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Abstract Reverse auctions have been widely adopted for
purchasing goods and services. This paper considers a
novel winner determination problem in a multiple-object
reverse auction in which the buyer involves loss-averse
behavior due to uncertain attributes. A corresponding
winner determination model based on cumulative prospect
theory is proposed. Due to the NP-hard characteristic, a
loaded route strategy is proposed to ensure the feasibility
of the model. Then, an improved ant colony algorithm that
consists of a dynamic transition strategy and a Max-Min
pheromone strategy is designed. Numerical experiments
are conducted to illustrate the effectiveness of the proposed
model and algorithm. We find that under the loaded route
strategy, the improved ant colony algorithm performs
better than the basic ant colony algorithm. In addition, the
proposed model can effectively characterize the buyer’s
loss-averse behavior.

Keywords reverse auction, loss aversion, winner deter-
mination, improved ant colony algorithm

1 Introduction

With the advent of Internet commerce, reverse auctions
have recently become a favorable tool among buying
organizations to lower procurement and transaction costs
(Tunca et al., 2014, Huang et al., 2016). In general, a first-
price sealed-bid reverse auction is frequently adopted to
purchase goods and services (Zhou et al., 2016, Qian et al.,
2017). In such auctions, bidders are required to simulta-
neously place bids. The one with the lowest price wins and
is paid that amount. Following the same logic, when each
supplier has limited capacity, the one with a lower price has
a higher chance of being selected to satisfy the buyer’s
demand.
Although mathematical models have been constructed to

investigate the winner determination (WD) problem to
optimize the buyer’s expected procurement cost or
expected utility, most of these models assume that the
buyer involves no loss aversion behavior. However, in
practical reverse auctions, due to changes of the external
environment, the buyer also cares about uncertain
attributes, such as the delivery time, and involves loss
aversion behavior (Kahneman and Tversky, 1979).
Specifically, the buyer cannot observe the exact delivery
time of each potential supplier at the time of a reverse
auction, but rather only has an expectation of the future
delivery time. Hence, the buyer’s perceived utility losses
from delay delivery shall be higher than perceived utility
gains from non-delay delivery. Recall that cumulative
prospect theory (CPT) characterizes the fact that people are
more sensitive to losses than to absolutely commensurate
gains (Tversky and Kahneman, 1992), which matches the
buyer’s boundedly rational behavior in reverse auctions
with uncertain attributes. Since loss aversion has also been
detected by empirical experiments in auctions (Banerji and
Gupta, 2014), incorporating CPT to the traditional WD
model makes the result of the theoretical analysis closer to
the practical decision-making result, making it meaningful
in theory and reality.
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This paper considers a reverse auction in which one
buyer solicits bids from multiple suppliers with limited
capacity. In addition to the traditional price attribute, the
buyer cares about the delivery time which is uncertain at
the time of the reverse auction. Under such circumstances,
the buyer will reflect the loss aversion attitude in the
current process of WD. We aim to construct a novel WD
model for the proposed problem and to provide decision
support for the buyer.
Our paper contributes to the reverse auction literature by

incorporating the buyer’s loss-averse behavior into the
classical WD when the capacity of each supplier is limited.
Based on CPT, a novel WD is constructed to maximize the
buyer’s expected utility. To ensure the feasibility of WD, a
loaded route strategy is adopted. Due to the NP-hard
characteristic of the problem, to derive a satisfactory
solution, we propose an improved ant colony algorithm
that consists of a dynamic transition strategy and a Max-
Min pheromone strategy, which is termed as an improved
ant colony algorithm with loaded route strategy (IACA-
LRS). In addition, a basic ant colony algorithm with loaded
route strategy (ACA-LRS) is adopted as a benchmarking
method for comparison. Numerical experiments are
conducted to investigate the effectiveness of the proposed
model, and to show that IACA-LRS performs better than
ACA-LRS.
The organization of the paper is arranged as follows.

