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Abstract The empirical Complex Model developed by
the US Environmental Protection Agency (EPA) is used by
refiners to predict the toxic emissions of reformulated
gasoline with respect to gasoline properties. The difficulty
in implementing this model in the blending process stems
from the implicit definition of Complex Model through a
series of disjunctions assembled by the EPA in the form of
spreadsheets. A major breakthrough in the refinery-based
Complex Model implementation occurred in 2008 and
2010 through the use of generalized disjunctive and mixed-
integer nonlinear programming (MINLP). Nevertheless,
the execution time of these MINLP models remains
prohibitively long to control emissions with our online
gasoline blender. The first objective of this study is to
present a new model that decreases the execution time of
our online controller. The second objective is to consider
toxic thresholds as hard constraints to be verified and
search for blends that verify them. Our approach
introduces a new way to write the Complex Model without
any binary or integer variables. Sigmoid functions are used
herein to approximate step functions until the measurement
precision for each blend property is reached. By knowing
this level of precision, we are able to propose an extremely
good and differentiable approximation of the Complex
Model. Next, a differentiable objective function is
introduced to penalize emission values higher than the
threshold emissions. Our optimization module has been
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implemented and tested with real data. The execution time
never exceeded 1 s, which allows the online regulation of
emissions the same way as other traditional properties of
blended gasoline.

Keywords emissions, reformulated gasoline, online con-
trol, global optimization

1 Introduction

The US Environmental Protection Agency (EPA, 2015)
established reformulated gasoline (RFG) guidelines in
reducing emissions from gasoline-powered vehicles to
satisfy air quality requirements. In 1998, the EPA
introduced the Complex Model, which is denoted herein
as EPA-CM, to allow refineries calculate the nitrogen
oxides (NO,), volatile organic compounds (VOCs), and
toxic air pollutants (TOX) based on 11 gasoline properties.
The regulations embedded in the EPA-CM are available in
print form (EPA, 2015). The EPA also publishes and
updates an Excel spreadsheet (EPA, 2016) to calculate the
emission reductions compared to a statutory baseline
gasoline. This spreadsheet is selected to give the reference
equations of the present study. In its original form, the
EPA-CM is difficult to implement within mathematical
optimization models. Since 1998, considerable effort has
been expended (see Appendix for a bibliographical
background) to implement the EPA-CM into refinery
operations. The first breakthrough occurred in 2008
(Furman and Androulakis, 2008) and 2010 (Misener et
al., 2010), in which EPA-CM was represented as a mixed-
integer nonlinear programming (MINLP) using disjunctive
programming techniques. As discussed in the next section,
the EPA-CM cannot be operated with the original proper-
ties of the target gasoline. More specifically, this model
utilizes edge target and delta target values derived from the
target property values by satisfying a number of “if-then”
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conditions, which introduce binary variables that must be
managed along with continuous variables to mathemati-
cally model the emission functions. The MINLP by
Furman and Androulakis (2008) is composed of 78
continuous variables and 21 binary variables. The authors’
signal computation times for the optimization solver
extend approximately 600 s. The part of the EPA-CM
model included in the more general pooling problem
treated by Misener et al. (2010) requires 87 continuous
variables and only 15 binary variables. The EPA-CM is
part of the pooling problem, and its execution time has not
been reported accurately. Nevertheless, an EPA-CM
computation time of approximately 140 s is estimated in
Appendix A.

The current state-of-the-art approaches cannot control
the emission in online blending to the same extent as the
typical properties of target gasoline. The present work
addresses this problem. As mentioned previously, MINLP
model computation times remain prohibitively long for
online blending processes. Our online controller ANA-
MEL (Chébre et al., 2010) actually calls the optimization
solver up to 16 times/min (because of the frequency of
changes in component properties) to regulate some 40
properties of the target gasoline; thus, the optimal solution
is returned by the solver in less than 4 s.

Our approach is completely different from all preceding
contributions. We begin by introducing a differentiable
approximation of the EPA-CM emission functions. To this
end, sigmoid functions are used as an approximate
differentiable variant of if-then logical conditions con-
tained in the original model. The accuracy of this
approximation is controlled by using the measured
precision of gasoline properties. In this way, we avoid
the need for binary variables and mixed constraints. Then,
instead of imposing (non-convex) constraints on emission
values, we minimize an objective function that penalizes
emission values exceeding a given threshold. We thus
obtain an optimization problem with a differentiable and
non-convex objective function with respect to the classical
linear constraints on recipe and gasoline properties.

This new control/optimization problem is implemented
and tested with real data. The execution time of the global
optimizer solver, which is written in MATLAB, is less than
1 s; this good result paves the way to controlling emissions
online the same way as the other traditional properties of
blended gasoline. This fast model is also suitable for
refinery scheduling departments. The international patent
(Janagqi et al., 2015) for our process was awarded in July
2015.

This paper is organized as follows. Section 2 provides a
bibliographical review. Section 3 describes the NO,
computation and lists useful definitions in the remainder
of the article. Section 4 contains the theoretical develop-
ment of our approach. Section 5 provides some imple-
mentation details and results. Finally, Section 6 presents
the conclusion.

2 Bibliographical review

RFG fabrication is the subject of the first part of a
negotiation between the US legislature and refiners in
1991. This negotiation aimed to decrease toxic emissions
(i.e., NO,, VOC, and TOX) of an RFG with respect to a
baseline gasoline. This negotiation defined new standards
that were subsequently introduced into the calculation
models, namely, EPA Simple Model and EPA-CM (in
effect since 1998). The following paragraphs chronologi-
cally review the papers discussing the economic, mathe-
matical, and implementation aspects of the calculation
models.

In 1994, Nocca et al. (1994) discussed the specifications
to be imposed on RFG and the modifications to an
upstream trial on a mixture to satisfy the emission
constraints imposed by the EPA Simple and Complex
Models.

At the same time, Hirshfield and Kolb (1994) demon-
strated the benefits of linking EPA-CM with the mathe-
matical models (i.e., linear and nonlinear) used in
refineries. They stressed the need to formulate “simplified
reduced forms” of EPA-CM that could easily be integrated
with mathematical solvers. They did not succeed however
to introduce simplified reduced (linear) forms because
these forms, as signaled by Treiber (1998), provide highly
inaccurate approximations.

