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Abstract Decisions in supply chains are hierarchically
organized. Strategic decisions involve the long-term
planning of the structure of the supply chain network.
Tactical decisions are mid-term plans to allocate the
production and distribution of materials, while operational
decisions are related to the daily planning of the execution
of manufacturing operations. These planning processes are
conducted independently with minimal exchange of
information between them. Achieving a better coordina-
tion between these processes allows companies to capture
benefits that are currently out of their reach and improve
the communication among their functional areas. We
propose a network representation for the multilevel
decision structure and analyze the components that are
involved in finding integrated solutions that maximize the
sum of the benefits of all nodes of the decision network.
Although such task is very challenging, significant
research progress has been made in each component of
this structure. An overview of strategic models, mid-term
planning models, and scheduling models is presented to
address the solution of each node in the decision network.
Coordination mechanisms for converging the integrated
solutions are also analyzed, including solving large-scale
models, multiobjective optimization, bi-level program-
ming, and decomposition. We conclude by summarizing
the challenges that hinder the full integration of multilevel
decision making in supply chain management.

Keywords supply chain optimization, enterprise-wide
optimization, multilevel optimization, planning, scheduling

1 Introduction

The supply chains in the 21st century are highly
globalized. Nowadays, having a product that has been
manufactured 10,000 kilometers away delivered in two
weeks seems very natural. With the information revolution,
people have become used to receiving their orders almost
instantaneously. However, such practice has placed
tremendous pressure on supply chains by increasing their
complexity and requiring them to be very responsive. In
this scenario, making effective decisions in a timely
manner is nearly impossible without a good decision
support system.
The process industry serves as a good example of such

complexity. A typical chemical company has suppliers
distributed across different geographical locations, dozens
of manufacturing sites, and customers all over the world.
Decisions in the process industry must be made in
consideration of the material flows throughout the supply
chain together with the decisions related to the manufac-
turing process, including batch sizing and timing, defining
production rates, parameter setting, and control. Process
Systems Engineering (PSE) addresses the challenge of
optimizing industrial processes with all its complexity
(Sargent, 2005). The challenges in integrating R&D,
manufacturing, and distribution functions have been
recognized in the area of Enterprise-wide Optimization
(EWO) (Grossmann, 2005). Several authors have
attempted to identify the main challenges and opportunities
involved in EWO. Shah (2005) thoroughly describes the
challenges in the process industry supply chain and
identifies the lack of integration of design and operational
decisions as one of the main challenges, while Papageor-
giou (2009) reviews the relevant literature on the modeling
aspects that has been published before 2008.
A supply chain can be defined as a sequence of steps

involved in the manufacturing and distribution of a
product. This definition, which illustrates a horizontal
process starting from the supply of raw materials to the

Received June 10, 2017; accepted July 31, 2017

Braulio BRUNAUD, Ignacio E. GROSSMANN (✉)
Carnegie Mellon University, Pittsburgh, PA 15213, USA
E-mail: grossmann@cmu.edu

Front. Eng. Manag. 2017, 4(3): 256–270
DOI 10.15302/J-FEM-2017049



production of finished goods (Fig. 1), can help one
understand the flow of materials. However, the flow of
information is not fully captured by this representation.
Information, especially decisions, flow from the strategic
level to the operational level, passing through the tactical
level. In order to make optimal decisions, feedback must
also flow in the opposite direction.
All decision levels are interconnected. For example, the

facility location decisions that are made at the strategic
level can affect the capacity for the tactical plan, which
defines inventory targets for the scheduling of operations.
Therefore, a truly optimal solution is one that yields the
best possible value for the objective function (whether
maximizing or minimizing) while considering the effects
on all decision levels. Even though the availability of
information inside enterprises has been improved by
adopting enterprise resource planning (ERP) systems,
planning processes are still being executed independently
with minimal communication among different decision
levels. Although coordinating various decision-making
processes is a very challenging task, significant progress
has been made in studying the components of this problem.
In this paper, we present an overview of the elements
involved in solving such problem. Our goal is to set the
stage to accomplish the integrated optimization of all
decision levels across a supply chain.

The decisions in supply chains are hierarchically
organized and can be divided into strategic, tactical, and
operational levels. The distinction between each level is
not absolute and varies across companies. The strategic
level includes long-term planning decisions that affect the
structure of the supply chain network, the tactical level
includes mid-term decisions related to the allocation and
distribution of materials between manufacturing and
storage units (warehouses and distribution centers), and
the operational level includes decisions relating to the
execution of manufacturing operations. Given that the
planning horizons for each level are different, the
timescales employed when modeling each decision level
are also different. Figure 2 shows the general character-
istics of the hierarchy of decision levels. Below the
operational level there is a control layer. The integration of
operational decisions and control also warrants further
research. However, the decisions beyond the operational
level will not be covered in this paper. For additional
information on this area, the reader may refer to the recent
reviews by Baldea and Harjunkoski (2014) and Dias and
Ierapetritou (2016).
As pointed out by Barbosa-Póvoa (2012), the integration

of design and planning decisions is fairly well established.
However, the integration of planning and scheduling
remains an open problem. Maravelias and Sung (2009)