Section 2 briefly reviews the related literature. WD models
based on CPT, prospect theory (PT) and expected utility
(EU) are constructed in Section 3 after the presentation of
the problem description and notations. Then, in Section 4,
IACA-LRS and ACA-LRS are proposed to derive effective
solutions for different models. Conducting some numerical
experiments, the effectiveness of the novel model and
proposed algorithm is shown in Section 5. Section 6
concludes the paper with future research directions.

2 Literature review

Adopting reverse auctions to select the winning supplier is
an important procurement activity in practice (Singh and
Benyoucef, 2011). Since a novel winner determination
(WD) problem that incorporates the buyer’s loss-averse
attitude is particularly studied, this section briefly reviews
two streams of captured literature according to the situation
whether decision makers involve emotional behavior or
not.
For the case where decision makers involve no

emotional behavior, Jackson (1976) was the first to
propose the auction format for radio spectrum rights.
Such an auction has been applied to the allocation of
airport time slots (Rassenti et al., 1982), the transaction of
financial securities (Srinivasan et al., 1998) and the
transportation services procurement (Remli and Rekik,
2013). Given fixed demand, Sandholm (2002) examined a

deterministic WD in multiple-object auctions where
bidders have preferences for sets of objects. It showed
that such WD is non-polynomial-time solvable, and
designed a search algorithm solution method. To derive
the optimal solution, a branch-and-cut algorithm is
proposed for small-scale problems (Escudero et al.,
2009). To improve the quality of procurement, the buyer
may care about the reputation of potential suppliers (Rekik
and Mellouli, 2012). Translating reputation into unex-
pected hidden cost, it formulated a generalized mathema-
tical model which can be dealt with by CPLEX solver.
When the demand is uncertain and its distribution function
is given, Ma et al. (2010) constructed a two-stage
stochastic programming model, and showed the effective-
ness of the proposed model by conducting numerical
examples with commercial branch and bound solvers.
When the demand distribution is unknown, Zhang et al.
(2015) proposed a tractable two-stage robust model. After
constructing polyhedral uncertainty sets with a data-driven
approach, it conducted numerical tests to show the
effectiveness of the model by proposing a reformulation
solution method. On a different line, other works have
focused on reverse auction-based allocation mechanism in
cloud services (Wang et al., 2013; Wang et al., 2015). A
survey of this research area is available in De Vries and
Vohra (2003). Reviews of supplier/vendor selection with
respect to issues and approaches in supply chain are made
available by De Boer et al. (2001) and Ho et al. (2010).
However, these works assume that the decision makers are
perfectly rational. As pointed out in Section 1, decision
makers will involve boundedly rational behavior when
uncertain attributes are investigated.
For the case where decision makers involve emotional

behavior, Huang et al. (2016) was the first to investigate
WD in reverse auctions. It proposed a PT-BOCR solution
method for loss aversion buyers to address WD in a multi-
attribute reverse auction. The effectiveness of the proposed
approach is demonstrated with numerical experiments.
When bidders involve anticipated regret behavior, Qian et
al. (2017) constructed a novel model based on regret
theory. It analyzed the impact of such boundedly rational
behavior on the buyer’s expected revenue and proposed to
use reserve price strategy to mitigate the adverse effect of
winner regret. When bidders engage in nonequilibrium
strategic thinking, Qian et al. (2016) proposed using the
“Level-k decision rule” to model such bounded rationality.
Managerial insights were provided for buyers to determine
the winner. However, only single-object reverse auctions,
in which the buyer chooses only one supplier, are
considered in these works.
This paper contributes to the reverse auction literature by

considering a novel WD in which buyers’ loss-averse
attitude is particularly examined in a multiple-object
reverse auction where multiple suppliers are selected.
Constructing a related model based on cumulative prospect
theory, an improved ant colony algorithm with loaded
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route strategy is proposed to derive an effective solution.
The effectiveness of the proposed model is illustrated with
numerical experiments.

