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Abstract In practice, an energy consumer often consists
of a set of residential or commercial buildings, with
individual units that are expected to cooperate to achieve
overall optimization under modern electricity operations,
such as time-of-use price. Global utility is decomposed to
the payoff of each player, and each game is played over a
prediction horizon through the design of a series of sliding
window games by treating each building as a player.
During the games, a distributed learning algorithm based
on game theory is proposed such that each building learns
to play a part of the global optimum through state
transition. The proposed scheme is applied to a case
study of three buildings to demonstrate its effectiveness.

Keywords game theory, demand response, HVAC con-
trol, multi-building system

1 Introduction

Buildings, which consume about 70% of the total
electricity generated in the US, are among the largest
energy consumers in the power grid (Weng and Agarwal,
2012). According to data of energy consumption in
European households (Dounis and Caraiscos, 2009),
68% of the energy consumption of buildings comes from

space heating or cooling, 14% from water heating or
cooling, and 13% from electric appliances and lighting.
Aside from accumulated energy use, buildings tend to have
a high electricity demand simultaneously, thereby causing
significant peak demand exertion on the grid (Ma et al.,
2011; Ma et al., 2012). Therefore, electricity price usually
varies positively with the peak demand to curtail potential
overload and grid instability during peak load periods. One
of the main goals of advanced building control systems
under the big picture of demand-side management (Deng
et al., 2015; Mohsenian-Rad et al., 2010; Li et al., 2011;
Deng et al., 2014; Chai et al., 2014; Zhang et al., 2016) is
the minimization of the overall energy cost from space
heating or cooling in response to electricity prices rather
than simply minimizing energy consumption.
Thermal comfort in a working or living place is

mandatory to ensure the satisfaction and productivity of
the occupants. The improvement of building comfort
usually demands high energy consumption. Hence, one of
the most important issues for smart and energy-efficient
buildings is to ensure thermal comfort while minimizing
energy cost or reducing peak-hour energy usage (Lever-
more, 2000).
The supervisory control level in the literature of smart

building heating, ventilation, and air conditioning control
systems usually aims to reduce energy cost while
maintaining the desired indoor comfort level (Wang and
Ma, 2008; Deng et al., 2016). Extensive research efforts
have been made with regard to energy-efficient building
comfort management. Various approaches can be roughly
classified into two categories, namely, conventional and
computational intelligence methods (Dounis and Carais-
cos, 2009; Shaikh et al., 2014). Conventional methods
include proportional-integrate-derivative (PID) control,
which solves overshoots in thermostats with a dead zone
(Levermore, 2000); optimal control, which maintains
control performance while further reducing energy cost
(Zaheer-Uddin and Zheng, 2000; Kummert et al., 2001);
adaptive control, which enables self-regulation and
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adaptation to climate conditions (McCartney and Nicol,
2002); and model predictive control (MPC), which is
proposed to introduce prediction horizons and models for
future disturbances (Oldewurtel et al., 2010; Širokỳ et al.,
2011; Ma et al., 2014). Computational intelligence
methods include neural network approaches, fuzzy logic
schemes, and evolutionary algorithms, which usually
include user participation in the specification of the desired
comfort. Moon and Kim (2010) designed a thermal control
logic framework with four thermal control logics, includ-
ing two predictive and adaptive logics using neural
network models. Dounis and Manolakis (2001) proposed
general guidelines for the design of a fuzzy logic thermal
comfort regulator when multiple input/output controlled
systems exist. Kolokotsa et al. (2002) and Wright et al.
(2002) proposed genetic algorithms, which are derivative-
free and require minimal specific information.
However, most of the work in the literature focuses on

characterizing and optimizing a single building and uses
centralized methods (Levermore, 2000; Deng et al., 2016;
Kummert et al., 2001; Ma et al., 2014; Moon and Kim,
2010; Dounis and Manolakis, 2001). Inspired by dis-
tributed control and multi-agent research in other areas
(Dimarogonas et al., 2012; Fan et al., 2013; Li et al., 2013),
cooperative energy management for multiple smart build-
ings from a distributed perspective is investigated while
considering their preferences and leveraging their flex-
ibilities. From the perspective of a consumer, the
coordination of all buildings is desirable to cooperatively
achieve global benefit, thereby resulting in overall global
optimum while satisfying the need of each building.
The global benefit of building energy cooperative