Fig. 1 Supply chain example

Fig. 2 Supply chain decision pyramid
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have recently published a review paper on this topic.
Garcia and You (2015) identify the challenges in dealing
with multilevel systems, modeling, optimization, uncer-
tainty handling, and efficient algorithms design. Although
remarkable progress has been achieved in examining the
elements required to handle multilevel systems, the
integration of these elements remains to be addressed.
Figure 3 presents a matrix of the identified models, which
are classified by the decision level and stage of the supply
chain.
The current practice is to execute each planning process

independently. Integration allows companies to be highly
agile when reacting to the dynamic conditions of the
process environment, capturing additional benefits. For
example, the timing of making strategic decisions is
usually fixed to once a year, and the decisions are treated as
static during this period. Having integrated models enables
one to identify opportunities in which strategic planning
must be pulled forward to adapt to changing conditions and
to advance toward online optimization and supply chain
control (Perea-López et al., 2001).
The decision hierarchy also impacts the organizational

structure of a company. Managers make decisions that
impact the actions of their subordinates. Given that the
majority of the conflicts in an enterprise are related to
communication, achieving a better integration of decision-
making processes can improve the work environment by
enhancing the coordination among different functional
areas. These benefits are hard to measure but are certainly
present.
This paper presents an overview of all elements involved

in multilevel optimization by selecting some examples
from the literature and tries to identify the open challenges
in achieving overall integration. Section 2 presents a
network representation for this problem. Sections 3, 4, and
5 analyze the models for design, planning, and scheduling,
respectively. Section 6 explores the ways for coordinating
different decision levels. Section 7 summarizes the
challenges in achieving multilevel integration.

2 Modeling structure network

Supply chains are systems with multiple components that
exchange information with one another. Thus, a network
representation is ideal to represent the structure and
interactions between each decision-making component.
In this section, we propose a standard structure and outline
the elements that need to be considered when optimizing
the whole supply chain. The network representation has
motivated Jalving et al. (2017), who developed a
computational package called PLASMO for the Julia
programming language (Bezanzon et al., 2012), to
represent networks of models with the JuMP mathematical
programming platform (Dunning et al., 2017).
Figure 4 presents the proposed structure, where each

node represents the problem that each decision maker at a
defined level needs to solve. Each solid-line arc represents
the influence of top-level decisions in the sub-nodes. The
relationship at an arc can be defined as passing the value of
a variable or a constraint that involves the variables of the
origin and destination nodes. If the network is solved by
simply optimizing each node from the root node to the
leaves, then not even the feasible solutions can be
guaranteed. The feedback (represented by the dashed-line
arcs) is necessary to converge to the optimal solution.
Section 6 presents additional information on the coordina-
tion among nodes.
We use the following example to explain these

definitions further. In a chemical company, the global
planner from a family of specialty chemicals allocates the
production of each of product in his/her portfolio to each
production area (Fig. 5). When doing the allocation, the
global planner considers the transfer between different
production areas. Afterward, the planner for each produc-
tion area must decide how to split the global planner
requirement among different manufacturing plants in the
production area. In each plant, a scheduler will perform
short-term planning to execute the manufacturing opera-
tions and to meet the required targets. The optimal solution

Fig. 3 Planning matrix
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for the network is unlikely to be obtained without feedback
and iteration. We refer to the optimal solution of the
network (x*), or the integrated solution, to the vector of
variables that maximizes the benefit across the whole
network:

x* ¼ argmax
x2X

X
n2N

zn, (1)

where zn represents the objective function of each node n.
This definition of integrated solution differs from that in

the literature, which usually considers only two decision
levels and not even in their full detail. Previous studies
usually include a relaxation or aggregation of the
subproblem as a constraint of the top-level problem
(Maravelias and Sung, 2009) to improve the quality of
the solution for the top level. However, the value of the
lower decision variables is not meant to be implemented
(Fig. 6). Some authors have called this approach an
integrated solution.

Considering the structure shown in Fig. 4, an optimal
solution for the network can be obtained by answering the
following questions:
(1) What is the right model and solution method for each

node?
(2) How to coordinate the decisions that are made

between nodes?
For the first question, much progress has been achieved

by developing models for different applications and
decision levels (Bixby et al., 2004). Solution strategies
based on mixed-integer programming (Linderoth and
Savelsbergh, 1999), constraint programming (Hooker,
2002), metaheuristics (Blum and Roli, 2003), and others,
have also been proposed. Handling uncertainty is also
important in obtaining implementable solutions (Birge and
Louveaux, 2011). Sections 3, 4, and 5 analyze the details
related to the first question, while Section 6 addresses the
second question mainly through decomposition algo-
rithms.