3 Problem description and formulation

This section presents the problem studied in our paper.
Then, the notations related to the problem used in the
following discussion are stated. Finally, based on CPT, PT
and EU, the mathematical models are constructed for
further analysis.

3.1 Problem description

To improve the procurement efficiency, reverse auctions
are adopted to purchase goods and services by the buyer. In
this paper, we mainly focus on a reverse auction activity in
which one buyer faces multiple suppliers with limited
capacity such that a single supplier cannot satisfy the
buyer’s demand. For the sake of convenience, we refer to
the buyer as she and a supplier as he in the following
discussion. We assume that the buyer cares about two main
attributes: price and delivery (Cachon and Zhang, 2006;
Tang et al., 2015). The details of the winner determination
(WD) problem are shown in Fig. 1.
In the reverse auction, pre-qualified suppliers are

required to submit a price-delivery combination simulta-
neously. A supplier with a lower price and smaller delay
shall have a higher chance of being selected as a winner.
Due to uncertain factors such as transportation disruptions
(Hishamuddin et al., 2013), the delivery time is generally
uncertain at the time of auction. This paper particularly
considers a novel WD, in which the buyer involves loss
aversion behavior and seeks to maximize her objective
function (i.e., expected utility, PT or CPT value) according
to suppliers’ price-delivery combinations.
Before constructing the mathematical model, we first

present the notations used throughout the paper.

3.2 Notations

The notations related to the problem used in the following
discussion are shown below.

3.3 Model formulation

According to the above notations, the procurement cost
without the delivery penalty can be characterized as

C0ðx,yÞ ¼
Xn
i¼1

ciyi þ k
Xn
i¼1

xi (1)

Fig. 1 Description of the winner determination problem

Model parameters

i: Index of suppliers, i ¼ 1,2,:::,n

ci: Unit price of supplier i

k: Fixed cost of choosing a supplier

q: Penalty cost if the delivery delays

L: Total demand of the buyer

Qi: Maximum capacity of supplier i

di: Expected delivery of supplier i

pi: Delay probability of supplier i

P1: Average delay probability of all selected suppliers

Cm: Expected procurement cost of the buyer

Tm: Expected delivery of the buyer

Behavior Parameters

α: Gain preference

β: Loss preference

l: Degree of loss aversion

g: Parameter of weighting functions for gain

δ: Parameter of weighting functions for loss

Decision variables

xi: Binary variable, xi ¼ 1 if supplier i is selected, otherwise, xi ¼ 0

yi: Integer variable, supply quantity of supplier i
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where x ¼ ðx1, x2,:::, xnÞ and y ¼ ðy1, y2,:::, ynÞ.
Then, the average delay probability of all selected

suppliers can be expressed as

P1 xð Þ ¼

Xn
i¼1

pixi

Xn
i¼1

xi

(2)

and the total delay penalty can be described as

SðxÞ ¼
Xn
i¼1

qðdi – TmÞþxi (3)

According to the notations, the decision model based on
CPT can be derived as shown below.
The total procurement cost of the buyer Ccðx,yÞ can be

calculated under two scenarios: i) if there is no delivery
delay, then Ccðx,yÞ ¼ C0ðx,yÞ; ii) if the delivery delays,
then Ccðx,yÞ ¼ C0ðx,yÞ þ SðxÞ. Obviously, if Ccðx,yÞ£
Cm, then the buyer derives a gain of Cm –Ccðx,yÞ;

otherwise, the buyer obtains a loss of Ccðx,yÞ –Cm.
According to CPT, the buyer’s value function can be
characterized as

vðCcÞ ¼
ðCm –CcÞα, if Cc£Cm

– lðCc –CmÞβ, if Cc > Cm

(
(4)

Given any fixed probability p 2 ½0,1�, based on CPT, the
weighting function of gain can be expressed as

wþ pð Þ ¼ pg

ðpg þ ð1 – pÞgÞ
1
g

(5)

and the weighting function of loss can be expressed as

w – pð Þ ¼ pδ

ðpδ þ ð1 – pÞδÞ1δ
(6)