In 1995, Trierwiler (1995) asserted that the emission
functions cannot be (globally) linearized with an accep-
table level of precision sufficient to be integrated into the
refinery linear programming. He developed a tangent
surface technique to locally linearize the EPA functions.
We observed that this technique, although theoretically
solid, can only be applied efficiently in the neighborhood
of gasolines x whose emission functions are relatively
linear. We found some actual cases with emission functions
exhibiting strong variations around some gasolines x. The
singular Hessian values at these points vary between 107!
and 10°. In such cases, the linear approximation is only
valid over an extremely small zone around x; consequently,
recipe modification by the solver is nearly zero.

In 1995, Korotney (1995) conducted a program to test
whether some EPA-CM extrapolations might be useful.
They showed in several cases that EPA-CM outputs
emission values greater than the actual emissions. At first
glance, this finding would seem to be extremely good
given that if EPA-CM emissions were less than certain
thresholds, then the actual emissions would surely comply
with the legal requirements. The problem here is that, with
such overestimations, the feasible zone narrows and blend
cost rises.

During the same period, Jackson and Vittachi (1995)
integrated the EPA Simple Emissions Model into the
online control; their model only set bounds for TOX and
exhausted benzene. Moreover, they estimated the impact
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of each component over the two pollutants and introduced
this information into the online control. Their work did not
integrate the EPA-CM.

Cason (1997) performed a thorough analysis of the
influence of emission constraints on the flexibility of
gasoline blending. He demonstrated the impossibility of
defining easy-to-respect bounds on the blend properties
that would imply emissions in compliance with the EPA
Standard because a large reduction in blend flexibility
implies a needless cost increase. Mathematically speaking,
introducing supplementary bounds on gasoline properties
dramatically reduces the feasible zone. Cason wrote, “It is
doubtful whether a refiner could consistently blend any
gasoline with these properties... The industry is effectively
stifled by mathematics.”

In the same year, Hirshfield and Kolb (1997) released a
model for estimating the cost of emission reduction as
required by the EPA Simple and Complex Models. They
introduced a linear model of a virtual refinery that
simulated the blending of five types of RFG under more
restrictive emission constraints for Petroleum Administra-
tion for Defense Districts I, II, and III. Moreover, they
demonstrated a monotonic increase in the cost of emission
reduction for the five considered RFGs and proved that the
major cost component is accounted for by the cost of
refinery operation and the cost of credit required to update
the technology in response to the new standards. Never-
theless, ancillary costs (due to more difficult management
of basic stocks, tests and traceability, non-compliant
blends, safety margins, and operational flexibility) are
considered to lie between 12% and 15% of the total blend
cost. Online blend control would reduce these ancillary
costs to a considerable extent.

Treiber (1998) indicated that the strategies organized to
satisfy the EPA-CM constraints were initially aimed at
reducing reid vapor pressure (RVP) and later at reducing
sulfur content (SUL). The sale of RFG violating the
statutory emission thresholds would involve civil or
criminal penalties. They also indicated the gasoline
properties most heavily influencing emissions (i.e.,
VOC(x) = f(RVP), NO,(x) = f(SUL), and TOX(x) =
ABEN)). Two optimization strategies were proposed. The
first strategy consisted of defining adequate thresholds on
RVP, SUL, and benzene content (BEN) and then using a
linear program. To counter the interactions between
variables and the effect of the other variables on emissions,
a wide safety margin was observed. This optimization step
resulted in a 1.1% blend cost reduction. The second
strategy used a nonlinear optimizer to obtain all the
variable interactions and precise emission values. The
safety margin was scaled back, and the finer optimization
approach lowered cost by 1.8%.

Naman (1999) used linear regression to predict emis-
sions according to gasoline quality. Ideally, a “good” linear
approximation of emissions would solve the problem of
integrating emission constraints during the programming
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phase, as well as during the gasoline blending phase. He
established two models. The first model was local and
resulted in randomly generating 100 blends that followed a
normal distribution with a mean equal to a typical gasoline
and standard deviation equal to the laboratory measure-
ment error. In other words, he replicated the same gasoline
100 times. The standard deviations of his results were as
follows: TOX = 1.162, NO,= 10.419, and VOC = 33.539.
The second model generated gasolines uniformly over a
wide min/max interval (closer to reality). In the latter case,
the linear approximation errors were as follows: TOX =
8.991, NO, = 101.314, and VOC= 112.474. These
standard deviations are extremely large, thereby reconfirm-
ing our opinion regarding the strong nonlinearity of
functions used to calculate EPA-CM emissions.

In 2008 (given the jump in time, one could surmise that
the problems concerning EPA-CM had been definitively
resolved), Furman and Androulakis (2008) tackled the
critical problem of satisfying even more restrictive
emission constraints while imposing a minimum number
of changes in the blending process. They asserted that the
current EPA-CM representation is extremely difficult to
implement in refining operations or combine with gasoline
design models. The main motivation behind their work
was to derive a model capable of including the EPA-CM
constraints within a mathematical programming formula-
tion. The major difficulty herein lies in the EPA-CM
formulation as a series of complicated disjunctive
constraints that basically makes its incorporation into
algebraic optimization models impossible. At present, a
large array of typical “boutique” gasolines are available
(up to 14 in number) that meet state and/or local air quality
specifications. Such formulations use the technique of
writing disjunctive constraints as a series of mixed binary/
continuous variables, resulting in an optimization problem
with 20 binary variables, 100 continuous variables, and
200 mixed constraints (for a blending problem with 10
components and 12 properties). Their objective function is
anormalized distance between the target gasoline x and the
baseline gasoline xb (see objective function Fpry(x),
Eq. (5)). The indicated calculation times are on the order
of 10 min in a 2.4 GHz AMD Athlon processor with 2 GB
memory.

Misener et al. dedicated a suite of papers to the problem
of pooling. Misener et al. (2010) addressed the problem of
extended pooling with emission constraints. They
employed and improved the technique of Furman and
Androulakis (2008) to write the disjunctive constraints as a
series of mixed constraints (i.e., binary/continuous),
covering all EPA-CM scenarios with the IF List. Never-
theless, among the illustrative examples given, only the
first one actually imposes useful reductions on the blended
gasoline. This “utility” is deduced with regard to the
reference baseline emissions (see Table 4, page 1449 of
this reference), which has been copied in Table 1:

As shown in Table 1, only the C1 case is nearly correct
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Table 1 Emissions from the paper of Furman and Androulakis
vocC NO, TOX
xb 1466.30 1340 86.34
Cl 1200 1300 90
C2 1700 1400 95
C3 1600 1300 95

(except for TOX), whereas the C2 and C3 cases violate the
threshold emissions. Computation times vary from a few
seconds to 5274 s. Calculating the time ascribed to the
integration of EPA-CM is difficult. For all these examples,
the branch-and-bound procedure visits 44 nodes, for a total
time of 6249 s, thereby amounting to 142 s/node on
average. In other words, the CPLEX + MINOS solver
required on average 142 s to find the min/max bounds for
any given node.