3 Modeling of strategic decisions

Strategic decisions define the long-term plans that affect all
areas of a company. These decisions represent commit-
ments that span for many years, such as the execution of
capital projects and contracts. The impact of these
decisions is so significant that failing to make good
decisions can lead to the demise of the company. In order
to make these critical decisions, several years of forecast
data must be considered. However, given that one may
consider points in time that are very distant to the present,
these forecasts may become highly uncertain.
The decisions at the strategic level are generally

classified as follows:
1) Product portfolio selection;
2) Contracts; and
3) Facility installation, expansion, and reduction.
For product portfolio selection, a company decides

which of its products must be maintained in its portfolio
based on the projected profitability of serving the
forecasted demand. The research on these problems has
focused on improving the current forecasting methods

Fig. 4 Supply chain decision network structure

Fig. 5 Example of a supply chain decision network structure

Fig. 6 Concept of integrated solution as defined in the literature
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(de Weck et al., 2003) and on handling the new products
entering the pipeline (Jain and Grossmann, 1999). The
demand depends on the phase of the life cycle in which a
product is found (Fig. 7).

From the modeling standpoint, the optimal portfolio can
be obtained by allowing the model not to meet the total
demand (Eq. 2). However, those cases in which the
demands of products are coupled must also be considered.
For example, a company may be supplying an unprofitable
product to a customer to keep serving that same customer
with other highly valuable products (Rastogi et al., 2011).

X
j2 Jk

xjkpt£Demandkpt 8k 2 K, p 2 P, t 2 T : (2)

In Eq. (2), K is the set of customers, P is the set of
products, T is the set of time periods, Jk is the set of
facilities serving customer k, and xjkpt is the flow of
material of product p between facility j and customer k.
Uncertainty is present in the demand forecast for both new
and mature products.
Contracts are also important strategic decisions that

dictate the prices and restrictions on the amounts related to
supply, sales, and transportation. Supply and sales
contracts have been modelled in Park et al. (2006), who
consider the following types of contracts:
Fixed price contracts, where the purchase price is fixed

and is independent from the amount purchased.
Discount after a certain amount, where the first s1

units are sold to a price φ1, while the units in excess of s1
are sold to a price φ2.
Bulk discount, in which the price for the entire order

decreases to φ2 when the amount ordered exceeds s1.
Fixed duration contracts, where a minimum purchase

and contract duration are defined. The longer the contract,
the larger the minimum purchase and the lower the price.
All contract options can be modeled using generalized

disjunctive programming (Grossmann and Trespalacios,
2013) and be formulated as mixed-integer linear program-
ming (MILP) models via convex hull reformulation (Balas,
1998). The same four types and conditions are used for
sales contracts. The application of these formulations has
been demonstrated in Drouven and Grossmann (2016),

who optimize a strategic plan for shale gas extraction by
considering different kinds of contracts. Transportation
contracts have been optimized by Yano (1992). In addition
to amounts and prices, these contracts consider multiple
transportation modes and the provision of urgent services.
Capacity installation, expansion, and contraction have

also been widely studied. Martínez-Costa et al. (2014)
review the strategic models related to capacity expansion
and describe the main decisions and factors involved in
strategic planning. Their reviewed models involve tactical
decisions, such as those related to production and demand
allocation. Martínez-Costa et al. apply the same approach
described in Fig. 6 and consider the location of facilities in
their analysis. With the exception of temporary facilities,
all problems related to facility location yield strategic
models, which have been comprehensively reviewed in
Melo et al. (2009). Capacity increases may take the form of
simple equipment purchases or highly complex construc-
tion projects, such as installing new plants or building new
construction sites. However, they do not make a particular
distinction between these cases.
To better understand the modeling approach for strategic

decisions, we use two examples from the literature on the
process industry. The first example is the model proposed
by Levis and Papageorgiou (2004) to optimize a
pharmaceutical supply chain by planning clinical trials
and manufacturing capacity. The planning horizon is set to
10 years divided in one-year periods. The manufacturing
capacity is controlled while deciding the number and
timing of installing production lines. The installation of the
first production line at a site, which is called header suite
by the authors, must include the installation of general
services. The capacity decisions are translated into the
available production time, which restricts the production
and sales. The objective is to maximize the expected net
present value given the uncertainty in the success of
clinical trials.
The model considers the following constraints in

handling the expansion decisions:
1) A production line exists if it was present in the

previous period or if it was decided to be installed before
considering the construction lead time.

yit ) yit – 1 _ bit – li , (3)

where i is the production suite, t is the time period, li is the
construction time of suite i, yit indicates the existence of
suite i in period t, and bit indicates that the construction of
suite i starts at period t.
2) A non-header suite can only be installed if a header

suite was installed before.
3) A symmetry breaking constraint; suite i – 1 must be

installed before suite i.
The second group of constraints includes production,

inventory, and sales constraints. Interestingly, the sales are
bounded by the demand, thereby allowing the model to

Fig. 7 Product life cycle curve
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perform portfolio planning.

saleskpt£Demandkpt 8k, p, t: (4)

The rest of the constraints are specific to the pharma-
ceutical industry. A scale-up operation is required when a
product is manufactured at a plant for the first time, and
then qualification runs must be performed to show that the
plant is operating in compliance to the regulations. To
solve the resulting model, this study proposes a hierarch-
ical algorithm in which the strategic decisions are taken
first with aggregated production and then the tactical plan
is solved in a reduced space.
The second example is the problem studied by You et al.

