Please wait a minute...
 首页  期刊列表 期刊订阅 开放获取 关于我们
English
在线预览  |  当期目录  |  过刊浏览  |  热点文章  |  下载排行
Frontiers of Engineering Management    2014, Vol. 1 Issue (4) : 364-371     https://doi.org/10.15302/J-FEM-2014053
ENGINEERING MANAGEMENT THEORIES AND METHODOLOGIES
An Evaluation Model for the Coordinated Development of a Circular Economy in China and Its Application to Energy-intensive Industries
Ji-liang Zheng1,*(),Chen Zheng2,Pan Chen1,Ching Yuan Luk1
1. Faculty of Management & Economics, Kunming University of Science & Technology, Kunming 650093, China
2. Zhongshan Securities Company, Beijing 100044, China
全文: PDF(268 KB)   HTML
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Energy-intensive industries (EIIs) are fundamental to the industrial development of China and are also the key industries of a circular economic infrastructure. It is worth paying attention to the coordinated development of a circular economy using EIIs due to the present interrelationship among EIIs. It is related to the optimization and comprehensive performance improvement of a circular economy. Based on the perspective of order parameter, this study uses economic and environmental subsystems to establish an evaluation model that examines the coordinated development of a circular economy within six main EIIs and an EII cluster from 2006 to 2011 in China. The result shows that the level of coordinated development in a circular economy among six EIIs differs and the level of coordinated development of circular economy among the EII cluster lags behind that of each EII examined. It also shows that the outside coordinated degree of EIIs is lower than the inside coordinated degree of each EII.

Keywords order parameter      coordinated degree evaluation      energy-intensive industry      circular economy     
在线预览日期:    发布日期: 2015-05-07
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Ching Yuan Luk
Ji-liang Zheng
Chen Zheng
Pan Chen
引用本文:   
Ching Yuan Luk,Ji-liang Zheng,Chen Zheng, et al. An Evaluation Model for the Coordinated Development of a Circular Economy in China and Its Application to Energy-intensive Industries[J]. Front. Eng, 2014, 1(4): 364-371.
网址:  
https://journal.hep.com.cn/fem/EN/10.15302/J-FEM-2014053     OR     https://journal.hep.com.cn/fem/EN/Y2014/V1/I4/364
Subsystem State layer Indicator layer
Economic subsystem Development level Total industrial output value accounted for the proportion of gross domestic product (GDP)
Ratio of profit to cost
Development potential Annual growth rate of gross industrial output value
Technology investment accounted for the proportion of industrial output value
Environmental subsystem Resource consumption Reduction rate of water consumption per million yuan of industrial output value
Reduction rate of comprehensive energy consumption per million yuan of industrial output value
Resource reuse Comprehensive utilization rate of industrial solid waste
The recycling rate of industrial water
Waste emission Emission reduction rate of industrial solid waste
Emission reduction rate of industrial water
Emission reduction rate of industrial gas SO2
Tab.1  Evaluation Index Systems for EII CDCE Based on Order Parameters
Fig.1  Evaluation model of EII CDCE.
Objective layer Indicator layer Composite weight (α = β = 0.5)
Metallurgy Chemical Thermal power Building material Petroleum Nonferrous
Economy Total industrial output value accounted for the proportion of GDP 0.08805 0.09377 0.09301 0.08694 0.09557 0.09187
Ratio of profit to cost 0.09386 0.08374 0.08733 0.08422 0.08090 0.09538
Annual growth rate of gross industrial output value 0.08784 0.09016 0.08683 0.08632 0.09468 0.08487
Technology investment accounted for the proportion of industrial output value 0.08790 0.08777 0.09251 0.08941 0.09476 0.09321
Environment Reduction rate of water consumption per million yuan of industrial output value 0.09542 0.08994 0.08712 0.08960 0.08725 0.08959
Reduction rate of comprehensive energy consumption per million yuan of industrial output value 0.08555 0.09002 0.09482 0.09089 0.09008 0.10141
Comprehensive utilization rate of industrial solid waste 0.09648 0.08841 0.08928 0.10193 0.08843 0.08725
The recycling rate of industrial water 0.09159 0.09612 0.08839 0.09531 0.09059 0.08704
Emission reduction rate of industrial solid waste 0.08683 0.09443 0.08480 0.10243 0.09292 0.09879
Emission reduction rate of industrial water 0.09397 0.10032 0.09320 0.09159 0.08477 0.08397
Emission reduction rate of industrial gas SO2 0.09251 0.08532 0.10272 0.08136 0.10004 0.08662
Tab.2  The Weight of Circular Economic Order Parameter Indicators of Six EIIs
Industry Subsystem 2006 2007 2008 2009 2010 2011
Metallurgy Economic subsystem 0.49079 0.57972 0.59662 0.65938 0.68832 0.73109
Environmental subsystem 0.35732 0.49337 0.55395 0.53929 0.64435 0.69279
Chemical Economic subsystem 0.46328 0.50300 0.60551 0.56572 0.65013 0.70331
Environmental subsystem 0.40905 0.50985 0.55711 0.58542 0.65083 0.69252
Thermal power Economic subsystem 0.47125 0.54139 0.57752 0.62108 0.65877 0.67941
Environmental subsystem 0.44421 0.52573 0.59477 0.55943 0.63424 0.65206
Building material Economic subsystem 0.45017 0.56194 0.59381 0.57945 0.69854 0.71704
Environmental subsystem 0.44214 0.50769 0.55914 0.54039 0.59814 0.67522
Petroleum Economic subsystem 0.48850 0.54660 0.62175 0.59616 0.68811 0.72987
Environmental subsystem 0.43134 0.50714 0.56323 0.56306 0.60687 0.66807
Nonferrous Economic subsystem 0.46657 0.52948 0.63798 0.56797 0.67573 0.69951
Environmental subsystem 0.43679 0.49160 0.52480 0.56383 0.66122 0.67477
Tab.3  The Order Degree of Each EII Subsystem in 2006—2011
Industry 2006—2007 2007—2008 2008—2009 2009—2010 2010—2011
Metallurgy 0.47432 0.54996 0.59208 0.69611 0.75879
Chemical 0.37486 0.53878 0.52802 0.65470 0.72354
Thermal power 0.38944 0.50679 0.51483 0.61445 0.64499
Building material 0.42108 0.51052 0.47699 0.63589 0.70707
Petroleum 0.36592 0.51491 0.48926 0.61249 0.69144
Nonferrous 0.34312 0.50933 0.47795 0.65847 0.68623
Tab.4  The Inside Coordinated Degree Change of the Six EIIs in 2006—2011
Fig.2  The change of the coordinated degree evolution of six EIIs and the EII cluster.