To conclude this bibliographical review, these references
can be divided into two major categories, namely, i)
economic aspects and ii) mathematical/modeling/imple-
mentation aspects. From the first category, the optimization
with constraints on emissions exerts significant economic
impact on the cost of gasoline. The second category
underscores the difficulty of integrating the EPA-CM
constraints into the refining operations or combining them
with gasoline model design. Even when such an integra-
tion step is performed, the calculation time of MINLP
models remains impracticable for use on the online control
of emissions and blending.

Notably, these contributions do not compare their results
because the approaches are probably different and
incomparable.

3 EPA-CM and useful notations and
equations

A target gasoline x (more specifically, x€R” is a vector of p
gasoline properties) is blended from a set of components
characterized by their properties By,...,B,€R”. The follow-
ing subset of these properties is used to calculate emissions
in EPA-CM:

OXY = Oxygen content of (any) target fuel, expressed as
weight percent;

SUL = Sulfur content of (any) target fuel, expressed in
parts per million by weight;

RVP = Reid vapor pressure of the target fuel, expressed
in pounds per square inch;

E200= 200°F distillation fraction of the target fuel,
expressed as volume percent;

E300= 300°F distillation fraction of the target fuel,
expressed as volume percent;

ARO = Aromatics content of the target fuel, expressed
as volume percent;

BEN = Benzene content of the target fuel, expressed as

volume percent;

OLE = Olefin content of the target fuel, expressed as
volume percent;

MTB = Methyl tertiary butyl ether content of the target
fuel, expressed as weight percent;

ETB = Ethyl tertiary butyl ether content of the target
fuel, expressed as weight percent;

TAM = Tertiary amyl methyl ether content of the target
fuel, expressed as weight percent;

ETH = Ethanol content of the target fuel, expressed as
weight percent.

Other properties such as RON and MON are calculated
and controlled; however, the above list is limited to those
contributing to the calculation of NO,, VOC(x) and
TOX(x). A recipe is a vector ucR”, such that u;, i=1,....,n
is the volume percentage of component B; in blend x.
Recipe u must verify the constraint X, u; = 1. The properties
of target blend x are a function of the component matrix B
=[By,...,B,,] and recipe u, with x =x(B,u). Over a short time
horizon (e.g., a few minutes, as is the case herein), B can be
considered as a constant; consequently, the only control
variable is recipe u. The hydraulic and operational
constraints actually yield the upper and lower bounds on
the recipes:

ﬂSuSﬂ, Ziul‘: 1. (1)

The regulatory constraints on the target gasoline are
given as a set of upper and lower bounds on its properties:
¢ <x = x(u) <¢. Moreover, x(u) should satisfy the EPA
regulatory constraints x <x = x(u) <X, (see Appendix).
The intersection of these constraints yields

max(c, x) <x = x(u) <min(c, X). )

In our control process, when gasoline x(u) violates the
constraints in Eq. (2) or is not optimal, recipe u is modified
to optimize some general form of an objective function:
F(u) = o ||u—u®|| + B ||x(u) —x°||. Here, u° is a baseline
recipe calculated by the scheduling department, and x° is
an “ideal” gasoline that minimizes the giveaway.

The emission calculation entails an additional step. (This
step is given in detail for NO, in Appendix.) All constraints
in Egs. (1) and (2) are linear, except for the one on RVP. In
practice, some transformation of RVP that blends linearly
is introduced. The functions used to calculate emissions in
EPA-CM (i.e., NO,(u), VOC(u) and TOX(u) are contin-
uous but non-differentiable and non-convex (see Appen-
dix). As shown in Appendix, these emissions are feasible if
they verify constraints:

NO, (x(u)) <N,VOC(x(u)) <V, TOX(x(u)) <T. (3)

A recipe u now becomes feasible if it verifies Constraints
(1), (2), and (3).

The non-convex and non-differentiable functions
NO,(x(u)), VOC(x(u)) and TOX(x(u)) serve to input the
constraints in Eq. (3); hence, Furman and Androulakis
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(2008), Misener et al. (2010), and all preceding authors
attested that EPA-CM is extremely difficult to implement
for refinery operations or combine with existing models in
predicting the quality of blended gasoline. Furman and
Androulakis (2008) and Misener et al. (2010) introduced
mixed (i.e., binary/continuous) models to integrate EPA-
CM into the quality prediction and optimization sequence
for blended gasoline. These authors applied the technique
of disjunctive constraints (Raman and Grossmann, 1994)
and inserted binary variables to manage the “IF List.”
More specifically, they introduced mixed (i.e., binary/
continuous) constraints to obtain the correct values for y
(edge target) and z (delta target) of Step 1 (see Appendix).
To control the NO(u), VOC(u) and TOX(u) emissions,
Furman and Androulakis (2008) optimized the following
objective function with respect to the constraints in Egs.
(1) and (2):
x(i)—xb(i)\?
Fry(x) = Ei<f(i)—)_c(i) ) . “)
As discussed in Section 5, this optimization tends to find
a blend as near as possible to baseline blend xb (see
Appendix). However, the optimization may not verify the
constraints in Eq. (3).

4 Differential approximation of EPA-CM

We continue with the example of calculating NO () for a
given recipe u as a means of explaining our approach. The
VOC and TOX calculations are relatively similar. The
calculation of terms found in TOX(u) (i.e., exhausted
benzene, non-exhausted benzene, acetaldehyde, formalde-
hyde, and butadiene) is simple because the delta target z is
not utilized.

The disjunctive constraint technique used by Furman
and Androulakis (2008) and Misener et al. (2010) is
recalled in the next section. This technique is illustrated by
providing the equivalent form of the IF List (see
Appendix). Afterward, we develop a new way of writing
the IF List. Finally, a differential objective function is
introduced to manage the emission levels.