management has three aspects (Zhang et al., 2014;
Zhang et al., 2017). First, buildings are anticipated to
cooperate with one another such that the total load of all
buildings remains below a certain threshold. The threshold
is related to the distribution infrastructure capacity, such as
the capacity of transformers and feeders within the set.
When the capacity is exceeded, a penalty will be added for
compensation and adjustment. Second, the minimization
of global energy cost, which is a function of real-time
electricity price and total power load, is desired. The price
of electricity that varies with time can be exploited to
reduce the cost of consumption. Third, the required
comfort level of indoor temperature for each building,
that is, the room temperature, should not fall outside the
comfort zone. In this paper, a weighted average of the
aforementioned three aspects of benefit is formulated as the
global utility function.
The problem in the maximization of global utility

function can be solved using convex optimization methods
in a centralized way, with a central controller being used to
handle all the buildings. However, solving the problem in a
distributed manner, which has several advantages over
centralized control, is of great significance. First, a
distributed control structure ensures that systems are

reliable. In a distributed system, the performance of other
buildings is virtually unaffected when a controller breaks
down for one building. By contrast, all buildings will be
severely affected if a centralized controller breaks down.
Second, a distributed control system is scalable. The
system can be constructed at a large scale and scattered in a
large area. It provides convenient infrastructure when a
new building is built and becomes part of the existing
control system. Furthermore, the optimization and compu-
tation load for each controller would be significantly
reduced, thus allowing distributed computing and storage.
In this paper, the distributed global utility maximization

problem is formulated as a series of sliding window games,
in which each building is considered as a player, the global
utility is decomposed to the payoff of each player, and each
game is played over a control horizon. In each game, a
newly proposed distributed learning algorithm based on
game theory (Marden et al., 2014), which teaches each
player to play part of the Pareto optimum by state
transition, is applied. During the games, each player
maximizes its own payoff based on the action it played and
the payoff it received without knowing others. Overall, the
distributed algorithm can achieve a global near-optimal
solution, that is, the solution converges to the centralized
optimal solution with a probability approaching one.
The rest of this paper is organized as follows. Section 2

describes the centralized model. Section 3 reformulates the
multi-building decision making problem by using a sliding
window and game theory payoff functions, and the
distributed learning algorithm is applied. Section 4
provides case studies for an hourly game and a horizon
of hour game to compare the performance. Section 5 draws
the conclusions.

2 Centralized model

A group of n buildings denoted by the set N ¼ f1,2,:::,ng
and a centralized controller is considered to perform an
overall optimum control behavior.
The global economic objective function is

fðL,PÞ ¼
Xn
i¼1

X24
t¼1

ci
�
liðtÞ, pðtÞ

�
, (1)

where f(.) is the aggregate daily electricity expense of all
buildings, L ¼ ½L1,:::,Ln�T is the energy consumption
matrix for n buildings, and Li ¼ ½lið1Þ,:::,liðtÞ,:::,lið24Þ�T
is the energy consumption column vector for building i,
where li(t) is the power consumption of building i at tth
time step. P ¼ ½pð1Þ,:::,pð24Þ�T, where p(t) is the
hourly electricity price per energy unit. The function

ci
�
liðtÞ,pðtÞ

�
¼ c1pðtÞliðtÞ2 þ c2pðtÞliðtÞ þ c3 models the

operation cost of building i with power load li(t) and price
p(t).
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At every time step, the temperature of each building
should stay within a comfortable range and the total power
load should stay below a threshold

Ti_lb£TiðtÞ£Ti_ub,8i 2 f1,:::,ng,t 2 f1,:::,24g,Xn
i¼1

liðtÞ£Lr,8t 2 f1,:::,24g:

The functional relationship of the next time step indoor
temperature prediction with respect to the current time step
indoor temperature, outdoor temperature, and power
consumption can be described according to Forouzandeh-
mehr et al. (2013).