According to the value function and the weighting
function, the buyer’s CPT value V ðx,yÞ can be calculated
as

V ðx,yÞ ¼vðCcðx,yÞÞ � wðP1ðxÞÞ þ vðCcðx,yÞÞ � wð1 –P1ðxÞÞ
¼vðCcðx,yÞ þ SðxÞÞ � wðP1ðxÞÞ þ vðCcðx,yÞÞ � wð1 –P1ðxÞÞ

¼

ðCm –C0ðx,yÞ – SðxÞÞα � wþðP1ðxÞ þ Cm –C0ðx,yÞÞα � wþð1 –P1ðxÞÞ, Cm³C0 þ S

– lðC0ðx,yÞ þ SðxÞ –CmÞβ � w – ðP1ðxÞ þ Cm –C0ðx,yÞÞα � wþð1 –P1ðxÞÞ, C0£Cm<C0 þ S

– lðC0ðx,yÞ þ SðxÞ –CmÞβ � w – ðP1ðxÞ – lðC0ðx,yÞ –CmÞα � w – ð1 –P1ðxÞÞ, Cm<C0

8>>><
>>>:

To conclude, based on CPT, the novel WD problem can
be formulated as
max V ðx,yÞ
s.t.

Xn
i¼1

yi ¼ L (8)

ðCPT –WDÞyi£xiQi, i ¼ 1,2,:::,n (9)

xi 2 f0,1g, i ¼ 1,2,:::,n (10)

yi³0, i ¼ 1,2,:::,n (11)

The buyer’s objective is to maximize the CPT value as
expressed by Eq. (7). Equation (8) ensures that the buyer’s
demand is realized. Equation (9) is the supply capacity of
each supplier. Equation (10) defines the 0–1 decision
variable. Equation (11) ensures a nonnegative allocation.
Note that if g ¼ δ ¼ 1, CPT-WD degenerates to a WD

model based on PT denoted by PT-WD. In contrast, if
g ¼ δ ¼ l ¼ α ¼ β ¼ 1, CPT-WD degenerates to a WD
model based on the traditional EU denoted by EU-WD, in

which the buyer is loss neutral. To show the effectiveness
of CPT-WD which characterizes the buyer’s loss aversion
behavior, we use EU-WD as a benchmarking model for
further analysis.

4 An improved ant colony algorithm with
loaded route strategy

In general, an ant colony algorithm (ACA) is robust and
has been widely applied to solve a number of practical
problems. Since CPT-WD is a variation of the traditional
knapsack problem model, CPT-WD is a NP-hard problem.
Considering the characterization of our issue and model
mentioned in the previous section, to avoid infeasible
solutions, ACA, rather than other heuristics, such as
genetic algorithm, is proposed to solve the problem.
Note that the objective function of the CPT-WD model
is nonlinear, we propose an improved ant colony
algorithm with loaded route strategy (IACA-LRS) to
address the proposedWD. Before illustrating the algorithm
in detail, the parameters of algorithm are introduced
below.

(7)
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4.1 Loaded route strategy

In ACA, a route of an ant corresponds to a solution. For the
proposed WD in this paper, a route shall consist of selected
suppliers. To ensure the feasibility of each route, two
constraints are needed. First, each supplier can be selected
only once, which corresponds to Eq. (10). In addition, the
sum of the capacity provided by selected suppliers should
be equal to the buyer’s demand, which corresponds to Eq.
(8). Hence, a tabu list is adopted to ensure Eq. (10), and
LRS is designed to ensure Eqs. (8)–(9). The detailed
interpretations are discussed below.
Since each supplier can be selected once in each loop, to

avoid returning to already-visited suppliers, a tabu list that
consists of a set of selected suppliers is constructed. Note
that during the route-searching process, once a supplier is
selected, the minimum of the supplier’s maximum capacity
and the currently unsatisfied demand is calculated as the
order amount. The route search ends if the minimum is no
more than the maximum capacity of the selected supplier.
Obviously, adopting LRS ensures that Eqs. (8), (9) and
(11) are satisfied simultaneously. Therefore, we shall see
that the tabu list and LRS together ensure the feasibility of
the obtained route.