4.1 Disjunctive formalism"

Disjunctive programming was first developed in 1974 by
Balas (2010). Its MINLP model was built by Raman and
Grossmann (1994). Furman and Androulakis (2008) and
Misener and Floudas (2009) extensively used the MINLP
formalism of disjunctive programing in reformulating
EPA-CM as an optimization problem. We examine the
following conditions on the IF List:

If x(ARO)=18 and x(ARO)<36.8, then »(ARO) = x

(ARO), z(ARO)=0.

If x(ARO) < 18, then y(ARO) = 18, z(ARO) = x(ARO)
—18.

If x(ARO) >36.8,
x(ARO)-36.8.

The disjunctive constraints for these conditions are as
follows (in this case, the x, y, z values correspond to the
ARO property):

then y(ARO) = 36.8, z(ARO) =

x<18 x> 36.8 18<x<36.8
y=18 V |y=36.8 V|y=x
z=x—18 z=x-36.8 z=0

These conditions can now be written as a series of mixed
linear constraints. The domain of valid properties for the
EPA-CM functions is determined by the min/max bounds
of x given by the constraints in Eq. (2).

Furman and Androulakis (2008) introduced four binary
variables by, by, by, b3€{0,1} to translate the disjunctive
constraints on ARO. This example will be analyzed herein.
The values x, y, z pertain to the ARO property.

General constraints on ARO: Variable b,

This variable is introduced to yield the edge target y of
x(ARO) used in all emission calculations.

y—18<(x—18)(1—by), (b0.1)

18—y<(18—x)(1-by). (b0.2)

We obtain by=1 if and only if x(ARO) < 18. When b=
1, the result of constraints in Egs. (b0.1) and (b0.2) is y=
18. If by= 0, then these two constraints simply state that the
edge target y lies in the box [x, X]. However, this finding is
implied by Eq. (2) because the edge target interval is
included in the interval [x, X] for all the gasoline properties
of EPA-CM.

Edge target and delta target constraints on ARO:
Variable b;; Case x(ARO) < 18

These constraints are unique to the calculation of
NO,(u). Here, b1=1 if and only if x<\18. This equivalence
is maintained by Constraint (bl.1). For b;=1, y=18 is
from Constraints (b0.1) and (b0.2). Constraints (b1.2) and
(b1.3) result in z=x-18. To simplify the notation, we
introduce the min/max values for delta target z, Z.

x—18<(x—18)(1-by), (b1.1)
z—x + 18<(z—x + 18)(1-by), (b1.2)
x—18—z<(x—18—z)(1-by). (b1.3)

If 5,=0, Constraint (b1.1) simply states that x<x. This
equation is a redundant statement and follows from Eq. (2).
Constraints (b1.2) and (b1.3) are simplified to z—x<
(z—x) and x—z<(¥—z), respectively. These constraints

1) The equations on binary variables of this section will be enumerated with (b*.*) given that they do not intervene in the rest of the paper.
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are a consequence of x <x<X and z<z<Z and are thus
redundant.

Edge target and delta target constraints on ARO:
Variable b,; Case 18 <x<36.8

Here, b,=1 if and only if 18 <x<36.8.

18— x<(18-x)(1-b,), (b2.1)
x—36.8<(x—46)(1—b,), (b2.2)
y—x<(x-x)(1-by), (b2.3)
x—y<(x—x)(1-by), (b2.4)
z<(2)(1-by), (b2.5)
—2<(~2)(1-by). (b2.6)

If b,=1 or equivalently if 18 <x<36.8, then Constraints
(b2.1) and (b2.2) imply that 18<x<36.8. Constraints
(b2.3) and (b2.4) yield y=x. Moreover, Constraint (b2.5)
with (b2.6) yields z=0.

Edge target and delta target constraints on ARO:
Variable bs; Case 36.8 <x

Here, b3=1 if and only if 36.8 <x. This equivalence is a
consequence of Constraints (b3.1) and (b3.2).

36.8-x<(36.8—x)(1-b3), (b3.1)
y—36.8<(x—36.8)(1-b;3), (b3.2)
36.8—y<(36.8—x)(1—-b;3), (b3.3)
z-x+36.8<(z—x + 36.8)(1-b3), (b3.4)
X—36.8—2<(x—36.8—z2)(1—by). (b3.5)

If b3=1, then Constraint (b3.3) yields y=36.8, and
Constraint (b3.4) with (b3.5) gives z=x-36.8. When b3=0,
these constraints are automatically verified (to be redun-
dant) as a consequence of Eq. (2) and z<z<Z. The
following constraint is then added to limit the number of
possible cases to just one:

by + by +b3=1. (b4)

Consequently, to ensure the correct case for the edge
target and delta target in the NO,(u) calculation, Furman
and Androulakis (2008) introduced the binary variables by,
by, by, and b3, along with 17 mixed constraints: (b0.*),
(b1.%), (b2.%), (b3.*), and (b4).

All the disjunctive constraints introduced by Furman
and Androulakis (2008) require 20 binary variables, 100
continuous variables, and 200 mixed constraints. Misener
et al. (2010) achieved this result using 15 binary variables,
56 continuous variables, and 100 mixed constraints. A

common characteristic of these approaches is the large
number of redundant constraints. As shown in the ARO
example, as their values vary, only a small subset of
constraints will be of any utility, whereas the others will be
useless for the solver. Our approach does not make use of
binary variables and has only a few redundant constraints
or none at all, as discussed in the next section.

4.2 Functional form of the IF List

Our approach is based on the simple fact that the binary
condition ¢ < r is equivalent to S(z, )= 0, where S(z, r) is the

function
0 <r
S, r) = {

1 t>7r

One implementation of this function might use the sign
function:

{—1 Isr
sign(t—r) = ,
1 t>vr
S(t, r) = 0.5(1 + sign(t—r)). %)

S(, r) has been used to calculate the correct edge target
and delta target values for x(ARO) given in the previous
section. We simply set m =18 and M =36.8. Then,

y=0-Sx, m))-m+S(x, m)-(1-S(x, M))-x

+S(x, M)-M, (6)

z=(1-8(x, m))-(x—m) + S(x, M)-(x—-M). (7)

The equivalence of these expressions with the result of
the IF List is straightforward.

Case x < m. S(x,m)= 0 and S(x,M)= 0, which gives y=m
and z =x-m.

Case x=m and x<M. S(x,m)=1 and S(x,M)=0, which
gives y=x and z=0.

Case x > M. S(x,m)=1 and S(x,M)= 1, which gives y =M
and z=x—M.