Tiðt þ 1Þ ¼ εTiðtÞ þ
�
1 – ε

��
TODðtÞ – γKliðtÞ

�
, (2)

where ε is the thermal time constant of the building, g is a
factor that captures the efficiency of the air conditioning
unit, K is a conversion factor, and TOD is the outdoor
temperature. The indoor and outdoor temperatures are
usually known. Thus, a corresponding expected room
temperature for the next hour Ti(t+ 1) is observed once an
energy consumption amount is determined.
Therefore, the centralized model is as follows:

min
L

Xn
i¼1

X24
t¼1

ci
�
liðtÞ, pðtÞ

�
s:t:

Xn
i¼1

liðtÞ£Lr, 8t 2 f1,:::,24g
Ti_lb£TiðtÞ£Ti_ub, 8i 2 f1,:::,ng, t 2 f1,:::,24g:

(3)

In the centralized decision making problem, our
objective is to minimize the total daily electricity cost of
the group of buildings. Decision variables are the amount
of energy consumption li(t) for every building i at every
hour t or equivalently, the temperature set-point for each
building in every hour. Each building should satisfy two
constraints: the total power load in every hour should not
exceed a certain threshold, and the temperature should be
within a comfort region.
The centralized decision making problem can be solved

using convex optimization techniques. In the problem, p(t),
Lr, and TOD(t) are pre-known parameters. The objective
function is the sum of a set of quadratic functions whose
coefficients are usually positive. Therefore, this function is
a convex objective function. The total power load
constraints are linear. If the temperature comfort level
constraints are transferred from the functions of Ti(t) to the
functions of lið1Þ,lið2Þ,:::,liðtÞ, then all constraints are
linear. Therefore, many convex optimization solution
algorithms, such as interior point method, can be used.
However, the problem is aimed to be reformulated into a

multi-building decision making problem because of the
drawback of centralized control in comparison with
distributed control. That is, each building can behave as
an autonomous agent while interacting within the group.

Moreover, each building should learn to play a part of the
optimal solution without having any information on the
system and on the operations of other buildings. This
condition leads us to deterministic game theory.

3 Game reformulation and distributed coop-
erative control

In this paper, the multi-building decision making problem
is reformulated as a game, with each building being treated
as a player, and a newly proposed payoff-based distributed
learning algorithm (Marden et al., 2014) in game theory is
applied to solve this problem. The solution is a near-
optimal solution or the solution converges to the optimal
solution with a probability that is infinitely close to one.
To construct a sliding window game, the sliding window

energy consumption vector for building i at the tth time
step yi(t) can be defined as

yiðtÞ ¼ ½liðtÞ:::liðt þ Np – 1Þ�T, (4)

where li(t) is the power consumption of building i at tth
time step, Np is the width of a fixed-width sliding window,
and ðNp – 1Þ is the length of the prediction horizon.
At each time step, although an optimal power consump-

tion strategy for the whole Np time intervals within the
sliding window time frame is computed, only the solution
of the current time interval should be adopted to the output
because even though the prediction of future inside
temperature based on Eq. (2) is valid for the next time
step, it will not be as accurate when making a series of
predictions. When predicting the inside temperature of the
(t+ 1)th time step, we use the updated real-time inside and
outside temperature information of the tth time step instead
of the predicted inside temperature of the tth time step
based on the (t – 1)th time step and the predicted outside
temperature.
The optimization procedure will be repeated and similar

games will be formulated in subsequent time intervals as
the window slides. The constraints are formed as penalty
functions and slight changes are applied in our game
formation in the next section because the game theory tool
cannot directly solve the constrained problem. Another
point is for long time frame and multiple buildings, the
decision space for the distributed learning algorithm is too
large. Thus, we first formulate the problem as hourly game
and then extend it to multiple hour sliding window game.
In the following section, the reformulation of the problem
is described from the game theory perspective.

3.1 Games

In a multi-building system, one game is formulated at
every time step. The first game of the day begins at t ¼ 1,
in which each building acts as an autonomous agent and
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determines the schedule of its power consumption for time
window from t = 1 to t =Np. However, only the result of
t = 1 will be implemented. Similarly, the second game
begins at t = 2, followed by games repetitively until the last
game is executed at the end of the day.