(2011). The objective of the model is to determine the
expansion strategy of multiple chemical sites, together
with supply chain planning. The considered planning
horizon is 10 years divided in by year. Each site has a
defined number of slots in which a production train can be
installed. Each train corresponds to a reactor and the
associated downstream facilities. The size of the produc-
tion trains, including those that are installed and are
available for installation, is predefined. In addition to the
timing and size of expansions, the model decides to which
production family must the production train be dedicated.
Apart from expansion, the options for shutting down or
converting a production train into another product family
are considered.

The model considers three processes related to capacity,
namely, installation, shutdown, and transformation of
production trains into another product family. Blocks of
logical constraints are defined for each process. The model
also considers tactical planning decisions at the product
level. Given that the strategic decisions are made at the
strategic level, appropriate conversions are included in the
production constraints. Given the model complexity, the
authors develop two solution strategies, namely, bilevel
decomposition (Iyer and Grossmann, 1998) and Lagrange
decomposition (Guignard and Kim, 1987). Similar to the
first example, the sales variables are bound by demand.
However, in this model, the sales must be within a certain
demand range (Eq. 5).

MinDemandkpt£Saleskpt£MaxDemandkpt 8k, p, t: (5)

The following similarities and differences are observed
between these examples:
1) The capacity is discrete in both examples, and such

capacity can be increased or decreased by changing the
number of capacity units (i.e., manufacturing suites in the
first example and production trains in the second example).
The constraints related to capacity include binary or integer
variables and logical relations.
2) Both examples consider yearly periods and a 10-year

planning horizon, which are considered appropriate for
strategic decisions. However, for the tactical decisions
considered, the time discretization yields aggregated plans.
The time grid must be refined further to accurately
optimize the tactical decisions.
3) The first example only considers expansion, while the

second example considers expansion, shutdown, and
transformation.
4) The effect of installing the first capacity unit is

considered in the first example.
5) The demand satisfaction constraints are treated as

inequalities in both examples, thereby making these cases
suitable for portfolio optimization. For the second example
MinDemand must be set to zero.
Given the discrete nature of strategic decisions, these

problems usually yield MILP models that are solved either
with standard branch-and-cut solvers or heuristics. The
models in the literature show some similarities with the
above examples. However, no general modeling approach
has been defined yet.
Stochastic programming is preferred when handling

uncertainty at the strategic level because longer planning
horizons are assumed to provide more opportunities for
reevaluating decisions and take recourse actions (Snyder,
2006). Flexibility analysis has been proposed in process
engineering design (Swaney and Grossmann, 1985)
because of its strong connections to robust optimization
(Zhang et al., 2016). However, its application to supply
chain design has been limited (Mansoornejad et al., 2011;
Sahay and Ierapetritou, 2015; Wang et al., 2016).

4 Supply chain planning

The optimization of tactical decisions has been investi-
gated in supply chain planning research. With the strategic
decisions already fixed, the goal is to optimize the material
flows and inventories in the supply chain network. The lot-
sizing problem is used as the base model to represent this
decision level (Karimi et al., 2003). The planning horizon
ranges from six months to a couple of years divided into
monthly periods. The flow among different echelons (i.e.,
suppliers, manufacturing sites, distribution centers, and
customers) in the network must be examined (Fig. 9).
Given that the models are multiperiod, the inventory levels
are simultaneously determined.

Fig. 8 Site expansion modeling
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The basic constraints of the problem include inventory
balance (Eq. 6), and constraint satisfaction (Eq. 7), which
are defined as follows:

invjpt ¼ invjpt – 1 þ
X
i

xijpt –
X
k

xjkpt 8j, p, t, (6)

X
j

xjkpt ¼ Demandkpt 8k, p, t, (7)

where i is a manufacturing site, j is a distribution center, k
is a customer, p is a product, and t is a time period. The
variables inv and x represent inventory and flow,
respectively.
A large variety of application-specific constraints

complement these models. In the simplest case, the
problem yields LP models. However, MILP models are
frequently found in the literature when start-up or fixed
transportation costs are considered. NLP models are also
defined in the presence of material blending, such as oil
blending problems (Lotero et al., 2016). To handle
uncertainty, the inventory optimization problem that
considers safety stocks has been examined (You and
Grossmann, 2011).

5 Process scheduling

After completing the mid-term planning, short-term
scheduling must be conducted to plan the execution of
manufacturing operations. The scheduling horizon spans
from two days to four weeks, and the horizon is divided
into days or even hours. General modeling frameworks
have been defined to address this problem. The resulting
models are difficult to solve, thereby motivating intensive
research in this area. Harjunkoski et al. (2014) and Méndez
et al. (2006) present comprehensive reviews of the models
and applications of process scheduling. We focus on
analyzing the general characteristics of modeling frame-

works to identify the key elements for multilevel
optimization.
Time representation presents a major challenge in

scheduling models (Floudas and Lin, 2004). Discrete
time is often used for tracking resource constraints.
Although continuous time is more accurate than discrete
time, computing the former is more difficult than
computing the latter.
Proposed by Kondili et al. (1993), the state–task–

network (STN) formulation involves the transformation of
materials (called states) by employing tasks. Figure 10
presents an example of an STN. In the diagram, each circle
represents a state and each rectangle represents a task. The
process stoichiometry is represented by the coefficients at
each arc. Although not included in the diagram, process
equipment is considered in the model.
The main decision variables include the following:
1) yijt: a binary variable indicating if task i is performed

in equipment j at the beginning period t;
2) bijt: the size of the batch processed at equipment j in

period t, executing task i;
3) skt: the inventory of state k in period t.
The following groups of constraints are also considered:
Logical constraints ensure that no more than one task is

assigned to an equipment at a given period and that no task
is assigned while the equipment is executing a task.
Material balances, which are required for each state.