Consequently, Egs. (2), (6), and (7) are all equivalent to
the set of mixed constraints (b*.*) discussed in Section 4.1.
The correct values of y and z can thus be calculated online,
which simplifies Step 1 of the emission calculation (see
Appendix). Steps 2 and 3 are merely composite functions
with Egs. (6) and (7). Intrinsically, no additional
constraints are needed to find the correct edge target and
delta target values.

We now introduce a differentiable approximation of
S(¢, r) via the sigmoid.

SC(t, r, a) = 0.5(1 + tanh(a(t—r))). (8)

d(SC(t, r, a))

for t=r can be
dt

The coefficient a =
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selected, such that |SC(¢, , a)—S(t, r)|<¢ for any given &
everywhere except within a small interval 7 € [r—4, r + d].
We consider the level of precision when measuring any
property ¢ of gasoline x in our calculations. Selecting a,
such that 26 is less than the measurement error for any
property of the blended target gasoline required for the
emission calculation, is in fact straightforward. The
deviation in emissions calculated using Eq. (8) compared
to those calculated with Eq. (5) is controlled by the level of
measurement accuracy of the properties of x.

4.3 Gradient of emission functions

We now calculate the gradient of NO,(u) versus recipe u
and gasoline properties x =x(u). This process is a simple
calculus exercise by following the chain rule for derivative
of composite functions. Nevertheless, we indicate it here
for the sake of having a self-contained paper. The gradient
calculation for VOC(u) and TOX(u) follows a similar
manner.

ONO, (1) aNO, (x)

k=1,
auk

J

Ox;
The partial derivative %
U

function of recipe u is required. For the linear blending law
properties, this partial derivative is simply the entry B(j,k)
of the component matrix. Edge target y and delta target z
are both defined as functions of x; consequently,

(E)NOx(y, z)

0y

for each property x; as a

ONO,(x)
Ox i

aNO, (y,

3z : ax)

Steps 2 and 3 (Appendix) of the calculation of each term
of Nox(y’ Z) :WNN()})FN()/’ Z) +WHH()})FN()}9 Z)
can now be recovered.

—_ P
=3,

Ox i

ONO,(y, 2)
y;

(NO)
v (S A )+

o (1)

Given the exponential form of N(y) and H(y), we obtain

OFN(y, 2)

- Vo))

“FH(y, z) +

ONO, (v, z)
0y;
6n1(y) 6FN(y, Z)
) (B 9+ 25 2)
s 10)- (V20 iy, ) 4 D),
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ONO,(r,2)  OFN(v, 2)
0z; N 0z; N)
g T2 gy

7

For the next step, the partial derivatives on y and z are
calculated. To avoid cumbersome notations, the following
sections denote the coordinates of vectors y and z by y and
z indexed by gasoline properties. For example, y:= y(OXY)
indicates that y is defined as the y(OXY) value of edge
target y.

v :=y(0XY), z := z(OXY).
The following numbers are found in (EPA, 2016):

mb) _ 0.0018571,
dy

0m0) _ 4 00913,
ay
OFN(y, z) OFH(y,z) OFN(y, z)
)% N oy N 0z
OFH (y, z)
- —_— = 0’
0z

y:=y(SUL), z := z(SUL).

We find
9
”5@) — 0.00069205 —13.2526-10 -,
)y
9
mb) _ 0.000252,
dy
OFN
NG 2) - (Z0.00000133),
dy
OFH (y, z) —0
dy o
OFN
% = (~0.00000133-y + 0.000692),
Z
OFH
FHG: 2) _ 4 000252,
0z
= y(RVP), z := z(RVP).
We also find
9
mby) _ 0.0090744,

ay
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d OFN
m0) o o107, NG 2) _(0,000238-y + 0.0083632),
oy 0z
OFN(y, z) _ OFH(y,z) _O9FN(y, 2) YR, 2) ~0.0001599-y + 0.007097,
oy 3 py 0z
- o v = WOLE), z == =(OLE),
which leaves us with
y = E200), z:=(£200) Om) 00027735 + 0.00073304-
which yields vy ' ”
mO) _ 00093065, any ()
o —2 25 = ~0.0027603 + 0.000732 3,
y
0n, (y)
_o. AFN (v,
5 = 0:000931L, NG, 2) = z-(0.000733),
ay
OFN(v,z) _OFH(y,z) _OFN(y,z) _ 9FH(y, z) OFH(y, z)
% % o " = (0.000732),
= 0’
OFN
OENG. 2) _ 000733y 0.002774,
v = y(E300), z := z(E300), 9z
which yields ARG, 2) _ § 000730-y-0.00276,
ImG) _ 00084596 o
oy ’ For any property p different from SUL, OLE, and ARO,

we obtain y(p)=x(p) and z(p)=0. For these properties,

Any () W) 1 ang ZP) o For the SUL, OLE, and ARO
= 0004009, ax(p) | o) orHe st MLE Al

0
properties, the calculation of these derivatives requires

computing the derivative SC'(z, 7, a) of SC(t, 7, a). For each
AN, 2) — AFH(y, z) — N, 2) — FH(y, 2) of these properties, we assume

y ay 0z 0z p=SUL, m=10, M =450, a=prec(SUL) (with the SUL
—0 precision given by the user);
’ p=OLE, m=3.77, M=19, a=prec(OLE) (with the
OLE precision given by the user);
y = y(4R0), z := z(4RO). p=ARO, m=18, M=36.8, a=prec(ARO) (with the

We now have ARO precision given by the user);and then calculate

a”a‘—y(y) — 0.0083632—0.0002381 -, g%z =-m-SC (x,, m, @) +M-5C (x,, M, a)
+8C (x,, m, a)-(1-SC(x,, M))-x,
a”;y(y) = 0.007097005—2-0.000079951 -y, ~8C(x,, m)-SC (x,, M, a)-x, + S(x,, m)
(1-SC(x,, M)),
AFN(y, z)
o (-0.000238), Z% = (x,~m)-SC (x,, m, a) + (1-SC(x,, m))
OFH (y, z) +8C(xy, M) + (x,~M)-SC (x,, M, a).

=z-(—0.0001599
ay z ( )’
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This expression represents the last link in the chain rule
for derivatives. These analytical gradients are extremely
easy to calculate as functions of recipe u and properties x.
This crucial point serves to control emission variations
online the same way as the other traditional gasoline
properties.