3.2 Players

In each game, a player is a building in the group.
Specifically, the local supervisory controller of each
building that determines the power consumption or
temperature set point at every time interval is a player.
The players are denoted as a finite set

N ¼ f1,2,:::,ng: (5)

3.3 Actions

The action of each player determines a schedule of the
amount of power consumption for the current sliding
window timeframe. The action of player i2N in tth game is
denoted as ai(t), then

aiðtÞ ¼ yiðtÞ ¼ ½liðtÞ:::liðt þ Np – 1Þ�T, (6)

where

liðtÞ 2 Li, (7)

and Li is set of all possible power consumption choices.
The action set of player i is denoted as

Ai ¼ Li � :::� Li|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Np

: (8)

To make the action set Ai finite, the power consumption
set is discretized using a minimum threshold li,min, a
maximum threshold li,max, and a step size Dli so that

li ¼ ½li,min : li : li,max�: (9)

The joint action set of all the players N = {1,2,...,n} is
denoted as

A ¼ A1�:::�An: (10)

An action profile of all the players is defined as

aðtÞ ¼
�
a1ðtÞ,a2ðtÞ,:::,anðtÞ

�
2 A, (11)

and a profile of the actions of all the players other than
player i is defined as

a – iðtÞ ¼
�
a1ðtÞ,:::,ai – 1ðtÞ, aiþ1ðtÞ,:::,anðtÞ

�
: (12)

Therefore, a(t) can also be rewritten as

aðtÞ ¼
�
aiðtÞ,a – iðtÞ

�
: (13)

3.4 Payoff functions

The payoff function represents the benefit that a player can
obtain as a result of an action profile, and all the players
would like to maximize their payoffs.
In this paper, the payoff of each player is formulated and

consists of three parts. Part 1 is the normalized operation
cost penalty, which describes the economic benefit of a
player. A low operation cost corresponds to a high payoff
for each player. Part 2 is the temperature comfort level
payoff, which is a reformulation of the temperature range
constraint to describe the benefit gains from staying within
or the loss from falling outside the comfortable tempera-
ture range. Part 3 is the total power load payoff
reformulated from the total power load constraint to
introduce the penalty for exceeding the desired maximum
peak threshold.
These three aspects of the payoff function have different

units and scales of dollar, kelvin, and watt. Thus, they are
normalized into dimensionless quantities with the same
scale of [0, 1].
Part 1: Normalized Operation Cost Penalty

u1i
�
liðtÞ,pðtÞ

�
¼ 1 –

ci
�
liðtÞ,pðtÞ

�
cmax

,

where the second term in the equation is the current
operation cost divided by the maximum possible operation
cost, representing a normalized cost with scale [0,1].
However, since the higher the cost, the lower the payoff,
thus to define payoff, we use 1 minus the term, the result is
still a dimensionless quantity within [0, 1].
Part 2: Temperature Comfort Constraint Penalty

u2i
�
Tiðt – 1Þ,TODðtÞ,liðtÞ

�
¼ 1

1þmax 0, TiðtÞ –
Ti_lb þ Ti_ub

2

� �2

–
Ti_ub þ Ti_lb

2

� �2� �,

where the term within max is the distance of the
temperature from the middle point of Ti_lb and Ti_ub

compared with the half distance
Ti_ub – Ti_lb

2
. If the

temperature remains within the comfort zone specified
by Ti_lb and Ti_ub, then the value would be 1; otherwise, it
is a positive value less than 1. Moreover, this part is within
[0, 1].
Part 3: Total Power Load Constraint Penalty

u3i
�
liðtÞ

�
¼ 1

1þmax 0,
Xn
i¼1

liðtÞ – Lr
( ),

where the term within max is the distance of the total
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power load beyond the constraint Lr. If the power load
summation remains within the threshold, then the value
would be 1; otherwise, it is a positive value less than 1.
Moreover, this part is scaled within [0, 1].
Payoff formula: Weighted Average of Three Parts

ui
�
liðtÞ,pðtÞ,Tiðt – 1Þ,TODðtÞ

�
¼ ω1u1i

�
liðtÞ,pðtÞ

�
þ

ω2u2i
�
Tiðt – 1Þ,TODðtÞ,liðtÞ

�
þ

ω3u3i
�
liðtÞ

�
:

(14)

The overall payoff is formulated as a weighted average
of the three aforementioned parts of the penalty. The
weightsw1,w2,w3 are in [0, 1] with their summation being
equal to 1. Each weight represents the importance of the
corresponding penalty term and can be adjusted based on
different system design focus. Since each part of the
penalty is a dimensionless quantity within [0, 1], the
overall weighted average has the same scale.