4.2 Fitness function

In general, the objective function is adopted as a fitness
function to evaluate the performance of the current
solution.

4.3 Transition strategy

According to the above parameters, a static transition
probability with which ant j chooses supplier i in the ant
colony algorithm with a loaded route strategy (ACA-LRS)
can be expressed as

pji ¼
τai η

b
iX

k 2A

τai η
b
i

(12)

whereas the dynamic transition probability in IACA-LRS
can be expressed as

pji ¼
τai η

b
i χiX

k 2A

τai η
b
i χi

(13)

χi ¼
mk

mk þ gi$ηi=maxη
(14)

where ηi ¼ 1=Ei, Ei ¼ cið1 – piÞ þ ðci þ qi½di – Tm�þ=yiÞpi
denotes the expected unit fee of supplier i, ½x�þ ¼
maxf0, xg, and max η denotes the maximum amount of
pheromone. Based on Eq. (13), we rearrange the
probabilities such that p̂j1³p̂j2³⋯³p̂jn. For a randomly

generated number p 2 ð0,1Þ, if 0£p<p̂j1, then the supplier

with probability p̂jk is selected; otherwise, if
Xk
i¼2

p̂ji – 1£

p<
Xk
i¼2

p̂ji, then the supplier with probability p̂jk is selected.

4.4 Pheromone update rule

After constructing each tour to form solutions for the WD
problem such that the buyer’s requirement can be satisfied
by the selected suppliers, the pheromone levels are updated
based on the following formulas:

τiðtþ 1Þ ¼ �τiðtÞ þ ΔτiðtÞ (15)

ΔτiðtÞ ¼
Xm
j¼1

ΔτjiðtÞ (16)

ΔτjiðtÞ ¼
Q=htj, if supplier   i is selected

0, otherwise

(
(17)

To avoid local maximum and improve the quality of
solutions, the Max-Min pheromone strategy is adopted.
Specifically, the pheromone values are limited to the
interval ½τmin,τmax�. Hence, we have

j: Index of ants, j ¼ 1,2,:::,m �: Pheromone evaporation rate, � 2 ½0,1�
A: Sets of suppliers allowed to be selected τmax: Maximum pheromone trail

pji: Probability of supplier i selected by ant j τmin: Minimum pheromone trail

Q: Total amount of pheromone presented on potential suppliersτi: Pheromone trail of supplier i

ηi: Heuristic information of supplier i t Index of loops

a: Importance parameter of pheromone trail htj : Number of selected suppliers for loop t by ant j

b: Importance parameter of heuristic information f Initial amount of pheromone

k: Number of current iterations NP: Size of population

gi: Number of currently selected suppliers NG: Number of total loops
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τiðt þ 1Þ

¼
τmin, if τiðt þ 1Þ£τmin

�τiðtÞ þ ΔτiðtÞ, if τmin<τiðt þ 1Þ£τmax

τmax, if τiðt þ 1Þ > τmax

8>><
>>:

(18)

4.5 Supply quantity determination

Note that the buyer’s objective is to select multiple
suppliers such that the demand is satisfied and the expected
utility is maximized. In addition, if a supplier is selected,
the corresponding pheromone will increase. Hence, when a
supplier is selected by an ant to form the feasible solution,
the supplier will provide the maximum supply capacity if
the current total supply is less than the demand, or part of
the maximum supply capacity to make sure the total supply
equals to the demand. In such a way, the ant forms a tour
that provides a feasible solution for the buyer.