4.4 Objective function to control emissions

We have now defined constraints on recipe u and
properties x. We have also defined constraints on emissions
in Eq. (3). Given a vector of positive penalties
7 = [my, Ty, 7r], the previous constraints in Eq. (3) are
satisfied if and only if a recipe u exists, such that

F(u, 1) = Zpeqv, v, 137 SG(R, R)- (R(u)~R) = 0.

The idea behind this condition is to minimize the
function F(u, w) with respect to the linear constraints on
recipes in Eq. (1) and properties in Eq. (2). In this manner,
we are not changing the online control framework for
traditional gasoline properties but merely add a new
objective function.

Blend instance

For a given component matrix B, a blend instance is
defined by the constraints in Eqgs. (1) and (2) and the
penalty vector 7.

Feasible blend instance

A blend instance is feasible if and only if the
optimization problem

mlnF(u, 7[) = ZRG{N, v, T}ﬂ,'R‘SG(R, E) (R(u)—ﬁ)
uu<u
max(x, ¢) <x(u) <min(x, ¢) ©

has a feasible (optimal) solution g, such that F(u, 7) = 0.

In the following, we denote the cost function as Fj(u) =
c"u and the giveaway function as F, (u) = ||x(u) —x°||. The
optimization problem in Eq. (9) is central to our online
emission control system. The resolution of this problem
has been implemented in MATLAB (see Section 5). The
general framework for optimization and online emission
control is given below. In implementing the instances of
this framework, Steps 2 and 3 can be combined.

Online optimization and control process:

Step 1: Define a blend instance

Choose a component matrix B. Define the constraints in
Egs. (1) and (2). Choose the penalty vector z > 0.

Step 2: Feasibility

Solve the optimization problem in Eq. (9). Let u, be its
optimal solution.

If F(uy, ) > 0 // Emission threshold violated
Change the blend instance; GO TO Step 1;
Otherwise
GO TO Step 3 to identify an optimal recipe.
Step 3: Optimization
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3.1. Compute the values of F(uo) and F>(ug).

3.2. Find the optimal solution (S*, T*, u*) to the
following problem:
min G(S, T, u) =a-S+b-T+w-F(u, n)
Fy(u) <S-Fy(u)

Fo(u) ST Fa(u)

0<S. T<I (10)

<

u<

=
N

max(x, ¢) <x<min(¥, ¢)

331 F(u’, 1) =0
STOP: The optimal recipe has been found,;
Otherwise
Find a recipe u; € [ug, u'], such that F(u,, 7)=0;
uy«<u;; GO TO Step 3.1.
In the following section, we present the results from an
actual refinery.

5 Results

The quick calculation of the gradient of F(u, m) is
extremely important for all nonlinear optimization solvers.
The optimization problem in Eq. (9) can actually feature up
to 80 linear constraints. A standard branch-and-bound
global optimizer is used to solve Eq. (9) given that the
objective function is non-convex. This branching occurs
within the domain of recipe u in verifying 0<u<1 and
Yu~= 1. In practice, the dimension of u (i.e., the number of
components) does not exceed 20 in typical applications.
These recipe domain properties make allows the inclusion
of a branch-and-bound procedure stop criterion that
depends on the diameter of cells created by the branching
procedure. Hence, reducing the diameter of the box
containing the optimal recipe to a value lying below a
given threshold (10® for our application) is rather easy. All
computations are performed on a machine with a Duo
CPU, 2 GHz Intel processor, and 3 GB memory. All our
optimization instances are run in less than 1 s. These results
serve to implement the online emission control strategy
into the TOTAL ANAMEL software (ANAMEL is the
software used in several TOTAL Group refineries to
control blended product quality by means of real-time
blend recipe optimization). Preliminary tests with these
new emission control features embedded into ANAMEL
and approximate values for distillation figures are
conducted at the Leuna refinery (Germany) in 2015.

For comparison of results, the optimal values and the
emission performance of the following three objective
functions are calculated:

(i) Cost function F(u)= c"u;

(ii) Giveaway function as the distance F,(u) =
[|x(1) —x°]| to an ideal gasoline x°;
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(iii)) Normalized distance to the baseline gasoline Fg; of
Furman and Androulakis (2008) in Eq. (4).

We now provide a typical example with data from an
American refinery. The EPA-CM parameters are as follows
in Table 2.

Table 2 EPA parameters
Region Gasoline type NO, penalty VOC penalty TOX penalty

Season

Summer 1 RFG 2 3 4

We then assign arbitrary penalties to illustrate our
approach. Table 3 recalls the baseline RFG properties for
the given season and region:

The target blend is 57,000 m* of RFG. The properties of
six components (Bj, ..., Be) are listed in Table 4.

The two bottom rows list the lower and upper bounds on
recipes. The two columns on the right describe the target
zone. Table 5 presents the following optimization results
for all objective functions implemented: i) F;: optimal
value of the economic function (i.e., blend cost); ii) F5:
optimal value of the objective (ii); iii) F3: optimal value of
the Fp, function in Eq. (4) optimized by Furman and
Androulakis (2008); and iv) F4: optimal value of the
objective function in Eq. (9) (emission control). The
optimal recipes of each optimization are given in columns
uy, Uy, uz and uy. The corresponding RFG gasolines appear

Table 3 Values for baseline gasoline

in columns x;, x,, x3 and x4;. The emissions of these
gasolines are shown in columns E;, E,, E3, and E4. The
cost or giveaway optimizations lead to blends with high
emission levels. The optimization of F; improves emission
levels but still violates the VOC emission threshold. For
this blend instance, only the optimization of F yields the
gasoline x4 with emissions E4, which lie far below the
emission thresholds. The computation time for this
instance is 0.6 s.

The values in bold indicate the results that satisfy the
emissions thresholds.

The comparison of execution times is performed with
respect to the approach of Furman and Androulakis (2008).
We do not have data to implement the pooling problem of
Misener and Floudas (2009).