3.5 Global payoff

The global utility/global payoff/social welfare of time slot t
is usually defined as the summation of the payoffs of all the
players at time slot t, that is,

Wt

�
LðtÞ,pðtÞ,Tðt – 1Þ,TODðtÞ

�
¼

X
i2f1,:::,ng

ui
�
liðtÞ,pðtÞ,Tiðt – 1Þ,TODðtÞ

�
:

The daily global utility is usually defined as

W ¼
X

t2f1,:::,24g
Wt:

Here to ensure that all payoffs and utilities have the same
scale [0,1], we define the global utility of time slot t as the
average payoff of all the players, that is,

Wt

�
LðtÞ,pðtÞ,Tðt – 1Þ,TODðtÞ

�
¼ 1

n

X
i2f1,:::,ng

ui
�
liðtÞ,pðtÞ,Tiðt – 1Þ,TODðtÞ

�
,

and the daily global utility as the average hourly global
utility over a whole day

W ðL,p,T ,TODÞ

¼ 1

24
⋅
1

n

X
t2f1,:::,24g

X
i2f1,:::,ng

ui
�
liðtÞ,pðtÞ,Tiðt – 1Þ,TODðtÞ

�
:

3.6 Strategy: a payoff-based distributed learning algorithm

Step 1: Initialization. Each player is initialized with a state
aiðtÞ,uiðtÞ,miðtÞ½ �, where aiðtÞ is the benchmark action, ui
ðtÞ is the benchmark payoff, andmi(t) is the mood. Initially,
aiðtÞ is randomly selected from the action set, uiðtÞ is zero,
and mi(t) is discontent.
Step 2: Each player updates its action by using different

probability functions depending on the mood of a player.
If mi(t) is content, then a player selects a new action

according to the following probability distribution:

PaiðtÞ
i ¼

εc

jAij – 1
for aiðtÞ≠aiðtÞ

1 – εc for aiðtÞ ¼ aiðtÞ,

8<: (15)

where c³n is a constant, and 0< ε< 1 is an exploration
rate.
If mi(t) is discontent, then a player selects a new action

according to the following probability distribution:

PaiðtÞ
i ¼ 1

jAij
for every aiðtÞ 2 Ai: (16)

Although uncommon in traditional game theory, mood
mi(t) is a generic representation in distributed learning-
based game theory. Mood is an internal state variable that
determines the underlying status of a player. Usually, mood
has two distinct modes, namely, content and discontent.
When the mood is content, a player tends to stay at its
current benchmark action with high probability. When the
mood is discontent, a player tends to change its action by
searching and selecting through the action set. Upon
selecting a new action, the player updates its mood by
evaluating the corresponding payoff. Usually, a high
received payoff corresponds to a great probability that
the mood is updated to be content.
Therefore, instead of directly selecting an action to

maximize the payoff in traditional game theory, in
distributed learning-based game theory, actions are
implicitly adjusted by the payoff through the guidance of
mood, which is the internal reflection of the payoff.
Step 3: Each player calculates its payoff according to

payoff function (Eq. 14).
Step 4: Each player updates its mood.
Ifmi(t) is content and the action of the player remains the

same, then the new mood is content;
If mi(t) is content but the action changes

aiðtÞ,uiðtÞ,C½ �↕ ↓

½aiðtÞ,uiðtÞ�

½aiðtÞ,uiðtÞ,C� with prob ε1 – uiðtÞ

½aiðtÞ,uiðtÞ,D� with prob 1�ε1 – uiðtÞ
:

(
(17)
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If mi(t) is discontent,

aiðtÞ,uiðtÞ,D½ �↕ ↓

½aiðkÞ,uiðtÞ�

½aiðtÞ,uiðtÞ,C� with prob ε1 – uiðtÞ

½aiðtÞ,uiðtÞ,D� with prob 1�ε1 – uiðtÞ
:

(
(18)