Each circle in Fig.10 represents a storage tank.
The minimal STN model with discrete time representa-

tion is given as followings:

Max   
X
k

ηkskT , (8)

s:t:  
X
i2 Ij

Xt

τ¼t –PTijþ1

yijτ£1 8j,t, (9)

Fig. 9 Supply chain planning network
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skt ¼ skt – 1

þ
X
i2 IPk

�Pik
X
j2 Ji

bijðt –PTijÞ –
X
i2 ICk

�cikbijt þÕkt –Dkt                  8k,t,

(10)

Vmin
ij yijt£bijt£Vmax

ij yijt             8i,j 2 Ji,t, (11)

Cmin
k £skt£Cmax

k                8k,t, (12)

bijt,skt³0,   yijt 2 f1,0g: (13)

The objective value is to maximize the profit involving
the final inventory skT in period T. The parameter hk is the
inventory value.Pkt and Dkt denote the planned material or
product deliveries, PTij is the processing time of task i in
unit j, �pik and �cik denote the proportion of state k produced

or consumed by task i.Vmin=max
ij is the minimum/maximum

batch size, and Cmin=max
k is the minimum/maximum

inventory of state k.
Pantelides (1994) has proposed the resource-task-net-

work (RTN) formulation in which the processing equip-
ment is explicitly considered. The RTN framework is less
intuitive yet more general than STN. The equipment units
and materials are not distinguished because all of them are
treated as resources. The stoichoiometric relation for the
separation task is represented as follows:

1 ImpureE þ 1  Separator↕ ↓0:1  IntermediateAB

þ 0:9  Product2þ 1  Seperator: (14)

In this way, any resource including materials, equip-
ment, utilities, and human resources, can be seamlessly
incorporated into the model, thereby requiring a single
balance constraint.
Resource balance, a balance constraint is required for

each resource. The beginning of a task is controlled by the
availability of resources performing such task, including
the processing equipment.
The main decision variables include the following:
1) yit : a binary variable indicating if task i starts at the

beginning of period t;
2) bit : the size of the batch processed in period t,

executing task i;
3) rkt : the inventory of resource k in period t.
The simplest discrete time RTN model is given as

follows:

Max   
X
k

ηkrkT (15)

s:t: rkt ¼ rkt – 1 þ
X
i2 Ir

XPTi
τ¼0

�
�irτyiðt – τÞ þ virτbiðt – τÞ

�

þÕrt                            8k,  t, (16)

Vmin
ik yit£bit£Vmax

ik yit       8i,r 2 Ri,t, (17)

bit,rkt³0,  yit 2 f1,0g, (18)

where µikt and nikt indicate the fixed and variable
proportion of production (positive value) or consumption
(negative value) of resource k for task i at interval t
relative to the start of processing task i (Méndez et al.,
2006).
Zyngier and Kelly (2012) recently proposed a new

representation for scheduling problems called unit–oper-
ation–port–state–superstructure (UOPSS), which begins
from the process flow diagram, a physical equipment
perspective, and extends it to include logical units
(operations). UOPSS includes the following types of units:
1) process,
2) pool,
3) pipeline,

Fig. 10 State-task-network example
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4) pileline (stacks); and,
5) parcel.
Each unit has a defined set of constraints (Zyngier and

Kelly, 2009). The UOPSS models include the following
groups of constraints:
Logical Balances, where logical constraints involve

binary variables to handle start-up, shutdown, and other
logical relationships required by the model;
Quantity Balances, including the material balances of

different states and resources present in the model;
Logistic Balances, including the constraints that relate

quantity variables to logical variables.
For example, consider that the separator from Fig. 11

can perform another operation to split an input F into
product 2 and another species G. Figure 12 shows the
UOPSS representation for this case.
The triangles, rectangles, and circles in Fig. 12 represent

storage tanks, operations, and ports, respectively. The

diagram displays an explicit physical connectivity between
the storage tanks and the separator as well as the process
perspective by including logical units (separation modes in
the example). The storage tanks are pool units, whereas the
separator is a process unit. Both STN and RTN have been
extensively used in many applications. Given that UOPSS
has been proposed much later than the two other
representations, its application has not been as extensive.
The similarities and differences among these three
representations remain unknown.
Industrial size scheduling problems are very difficult to

solve. Given the combinatorial nature of scheduling
models, several solution methods have been proposed.
Besides using MILP solvers, heuristics, and constraint
programming methods have also been employed. Jain and
Grossmann (2001) propose a hybrid method for combining
MILP and constraint programming, while Maravelias and
Grossmann (2004) apply this algorithm to batch schedul-
ing.
Given that the duration and yield of operations are

inherently uncertain, scheduling under uncertainty has
attracted much research interest. Aytug et al. (2005) and Li
and Ierapetritou (2008) have published comprehensive
reviews on this topic, while Lappas and Gounaris (2016)
recently propose an adaptative robust optimization frame-
work for short-term scheduling.