6 Conclusions

A differentiable approximation of EPA-CM is developed in
this study. This approximation is based on a computation
chain that offers ease of implementation on online
emission control. Only a new objective function should
be added to our general control framework for traditional
gasoline properties. Our model has been implemented as a
global optimization problem of a differentiable objective
function with respect to linear constraints. This approach is

OoXY SUL RVP E200 E300 ARO OLE BEN MTB ETB ETH TAM
0.00 339.00 8.70 41.00 83.00 32.00 9.20 1.53 0.00 0.00 0.00 0.00
Table 4 Component properties and bounds for a real blend

Prop B, B, B3 B4 Bs B¢

MON 523 80.4 79.4 109.8 86.7 92.8 82.1 90
ROAD 51.9 84.4 83.4 114.9 88.15 97.9 87.1 100
RVP 2.99 13.85 15.46 0.64 153.19 1 12.21 15.37
V/L 182.07 134.4 136.4 216.24 -24.7 2343 120 150
T90 289 348.4 365.4 285 34 372 100 371
EP 317 444 .4 420.4 285 35 466 100 427
DI 1253.5 1027.4 1128.4 1557 -56 1887 100 1230
E200 16.6 64.4 48.4 0 100 0 0 100
E300 94.7 80.4 84.6 0.9 100 0 0 100
OLE 3.1 21.4 30.4 0.1 0 1.7 20 30
ARO 8.9 22.4 23.4 99.9 0 91.6 30 40
BEN 0.7 0.4 0.44 0 0 0.4 0 3.7
SUL 0 49.4 324 0 8 4 0 80
(0):44 0 0 0 0 0 0 0 0.1

u [%vol] 0 10 20 0 0 2

u [%vol] 21 45 60 100 6 20
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Table 5 Optimization results for four objective functions

Optimal values

Fy F, F3 Fy
0.3922 2.3609 1.1487 0.1766
Optimal recipes

Bases

U up us Uy
B, 0.00% 0.00%  3.32% 2.80%
B, 0.00% 0.00%  54.65% 65.05%
B; 87.25%  79.04% 26.94% 19.67%
By 11.57% 6.61%  13.02% 12.48%
Bs 1.18% 1.83%  2.08% 0.00%
Bg 0.00% 12.52%  0.00% 0.00%

Emissions

Baseline

E, E, E3 E,4
NO,: 1340.0 1392.62  1362.22 1314.79 1313.76
VOC: 1466.3 1479.45 1610.30 1480.56 1218.20
TOX: 86.34 70.06 73.00 65.69 65.01
Execution time/s 0.04 0.06 145 0.62

Optimal gasolines

Properties
X1 X2 X3 X4

MON 82.10 83.00 83.22 83.16
ROAD 87.10 87.38 87.10 87.10
RVP 15.37 15.19 15.10 12.21
V/L 142.56 149.15 141.79 146.34
T90 352.19 35485  336.22 342.17
EP 400.19 410.11  404.45 416.22
DI 1164.01  1230.00 1108.54 1119.69
E200 43.41 40.09 50.86 51.88
E300 75.10 68.76 72.07 71.70
OLEF 30.00 26.54 24.25 20.00
AROM 31.97 36.56 31.84 31.89
BENZ 0.38 0.40 0.36 0.37
SULF 28.36 26.26 35.89 38.51
(0),:4'¢ 0.00 0.00 0.00 0.00

relatively straightforward in refinery operations. The
execution time of our model is several orders of magnitude
faster than the MINLP models developed by Misener and
Floudas (2009) and Furman and Androulakis (2008). Our
typical actual example has demonstrated the simplicity of
our model for emission computations. This model is now
patented (Janaqi et al., 2015) and implemented using our
ANAMEL online controller.
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Appendix. Description of NO, calculation in
EPA-CM

Depending on the season (i.e., summer and winter), region
(i.e., 1 and 2), and gasoline type (i.e., RFG or conventional
CFQ), the baseline gasoline is selected (denoted by xb in
this paper). The min/max bounds of target gasoline x are
shown in Table A1 (EPA, 2015).

Table A1 Baseline gasoline and min/max bounds of the target gasoline
in EPA-CM

xb xb RFG CFG

Summer  Winter x X x X
OXY 0.0 0.0 0.0 4.0 0.0 4.0
SUL 339 338 0.0 500.0 0.0 1000.0
RVP 8.7 11.5 6.4 10.0 64 11.0
E200 41.0 50.0 30.0 70.0 30.0 70.0
E300 83.0 83.0 70.0 100.0 70.0 100.0
ARO 32.0 26.4 0.0 50.0 0.0 550
OLE 9.2 11.9 0.0 25.0 0.0 300
BEN 1.53 1.64 0.0 2.0 0.0 49

Moreover, we denote x(OXY), x(SUL) as the values of
properties OXY and SUL, etc. of gasoline x. The value of
OXY is thus OXY= ETB+ MTB + ETH + TAM. If
target gasoline x violates the above min/max bounds, then
x is declared to be non-conforming and its emissions will
not be calculated. The EPA-CM model uses the normal or
high emitter coefficients, as listed in Table A2 (EPA,
2015).

Table A2 Coefficients used in the EPA-CM model

VOC + TOX NO,
Normal emitters (wy) 0.444 0.738
High emitters (wg) 0.556 0.262

Only the data from Phase 2, which have been in effect
since 2000, are presented in Table A3 (EPA, 2015),
providing reference emissions with respect to season and
region.

For example, during summer in Region 2, the emissions
of a target gasoline x(u) must satisfy the following
inequalities:

Table A3 Reference emissions

Summer Winter
Region 1 Region 2 Region 1 Region 2
NO, 1340.0 1340.0 1540.0 1540.0
VOC 1466.3 1399.1 1341.0 1341.0
TOX 86.34 85.61 120.55 120.55
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NO, (x(u)) <134.0;VOC(x(u)) <1399.1;

TCX (x(u)) <85.61.

NO,(u) is a function of the properties OXY, SUL, RVP,
E200, E300, ARO, and OLE of x(u). To calculate NO,(u),
two vectors are generated, namely, y (edge target) and z
(delta target; EPA, 2015), the values of which depend on
the season and the value intervals of E300, SUL, OLE, and
ARO (see Table A4).

Table A4 Values whose emission slope is not continuous

Property of x Min Max
SUL 10.0 450.0
OLE 3.77 19.0
ARO 18.0 36.8

Several steps are now needed to calculate NO(u).
Step 1: Transformation of target gasoline x =x(u) to y
(edge target) and z (delta target). Initialize y = x and z= 0.

IF List

If Season = Winter, then y(RVP)=8.7.
If x(E300) > 95 then y(E300)=95.
If x(SUL) < 10 then y(SUL)= 10, z(SUL)=x(SUL)-10.

If x(SUL) > 450, then y(SUL)=450, z(SUL)=x(SUL)-450.
If x(OLE) < 3.77 then y(OLE)=3.77, z(OLE)=x(OLE)-3.77.
If x(OLE) > 19 then »(OLE)= 19, z(OLE)=x(OLE)-19.