4.6 Termination rule

The algorithm stops and outputs the best solution after a
constant loop NG.

4.7 Framework of the proposed IACA-LRS

In summary, the framework of the proposed IACA-LRS
can be itemized below.
Step 1: Initialization of the IACA-LRS parameters,

which consist of population size NP, maximum loops NG,
current iterations k, initial pheromone f , and the current
index of ant r.
Step 2: In each loop, to construct its tour to form

solutions, each ant randomly chooses a supplier to start the
algorithm, and then the selected supplier is included in the
tabu list.
Step 3: Each ant chooses the next supplier using Eqs.

(13)–(14), and the tabu list is updated accordingly.
Step 4: Check whether the buyer’s demand L is satisfied.

If not, go to Step 3; otherwise, go to Step 5.
Step 5: Empty the tabu list, and update the currently best

solution.
Step 6: The current ant finishes constructing its tour, and

the next ant begins its tour. Let r ¼ r þ 1.
Step 7: Check whether the number of ants is equal to the

population size NP. If not, go to Step 2; otherwise, go to
Step 8.
Step 8: Update the pheromone levels according to Eqs.

(15)–(18).
Step 9: Let k ¼ k þ 1.
Step 10: Check whether the current loop is equal to the

maximum loop. If not, go to Step 2; otherwise, output the
best solution and stop the process.
Note that if we replace Eq. (13)–(14) to Eq. (12) in Step

2 and Eqs. (15)–(18) to Eqs. (15)–(17) in Step 8, IACA-
LRS becomes ACA-LRS. In addition, to check the
performance of solutions derived by IACA-LRS, the
enumeration method (EM) is used.

5 Numerical experiments

In this section, to evaluate the quality of solutions, three
different examples, i.e., a small-scale example with 10
suppliers, a medium-scale example with 20 suppliers and a
large-scale example with 30 suppliers, are illustrated to
show the effectiveness of the proposed IACA-LRS. In the
following discussion, the worst solution (WS), best
solution (BS), average solution (Mean), standard deviation
(SD), and average time taken by the algorithm (Time) are
adopted to investigate the performance of the proposed
algorithm. Specifically, after deriving optimal parameter
combinations for different examples, we run these two ant
colony algorithms 50 times to obtain WS, BS, Mean, SD
and Time, and show that IACA-LRS performs best. Then,
by fixing Cm and varying Tm or by fixing Tm and varying
Cm, we analyze the impact of expected delivery or
expected procurement cost on the optimal solution. Finally,
we compare the results of different models to show that
CPT can effectively characterize the buyer’s loss aversion
behavior.

5.1 Comparison analysis of different algorithms

For different scale examples, given Cm ¼ 44500, Tm ¼ 10,
α ¼ β ¼ 0:88, and l ¼ 2:25, changing one of the para-
meters of IACA-LRS (or ACA-LRS) with all other
parameters being fixed, we can derive the optimal
combination of the parameters of IACA-LRS (or ACA-
LRS) and the detailed results of the problem using different
algorithms (EM, ACA-LRS or IACA-LRS) as shown in
Table 1.
Table 1 shows that given the optimal combination of the

parameters for different algorithms, IACA-LRS performs
better than ACA-LRS and EM under different scale
problems. Specifically, IACA-LRS can obtain the optimal
solution for the small-scale problem, and can find better
solutions than ACA-LRS in terms of medium- and large-
scale problems. In addition, IACA-LRS can find high-
quality solutions in shorter time compared to the other two
algorithms.

5.2 Analysis of effects of expected delivery

For the small-scale problem, let Cm ¼ 44500, when Tm
varies, the different solutions are shown in Table 2.
From Table 2, we see that when the expected delivery is

small, the optimal objective value is negative, which
means that the current solution cannot satisfy the buyer’s
demand. In such cases, both the unit price and delivery
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penalty impact the optimal solutions, and the delivery time
is more important to the buyer. When the expected delivery
is medium, the importance of the unit price and delivery
penalty becomes blurred. When the expected delivery is
large, the unit price becomes more important to the buyer.
The effects of expected delivery on the optimal solutions
remain the same for medium- and large-scale problems.