Step 5: Global system convergence condition.
A state profile is defined as the joint states of all the

players. The frequency of each state profile is counted. If
the frequency of any state profile is larger than a
predetermined threshold, such as 90%, then the game
converges to a stable point in a global system and the
algorithm is terminated. Otherwise, Step 2 is performed
again, followed by the succeeding steps. The overall
procedure of the proposed algorithm is summarized in the
schematic shown in Fig. 1. The following theorem
describes the property of the convergence point and states
its global optimality.
Theorem 1. Let G be an interdependent n-person game

on a finite joint action space. Under the distributed learning
algorithm, given any probability p< 1, if the exploration
rate ε is sufficiently small, then for all sufficiently large
time t,

a 2 argmax
a2A

W ðaÞ ¼
X
i2N

uiðaÞ,

with at least probability p (Marden et al., 2014).
Theorem 1 serves as the guarantee of the convergence

property under the state transition strategy specified by the
aforementioned distributed learning algorithm. Under the
assumption of interdependent n-person game and finite
joint action space, the distributed algorithm can guarantee
the probabilistic convergence of the action profile that can
maximize the global payoff as long as the exploration rate
is sufficiently small and the experiment time is sufficiently
large.

Remark 1. With the problem of cooperative building temperature
control and the discretization of power consumption space, such
application satisfies the convergence criteria. However, such
convergence is a probabilistic convergence as opposed to an almost

Fig. 1 Schematic of the payoff-based distributed learning algorithm
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certain convergence. In practice, due to the limitation of exploration
rate and sufficiently large experiment time, the distributed algorithm
can achieve a global near-optimal solution, that is, the solution
converges to the global optimum with a probability approaching one
but never equal to one.

4 Case studies

In this section, numerical examples are provided to
evaluate the performance of the proposed sliding window
game formulation with a distributed learning strategy. For
ease of illustration, a cooling scenario for a three-building
energy optimization and temperature comfort cooperation
problem is considered. For real-life consumers, these
buildings can be interpreted as office buildings for a large
corporation or classroom buildings for a university
campus.

4.1 Hourly game

In this hourly game, one game is played at the beginning of
every hour. In each game, the players focus only on the
current time slot and try to maximize the global utility of
that time slot following the strategy stated in the last
section.
In each game, the action of a player is the amount of his

energy consumption in the current time slot, that is,

aiðtÞ ¼ liðtÞ:
Payoff can be calculated as

ui
�
liðtÞ,pðtÞ,Tiðt – 1Þ,TODðtÞ

�
¼ ω1 1 –

ci
�
liðtÞ,pðtÞ

�
cmax

35þ
24

ω2
1

1þmax 0, TiðtÞ –
Ti_lb þ Ti_ub

2

� �2

–
Ti_ub – Ti_lb

2

� �2� �
26664

37775

þω3
1

1þmax 0,
Xn
i¼1

liðtÞ – Lr
( )

266664
377775,

and global utility is calculated as

Wt

�
LðtÞ,pðtÞ,Tðt – 1Þ,TODðtÞ

�
¼ 1

n

X
i2f1,:::,ng

ui
�
liðtÞ,pðtÞ,Tiðt – 1Þ,TODðtÞ

�
:

By running the distributed learning algorithm described

in the last section as the strategy of each player, the game
can converge to a global optimal point, which is an
efficient state profile that can achieve the maximum of the
global utility of that certain time slot. After convergence,
the optimal action profile is outputted to each correspond-
ing high-level controller to implement control perfor-
mance. The entire process is repeated every hour.
The following are several simulation results for hourly

optimization. The red line in Figs. 2, 3, and 4 represents the
optimal solution obtained through exploring the whole
solution set by using a centralized manner, and the blue
line represents the solution obtained by the distributed
learning algorithm.
Figure 2 shows that the distributed learning algorithm

can achieve a near-optimal global maximization solution.
In this case, the distributed learning algorithm could obtain
an average of 95.51% of the centralized optimal perfor-
mance. The total utility in that figure consists of three
components. The first part is the energy cost, which is a
function of the hourly price and hourly energy consump-
tion amount, and is shown in the three graphs in Fig. 3. The
second part is the total energy consumption constraint for
the three buildings described by a penalty function with
threshold set as 1.5 kWh, which is illustrated in the third
graph of Fig. 3. The third part is the temperature comfort
level, which is described by a penalty function with the
comfort temperature zone set as [67°F, 79°F], and is shown
in Fig. 4.