If x(ARO) < 10 then y(ARO)= 10, z(ARO)=-8.

If x(ARO) < 18 then y(ARO)= 18, z(ARO)= x(ARO)-18.
If x(ARO) > 36.8 then y(ARO)=36.8, z(ARO)= x(ARO)-36.8.

This list of if-then conditions, which are labeled as IF
List in this paper, produces disruptions in the NO,(u)
slopes. This function is therefore differentiable every-
where, except at the disruption points given by the
previous table and the IF List.

Step 2: Calculation of intermediate values

m(y) = (0.0018571-y(0OXY)) + (0.0006921-y(SUL))
+(0.0090744-y(RVP)) + (0.0009310-y(E200))
+(0.0008460-y(E300)) + (0.0083632-y(ARO))

(
+(~0.002774-y(OLE)) + (~6.63-10"7-3(SUL)?)
+(~0.000119-y(ARO)?) + (—0.0003665-y(OLE)?),

> (») = (—0.00913-y(OXY)) + (0.000252-y(SUL))
+(~0.01397-y(RVP)) + (0.0009311-y(E200))
+(~0.00401-(E300)) + (0.007097-y(ARO))

(
+(~0.00276-y(OLE)) + (0.0003665-y(OLE)?)
+(-7.995-10"3-y(ARO)?).

(
)

Moreover, one calculates 7;(xb) and n,(xb) for the baseline
xb . These functions are clearly nonlinear and non-convex.
The non-convexity (and non-concavity) is due to the fact
that the coefficients of quadratic terms of #; and n, are not
all positive (or all negative). Then, we calculate

N(y) = ) - b) o g H(y) = enz@)*nz(ﬂ’)’

FN(y, z) = 1 4+ z(SUL)- (—0.00000133-y(SUL)
40.000692) + z(ARO) - (—0.000238-y(ARO)
+0.0083632) + z(OLE)

-(0.000733-y(OLE) —0.002774),

FH(y, z) = 14 0.000252-z(SUL)
+2z(ARO)-(—0.0001599-y(ARO) + 0.007097)
+2z(OLE)- (0.000732-y(OLE) —0.00276).

Step 3: Select the coefficients wy and wy from Table 2
and calculate NO,(u) as follows:

NO,(#) = NO(x(u)) = NO.(», )

= wy-N)FN(, z) + wy-HY)FN(y, 2).

References

Balas E (2010). Disjunctive programming. In: 50 Years of Integer
Programming 1958-2008: From the Early Years to the State-of-the-
Art, 283-340

Cason W W (1997). The illusory flexibility of the complex model: a
graphical analysis of the implications of the complex model for
refinery blending flexibility. In: NPRA Annual Meeting. San
Antonio, Texas: NPRA Annual Meeting, 1618

Chebre M, Creft Y, Petit N (2010). Feedback control and optimization
for the production of commercial fuels by blending. Journal of
Process Control, 20(4): 441451

EPA (2015). Complex emission model. http://www.laws9.com/cfr/text/
40/80/45

EPA (2016). Template spreadsheet for calculating emissions from
combustion plants. http://www.epa.ie/pubs/reports/air/airemissions/
epatemplatespreadsheetforcalculatingemissionsfromcombustion-
plantsxls.html

Furman K C, Androulakis I P (2008). A novel MINLP-based
representation of the original complex model for predicting gasoline
emissions. Computers & Chemical Engineering, 32(12): 28572876

Hirshfield D S, Kolb J A (1994). Minimize the cost of producing
reformulated gasoline by integrating EPA’s Complex Model into
refinery linear programming (LP) models. NPRA Annual Meeting,
64-67

Hirshfield D S, Kolb J A (1997). The economics of gasoline
reformulation: refining economics, emissions standards, and the
Complex Model. In: NPRA Annual Meeting, San Antonio, USA



226 Front. Eng. Manag. 2018, 5(2): 214-226

Jackson J, Vittachi K (1995). CITGO Corpus Christi refinery gasoline
blender upgrade. In: NPRA Annual Meeting, San Francisco, USA

Janaqi S, Chebre M, Pitollat G (2015). Method and device for
monitoring induced properties of a mixture of components, in
particular emission properties, 69. http://www.sumobrain.com/
patents/wipo/Method-device-monitoring-induced-properties/
WO02015097305A1.html

Korotney D J (1995). Reformulated gasoline effects on exhaust
emissions: Phase III; investigation on the effects of sulfur, olefins,
volatility, and aromatics and the interactions between olefins and
volatility or sulfur. SAE Special Publications, 179-186

Misener R, Floudas C A (2009). Advances for the pooling problem:
modeling, global optimization, and computational studies Survey.
Applied and Computational Mathematics, 8(1): 3-22

Misener R, Gounaris C E, Floudas C A (2010). Mathematical modeling
and global optimization of large-scale extended pooling problems
with the (EPA) complex emissions constraints. Computers &

Chemical Engineering, 34(9): 1432-1456

Naman B T (1999). Linear models help refiners develop RFG
[(reformulated gasoline)] recipes. Oil & Gas Journal, 97(8): 64—66

Nocca J L, Forestiere A, Cosyns J (1994). Diversify process strategies
for reformulated gasoline. Fuel Reformulation, 4(5): 18-22

Raman R, Grossmann I E (1994). Modelling and computational
techniques for logic based integer programming. Computers &
Chemical Engineering, 18(7): 563-578

Treiber S (1998). RFG [(reformulated gasoline)]: the challenge to
conventional blending technology. In: Gulf Publishing, eds. Hydro-
carbon Processing 2nd International Conference on Process Optimi-
zation. Houston: Hydrocarbon Processing 2nd International
Conference on Process Optimization, 101-103

Trierwiler L D (1995). Representing the simple and complex models in
linear programming with respect to reformulated gasoline. In:
American Energy Week ‘95 “Pipelines, Terminals & Storage, and
Reformulated Fuels” Conference, Houston, USA



	Outline placeholder
	bmkcit1
	bmkcit2
	bmkcit3
	bmkcit4
	bmkcit5
	bmkcit6
	bmkcit7
	bmkcit8
	bmkcit9
	bmkcit10
	bmkcit11
	bmkcit12
	bmkcit13
	bmkcit14
	bmkcit15
	bmkcit16
	bmkcit17
	bmkcit18


