82 7,671.25 8,718.36

May–17 6,755.48 7,171.92 6,515.15 7,646.97

Jun-17 5,549.94 6,238.71 5,387.41 6,726.34

Annual cost (S$) 113,419.2 112,376.24 108,400.32 117,467.97
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Table 6. A significant difference exists in solutions
between the deterministic model with assumption input
and the stochastic model with large data. Thus, the
importance of data in the SCN design problem is enhanced.

6 Conclusions and future work

We studied a large-scale SCN design problem under
uncertainties. A mathematical model that minimizes total
cost comprising storage and transportation costs was
developed to solve an actual industrial problem. We
analyzed the impact of stochastic demand and the
importance of data on the final decision.
One of our main contributions is investigating the

impact of stochastic demand on the decision-making
process of SCN design problems. Another contribution
of this study is providing a solution scheme for stochastic
SCN design problem by using the large data of the
company. An example of how company historical data are
utilized to guide decision making is also provided.
The scope of our research includes storage and

transportation costs. However, other quantitative factors,
such as inventory costs and fill rates, as well as qualitative
factors, such as tariffs, laws, and regulations in different
countries, can be considered for future studies. In addition,
rather than using three layers, this problem can be extended
to the entire global SCN, including procurement, fabrica-
tion, sorting, testing, and delivery. Another fertile area for
future studies is a concurrent analysis of the impact on the
final decision when multiple uncertainties simultaneously
vary. Additional effects on the final decision due to
interactions between different uncertainties might be
observed by simultaneously considering multiple uncer-
tainties.
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