6 Model network coordination

Several models have been recently proposed for each
decision level. However, the integration of multiple
decision levels has not been completely solved. In this
section, we present an overview of different approaches for
coordinating the solutions obtained for each node of the
decision network. Optimization models are formulated to

Fig. 12 UOPSS representation example

Fig. 11 Resource-task-network representation of the separation
task from Fig.10
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resolve the trade-offs between opposing decision objec-
tives. For example, in a facility location problem, a trade-
off exists between the fixed costs arising from opening
facilities and the distribution costs. Opening many
facilities in order to be as close as possible to the customers
can increase the fixed costs for keeping more facilities
open and lower the distribution costs. Therefore, a conflict
arises between the objectives of different decision levels.
To resolve such conflict, an optimal solution that
maximizes the benefit of the sum of all objective functions
must be proposed. This solution can be devised in several
ways, such as using large-scale models, multiobjective
optimization (MO), game theory, and decomposition.

6.1 Large-scale models

The first approach is to combine the models from each
node into a single large-scale model. If this model can be
solved, then this model yields the optimal solution for the
system in a single step. However, tractability presents an
evident challenge. A larger model is more difficult to solve,
especially considering that the solution time scales
exponentially with model size. Another downside of this
approach is that the effective exploitation of parallel
computing depends on the solver capabilities.
This approach is the same as if a manager is required to

develop a production plan for the next year, then he/she
will ask his/her three direct reports to attend a large
meeting with all stakeholders involved in making the
decision. Finding a solution that satisfies all meeting
attendees within the duration of the meeting can be
tremendously challenging. In many cases, no agreement is
reached within the available time. The more participants in
the meeting, the more difficult it is to reach an agreement.

6.2 Multiobjective optimization

MO is another approach for finding the optimal solution
for the decision network. The idea behind this approach is
to acknowledge the existence of two or more objectives
and to determine the trade-off between them. This
approach is especially useful for situations in which the
objectives cannot be added because they have different
units, such as when sustainability objectives are considered
(Pinto-Varela et al., 2011; Guillén-Gosálbez and Gross-
mann, 2009). Širovnik et al. (2016) recently propose a
rigorous way of combining such objectives with the
concept of sustainability net present value.
The output of MO represents the variation of one

objective with respect to the other. This output defines a
family of Pareto optimal solutions (Fig. 13) and provides
the decision maker with enough flexibility to select the
operation point in the Pareto front using any desired
criterion depending on the valuation given to the objectives
considered.

6.3 Decomposition

Large-scale problems have been effectively solved by
employing decomposition, in which the problem is
partitioned into two or more parts that are solved iteratively
and exchange information with one another. Given that the
time for solving a problem increases exponentially along
with the problem size, the time for conducting one iteration
is far less than the time for solving the full-space problem.
The success of these algorithms depends on the fact that
many problems can be solved in less than a couple hundred
iterations in a fraction of the time required to solve the full-
space problem.
In Benders decomposition (Benders, 1962), the problem

is solved iteratively by exchanging information among the
decision makers. The problem is partitioned between a
master problem and one or more subproblems. The master
problem proposes a value for its variables, and the
subproblems devise their best solution based on the
proposed values that they receive. Therefore, the subpro-
blem is a function of the variables of the master problem.
By considering only part of the full problem, the master
problem yields a lower bound of the optimum (in the case
of minimization). The subproblems yield a full feasible
solution, an upper bound of the optimum. The iterations
continue until both bounds match the desired tolerance.
Going back to the analogy of the manager needing to

devise a production plan for the next year, Benders
decomposition corresponds to the process in which the
manager and his/her reports work separately in making the
decisions within their scope. They iteratively exchange the
results of their decision-making process with one another
until they reach an agreement. This process demonstrates
how the decisions are made in practice. However, only few
iterations are performed in actual scenarios, thereby
offering many opportunities for improving the current
decision-making processes. Interestingly, the Benders
decomposition can also represent bargaining processes
and establish strong connections with game theoretical
approaches.

Fig. 13 Pareto front output from solving a bi-objective problem
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Mathematically, the objective value of the subproblems
is a function of a decision that is made by the master
problem. Those problems with a block angular structure as
shown in Fig. 14 are amenable to the Benders decomposi-
tion because selecting the linking variables as part of the
master problem will decompose the problem into several
subproblems that can be solved in parallel. This case is
observed in two-stage stochastic programming.