5.3 Analysis of effects of expected procurement cost

For the small-scale problem, given Tm ¼ 10, when Cm
varies, the different solutions are shown in Table 3.
From Table 3, we see that when the expected

procurement cost is small, the optimal objective value is
negative. When Cm increases, the optimal objective value
becomes positive, and the buyer prefers suppliers with
small unit price. The effects of the expected procurement
cost on the optimal solutions remain the same for medium-
and large-scale problems.

5.4 Comparison analysis of different models

For different scale examples, the detailed results using
different models are shown in Table 4.

Note that the decision behavior of the buyer may be
different. By assuming that the buyer is perfectly rational,
boundedly rational with loss aversion or boundedly
rational with risky prospects, respectively, we have
constructed three different models, i.e., EU-WD, PT-WD
or CPT-WD, with different objective functions. From
Table 4, we see that the best solutions for different models
are different.
Furthermore, for a small-scale problem, given Tm ¼ 10,

as Cm varies, to show the effectiveness of CPT-WD, the
objective values using different models under IACA-LRS
are shown in Fig. 2.
From Fig. 2, we see that compared with EU-WD, the

CPT-WD can effectively characterize the buyer’s loss-
averse behavior such that the buyer is more sensitive to
losses compared to gains. The results remain the same for
medium- and large-scale problems.

6 Conclusions

Reverse auctions are a favorable procurement tool for
buying organizations to purchase goods and services, and
have become a hot research topic in recent days. To

Table 1 Results obtained with different algorithms under different scales

N a) Alg b) NP NG a b � f Q τmin τmax WS BS Mean SD Time

10 EM - c) - - - - - - - - 80.94 80.94 80.94 - 7092.64

ACA-LRS 70 1000 1.0 0.5 0.6 2.5 13 0.4 3.2 77.61 80.94 78.83 1.19 1.95

IACA-LRS 50 300 0.9 0.5 0.5 2.5 15 0.5 3.8 80.94 80.94 80.94 0 0.42

20 EM - - - - - - - - - - - - - -

ACA-LRS 85 1700 1.5 1.3 0.6 4.2 15 0.5 4.5 142.79 146.25 144.62 3.24 9.65

IACA 70 1500 1.5 1.2 0.7 4.0 17 0.6 5 145.78 149.40 147.19 1.73 6.42

30 EM - - - - - - - - - - - - - -

ACA-LRS 95 2000 1.1 1.2 0.6 4.0 17 0.4 4.5 120.74 131.05 125.66 5.29 26.70

IACA-LRS 80 1500 1.3 1.2 0.5 4.3 17 0.4 5 129.58 131.05 130.24 3.28 20.16

Note: a) “N” denotes the number of suppliers; b) “Alg” denotes different algorithm; c) “-” denotes non-available value.

Table 2 Effects of expected delivery on the optimal solutions

Tm Cm C0 S BS WS Mean SD Time

6 44500 44553.0 3000 – 309.94 – 309.94 – 309.94 0 0.42

7 44500 44514.0 2500 – 259.06 – 259.06 – 259.06 0 0.42

8 44500 44514.0 1900 – 204.06 – 204.06 – 204.06 0 0.42

9 44500 44208.0 1600 – 69.81 – 69.81 – 69.81 0 0.42

10 44500 44282.5 1000 80.94 80.94 80.94 0 0.42

11 44500 44208.0 600 181.44 181.44 181.44 0 0.42

12 44500 44208.0 300 256.81 256.81 256.81 0 0.42

13 44500 44208.0 100 280.33 280.33 280.33 0 0.42

14 44500 44208.0 0 291.5 291.5 291.5 0 0.42

15 44500 44208.0 0 291.5 291.5 291.5 0 0.42
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improve procurement efficiency, buyers also care about
non-price attributes in multiple-object reverse auctions.
Considering the fact that external environment may
change, uncertain attributes such as delivery time are
particularly considered. This paper focuses on two
attributes, i.e., price and delivery time, and aims to