4.2 Sliding window game

In the sliding window game, one game is also played at the
beginning of every hour. However, in each game, the
players focus on an h-hour time horizon, attempting to
optimize the global utility of that time period.

Fig. 2 Global utility distributed (blue dot) versus centralized
optimum (red cross).
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Fig. 3 Global utility components 1 and 2: Distributed (blue dot) versus centralized optimum (red cross)

Fig. 4 Global utility component 3: Distributed (blue dot) versus centralized optimum (red cross)
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In this case, the action of a player in each game is an
energy consumption vector, that is,

aiðtÞ ¼ ½liðtÞ,liðt þ 1Þ,:::,liðt þ h – 1Þ�T:
The payoff of a player can be calculated as

ui
�
liðtÞ,pðtÞ,Tiðt – 1Þ,TODðtÞ

�
¼ ω1 1 –

ci
�
liðtÞ,pðtÞ

�
cmax

3524

þω2
1

1þmax 0, TiðtÞ –
Ti_lbþTi_ub

2

� �2

–
Ti_ub–Ti_lb

2

� �2� �
26664

37775

þω3
1

1þmax 0,
Xn
i¼1

liðtÞ – Lr
( )

266664
377775 ,

ui
�
liðt e t þ h – 1Þ, pðt e t þ h – 1Þ, Tiðt – 1 e t þ h – 2Þ,

TODðt e t þ h – 1Þ
�

¼ 1

h

Xtþh – 1

k¼t

ui
�
liðkÞ,pðkÞ,Tiðk – 1Þ,TODðkÞ

�
,

and the global utility becomes

Wte tþh – 1

�
Lðt e tþh – 1Þ, pðte tþh – 1Þ,Tðt – 1e tþh – 2Þ,

TODðte t þ h – 1Þ
�

¼ 1

nh

X
i2f1,:::,ng

Xtþh – 1

k¼t

ui
�
liðkÞ,pðkÞ,Tiðk – 1Þ,TODðkÞ

�
:

In this sliding window game, the global utility over a
time period is maximized so that buildings can perform
pre-cooling or pre-heating before the peak-price period.
Figure 5 shows a simulation comparison between the

hourly game and the h-horizon game. The blue line
represents the optimal solution attained by the hourly
game, while the black line represents the game with a four-
hour-long moving window. In a Monte Carlo simulation
performed 100 times, the four-hour moving horizon game
achieves a daily utility that is better by an average of 6.03%
than the hourly game.
Figure 6 shows the room temperature of the three

buildings under the h-horizon game and the corresponding

distributed learning strategy. The black and red lines and
the green circle represent the room and outdoor tempera-
tures and the pre-cooling effect in off-peak hours,
respectively. The pre-cooling effect is the result of the
maximization of payoff for each building so that each
building tends to consume more energy when the
electricity price is lower. The pre-cooling effect is also
the result of the coordination among buildings; such
coordination causes the pre-cooling periods of the
buildings to tend to offset one another.

5 Conclusions

In this paper, the distributed global utility maximization
problem is formulated as a series of sliding window games
in which each building is treated as a player. The global
utility is decomposed to the payoff of each player, and each
game is played over a control horizon from the current time
step. The proposed distributed learning algorithm in game
theory effectively ensures that each building can learn to
play a part of the optimal solution. During the games, each
player successfully maximizes its own payoff based on the
action it played and the payoff it received without knowing
others. Overall, the distributed algorithm achieves a near-
optimal global solution, that is, the solution converges to
the centralized optimal solution with a probability
approaching one.
The effectiveness of this method is demonstrated

through a simulation of three building systems. The
convergence property of the methodology is successfully
demonstrated. Moreover, pre-heating/cooling effect during
off-peak period and autonomous heating/cooling discharge
during on-peak period are observed because the method
uses sliding window games with a prediction horizon.

Fig. 5 Sliding window size = 4 (black cross) vs. window size = 1
(blue dot)
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