To clarify these concepts, consider the following
example:

P : Min             cTxþ dTy

        s:t:             Ax£b

                       Ey£f

                       Gxþ Hy£q

                       x 2 X ,       y 2 Y :

(19)

The problem P can be partitioned into a master problem
and a subproblem. For example, xmay represent the vector
of strategic variables, while y may represent the vector of
tactical variables. The strategic problem (or master
problem) is then defined by Eq. 20, while the subproblem
is defined by Eq. 21,

BM : Min          cTxþ �, (20a)

s:t:          Ax£b, (20b)

�³�k – lkðxk – xÞ                       k ¼ 1,:::,K, (20c)

gðx,xtÞ£0                                   l ¼ 1,:::,L, (20d)

�³�LB, (20e)

x 2 X ,� 2 ℝ, (20f )

SPðxÞ : Min     dTy, (21a)

s:t:     Ey£f , (21b)

Gx̂þ Hy£q, (21c)

x – x̂ ¼ 0, (21d)

  y 2 Y : (21e)

The Benders master problem optimizes the strategic
decisions and acknowledges that part of the problem is
unknown to itself (the tactical problem) by including the
variable q in the objective function. The feasible space for
this variable is iteratively approximated by a family of cuts
(Eq. 20c). The variable q is bounded by q LB , otherwise the
problem P will be unbounded. The objective value of
subproblem SP is a function of vector x. In other words, the
tactical decision depends on the strategic decision. At
iteration k, a value for x is given and the optimal solution
for SP is determined. From the subproblem, the objective
function and l k , which are the dual variables of Eq. 21d,
are used to construct the cut from Eq. 20c. This process
corresponds to the coordination–feedback process
described in Mesarovic et al. (1970).
When the subproblem is a linear programming problem

(LP), the duals l k are well defined and the cut from Eq.20c
can be easily obtained. However, when the subproblem is
an MILP, the duals are not defined and additional efforts
are required to obtain tight cuts. Mathematically speaking,
finding the optimum decision network is equivalent to
solving a multistage stochastic programming problem with
mixed-integer recourse (MSMIP). When Fig. 4 is rotated
by 90°, the usual representation for a multistage scenario
tree is obtained. Therefore, all the methods developed for
solving MSMIPs are applicable to multilevel systems.
Feasibility is the simplest feedback that can be provided

by a subproblem. The decision proposed by the master
problem can be either feasible or infeasible. When the
subproblem is infeasible, a cut to exclude such solutions
must be incorporated in the master problem (Eq. 20d).
When the subproblem is an LP, the cut is given by Eq. 22,
where �l is the Farkas proof of infeasibility, which is an
unbounded extreme ray of the dual problem.

0£�lðxl – xÞ: (22)

When the subproblem is a mixed-integer problem, the
duals are not defined, and other cuts need to be defined.
Balas and Jeroslow (1972) propose “no-good” cuts for the
case of binary master variables (Eq. 23)

X
i:xli¼0

xi þ
X
i:xli¼1

ð1 – xiÞ³1: (23)

When the subproblem is feasible, the feedback is given

Fig. 14 Block angular structure with linking variables
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in terms of the objective value and the dual information.
When the subproblem is an LP a standard Benders cut is
generated (Eq. 24).

�³�k – lkðxk – xÞ: (24)

When the subproblem is a mixed-integer problem, the
dual information becomes unavailable and additional
considerations are required to generate cuts. The first
option only uses the objective value. Laporte and
Louveaux (1993) propose the cut from Eq. 25 for the
case of binary master variables. q LB represents a lower
bound of the objective value of the subproblem.

�³�k – ð�k – �LBÞ
X
i:xki ¼0

xi þ
X
i:xki ¼1

ð1 – xiÞ
0
@

1
A: (25)

The cut is tight at the optimal solution, but is very weak
in general. This cut pushes the master problem to agree
with the subproblem in terms of the value of q k unless it
changes the components of the master variables vector x.
The number of components that need to be changed to
“override” the effect of the cut, depends on the quality of
the bound q LB . In the worst case, when q LB = 0, the cut
becomes useless by changing only one component.
The second option is to solve the convex relaxation of

the subproblem to approximate the objective value and
obtain dual information. Zou et al. (2017) propose three
additional cut options for the case of binary master
variables.
Benders Cut. The cut from Eq. 24 can be generated by

solving the LP relaxation of the subproblem. The cuts are
valid and finite. However, using these cut does not
guarantee convergence to the optimal solution.

�³�LP – lLPðxk – xÞ: (26)

Lagrange Cut. The subproblem can be relaxed and a
Lagrange relaxation can be defined by dualizing Eq. 21d.
Given that the Lagrange relaxation is at least as tight as the
LP relaxation, the obtained cut dominates the Benders cut.
However, obtaining this cut is more expensive than
obtaining the Benders cut.

�³�LR – lLRðxk – xÞ: (27)

Strengthened Benders Cut. An intermediate option
between Benders cut and Lagrange cut is using the dual
values from the LP relaxation to initialize the Lagrange
relaxation. The objective value of the first iteration can be
used to define a cut. This family of cuts is valid and finite
but does not necessarily dominate the Benders cut.