investigate a novel winner determination problem in
which the buyer involves loss-averse behavior. Assuming
each supplier has limited capacity, based on the cumulative
prospect theory, a nonlinear model is constructed.
Specifically, the buyer’s objective is to maximize the
expected utility constraint on the demand and supplier’s
capacity. By setting the parameters in the proposed model,
we can obtain winner determination models based on
prospect theory and expected utility theory, respectively.
To solve the problem, under a loaded route strategy, an
improved ant colony algorithm that consists of a dynamic
transition strategy and a Max-Min pheromone strategy is
proposed. Numerical experiments show the effectiveness
of the proposed algorithm by comparing to the basic ant
colony algorithm with a loaded route strategy. In addition,
we find that the proposed model can effectively character-
ize the loss-averse behavior of the buyer.
Several other interesting issues may be investigated in

the future. First, the buyer may involve other boundedly
rational behavior such as regret, cognitive hierarchy, and
fairness concerns. Incorporating such behaviors into the
traditional winner determination model is important for
practical applications and theoretical studies. Second, the
buyer may care about other uncertain attributes, such as the

Table 3 Effects of expected procurement cost on the optimal solutions

Cm Tm C0 S BS WS Mean SD Time

44000 10 44208.5 1000 – 551.69 – 551.69 – 551.69 0 0.42

44100 10 44208.5 1000 – 359.65 – 359.65 – 359.65 0 0.42

44200 10 44208.5 1000 – 186.74 – 186.74 – 186.74 0 0.42

44300 10 44208.5 1000 – 129.61 – 129.61 – 129.61 0 0.42

44400 10 44208.5 1000 – 33.02 – 33.02 – 33.02 0 0.42

44500 10 44208.5 1000 80.95 80.95 80.95 0 0.42

44600 10 44208.5 1000 194.90 194.90 194.90 0 0.42

44700 10 44208.5 1000 308.86 308.86 308.86 0 0.42

44800 10 44208.5 1000 422.81 422.81 422.81 0 0.42

44900 10 44208.5 600 536.77 536.77 536.77 0 0.42

Table 4 Results obtained with different models under different scales

N a) Model Solutions BS WS Mean SD Time

10 EU-WD (1,125),(2,160),(7,69),(9,55),(10,91) 179.83 179.83 179.83 0 0.42

PT-WD (1,125),(2,160),(3,110),(5,13),(10,92) 50.07 50.07 50.07 0 0.42

CPT-WD (1,125),(2,160),(7,69),(9,55),(10,91) 80.94 80.94 80.94 0 0.42

20 EU-WD (2,120),(4,51),(6,136),(11,64),(12,135),(14,94) 291.71 286.37 288.41 2.14 6.42

PT-WD (2,120),(4,51),(6,136),(11,64),(12,135),(14,94) 76.88 72.37 74.67 1.89 6.41

CPT-WD (2,120),(6,59),(11,64),(12,135),(14,94),(20,128) 149.40 145.78 147.19 1.73 6.42

30 EU-WD (11,140),(19,95),(20,86),(26,190),(30,139) 170.80 162.58 168.44 3.59 20.16

PT-WD (11,140),(19,95),(20,60),(26,190),(30,165) 70.35 65.49 67.23 3.46 20.17

CPT-WD (11,140),(19,95),(20,86),(26,190),(30,139) 131.05 129.58 130.24 3.29 20.16

Note: a) “N” denotes the number of suppliers.

Fig. 2 Comparison analysis of different models under IACA-LRS
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supply disruption, quality risk or capacity uncertainty.
Investigating the winner determination problem in such
settings by assuming that the buyer is loss-averse is
meaningful.
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