�³�LR1 – lLPðxk – xÞ: (28)

In the above equations, a superindex LP indicates the LP
relaxation, LR indicates the Lagrange relaxation, and LR1

indicates the first iteration of the Lagrange relaxation.

Gade et al. (2014) propose adding Gomory cuts when
the integer variables of the subproblem take a fractional
value in the LP relaxation. By successively adding cuts, the
objective value of the relaxation is strengthened, and dual
information becomes available. Sherali and Fraticelli
(2002) generate cuts by applying the relaxation-lineariza-
tion technique, which involves lifting the space by
considering one binary variable at a time. However, such
procedure only limits the application of this technique to
small problems.
All the cut options proposed for mixed-integer subpro-

blems are not tight enough, expensive to obtain, and
limited to binary master variables, thereby posing a
challenge in multilevel optimization.
However, this problem can be compensated by exploit-

ing parallel computing. Each problem that can be solved
with Benders decomposition can also be solved by
Lagrange decomposition (Guignard and Kim, 1987), by
disaggregating the master variables, and by adding non-
anticipativity constraints. If the problem P (Eq. 19)
decomposes into |I| subproblems, then the y variable can
be written as yi : i 2 I, where yi is the local variable
corresponding to subproblem i. In principle, vector x does
not have a component for each subproblem but the
variables can be duplicated by adding non-anticipativity
constraints.

xi : i 2 I , (29)

xi – xiþ1 ¼ 0         8i 2 I : (30)

The constraints from Eq. 30 can be dualized to apply
Lagrange decomposition. Given that a multilevel optimi-
zation problem can be solved with both Benders and
Lagrange decomposition, both algorithms can be run in
parallel and exchange information with each other, which
is the very idea of cross decomposition (Van Roy, 1983;
Mitra et al., 2014).

6.4 Game theory approaches

As briefly discussed in the previous section, finding the
optimal solution of a decision network is equivalent to
finding the solution of a bargaining process. These
approaches have only been used to identify optimal
decisions in the presence of external decision makers,
such as the coordination between multiple echelons
(Zamarripa et al., 2013) and the coordination between
enterprises and customers (Garcia-Herreros et al., 2016).
Florensa et al. (2017) showed that these approaches can
also be applied to multilevel systems. The modeling of
these problems creates bilevel programming models
(Vicente and Calamai, 1994), in which the subproblems
are embedded as constraints in the master problem.
Equation 31 presents an example of a bilevel programming
problem.
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BPP : Min        cTx

            s:t:        Ax£b

                     Min        dTy

                      Ey£f

                      Gxþ Hy£q

                      x 2 X ,  y 2 Y :

(31)

The problem can be solved by replacing the inner
problem by its Karush–Kuhn–Tucker conditions and
reformulating the resulting problem (Colson et al., 2005).
The application of bilevel programming to the integration
of supply chains remains uninvestigated.

7 Challenges

Multilevel supply chain optimization is required to design
enterprise-wide decision systems. The decision network
representation is much more than a useful representation
for modeling and solving the problem but also provides a
natural representation of how companies are organized to
make decisions. This argument is reflected in the similarity
between the organizational structures and the decision
structures discussed in Section 2. Efficiently modeling and
solving multilevel systems will produce highly responsive
and competitive supply chains that make excellent
decisions. The following challenges in this area also
need to be addressed.
The first challenge in multilevel optimization is the

unavailability of a modeling platform that allows the
model to seamlessly represent the nodes of the decision
structure as building blocks and their connections. The
development of PLASMO (Jalving et al., 2017) is a step in
the right direction, but this software is yet to be released.
The second challenge is the lack of standardized models

for strategic and tactical decisions. Multipurpose general
frameworks are available for process scheduling. How-
ever, how to achieve the same thing in higher levels of the
decision-making pyramid remains unknown. These gen-
eralizations must also consider an appropriate aggregation
of lower levels to ensure that feasibility is maintained and
to accelerate the solution process. Generalization can be
especially challenging at the tactical level due to the
variety of conditions found in each application. However,
the availability of commercial software for this purpose
(Funaki, 2009) indicates that such generalization is
possible.
The third challenge lies in coordination. The available

algorithms are applied to the specific mathematical
structures of each node. The feedback process (cut
generation) is the most difficult part of the procedure that
necessitates the use of decomposition algorithms that can
deal with any type of node, such as nonconvex mixed-

integer nonlinear problems. The recent advancements in
this area have been driven by the research in stochastic
programming with mixed-integer recourse.
The fourth challenge lies in the uncertainty that is

present in every decision-making problem. Such uncer-
tainty can be addressed in several ways, such as stochastic
programming, robust optimization, and flexibility analysis.
The modular modeling in multilevel optimization allows
for these models to be combined by using the most
appropriate approach for each level. However, combining
these models has not been attempted yet in the literature.
Stochastic programming integrates well with the decision
structure while maintaining the same mathematical
structure and adding extra nodes to the decision network.
In sum, supply chain multilevel optimization presents an

important frontier in decision making that is expected to
make manufacturing processes smarter. Significant pro-
gress has been made in examining several components of
the problem, but the integration of components and the
solution to other challenges warrant further research.
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