Subsystem 2006 2007 2008 2009 2010 2011
Economic subsystem 0.49835 0.56386 0.61591 0.60643 0.63797 0.71063
Environmental subsystem 0.42824 0.48474 0.52500 0.54887 0.62752 0.65413
Tab.5  The Order Degree of Subsystem of EII in 2006—2011
Year 2006—2007 2007—2008 2008—2009 2009—2010 2010—2011
Coordinated degree 0.34930 0.46295 0.47824 0.58215 0.66195
Tab.6  The Coordinated Degree of Circular Economy System of EIIs in 2006—2011
Fig.3  The change of the order degree of subsystem and the coordinated degree of circular economy system of EIIs in 2006—2011.
1 Anbanandam, R., Banwet, D.K., & Shankar, R. 2011. Evaluation of supply chain collaboration: a case of apparel retail industry in India. International Journal of Productivity and Performance Management, 60(2), 82–98
https://doi.org/10.1108/17410401111101449
2 Bao, J., & Zhu, S. 2007. Study on the circular economy development mode for iron and steel industry in China. Science Technology and Industry, 7(10), 1–4, 12
3 Cai, S., Wang, J., Xu, H., & Yao, M. 2007. The organization and conjunction mechanism that the district business enterprises evolve from enterprises group to industry cluster. Inquiry into Economic Issues, (3), 69–73
4 Chen, Y., & Zhao, L. 2010. On the coordination degree of the energy-environment-economy compound system of Shandong. Journal of Shandong Administration Institute and Shandong Economic Management Personnel Institute, (4), 53–56
5 Christopher, M. 2000. The agile supply chain: competing in volatile markets. Industrial Marketing Management, 29(1), 37–44
https://doi.org/10.1016/S0019-8501(99)00110-8
6 Guo, L., Su, J., & Xu, D. 2005. Study on the evolvement mechanism of industrial ecosystem based on Haken model. China Soft Science, (11), 156–160
7 Jeffrey, H. D. 2000. Collaborative Advantage: Winning through Extended Enterprise Supplier Networks. New York: Oxford University Press
8 Klodt, H. 2000. The evolution mechanism of logistics synergetic system. Birmingham: University of Birmingham
9 Li, Y., & Guo, P. 2012. Comparative analysis on the coordinated degree of regional IUR cooperative innovation system. Journal of Commercial Era, (25), 133–135
10 Sun, B., & Zheng, C. 2009. The order parameter of the industrial cluster innovation system. Statistics and Decision, (6), 140–142
11 Sun, J., Xi, Y., Wang, J., & Fu, Y. 2007. System simulation method for circular economy pattern–case study from coal industry. Engineering Sciences, 9(5), 62–71
12 Tang, Y., & Li, J. 2012. Research on the economic synergistic degree between renewable resources industry and equipment manufacturing industry in industrial city. Economic Geography, 32(4), 90–96
13 Türkay, M., Oru?, C., Fujita, K., & Asakura, T. 2004. Multi-company collaborative supply chain management with economical and environmental considerations. Computers & Chemical Engineering, 28(6/7), 985–992
https://doi.org/10.1016/j.compchemeng.2003.09.005
14 Van Beers, D., Bossilkov, A., Corder, G., & Van Berkel, R. 2007. Industrial symbiosis in the Australian minerals industry: the cases of kwinana and gladstone. Journal of Industrial Ecology, 11(1), 55–72
15 Van Beers, D., Corder, G. D., Bossilkov, A., & Van Berkel, R. 2007. Regional synergies in the Australian minerals industry: case-studies and enabling tools. Minerals Engineering, 20(9), 830–841
16 Van Berkel, R. 2006. Regional resource synergies for sustainable development in heavy industrial areas: an overview of opportunities and experiences. Perth, Australia: Curtin University of Technology
17 Xu, H., Xu, J., & Kang, S. 2003. Collaborative model and empirical analysis on organization system of China state-owned pharmaceutical manufacturing industry. China Technology Forum, (1), 113–117
18 Zhang, J. B. 2012. The path selection of sustainable development of resource based industry cluster. Science and Technology Progress and Policy, 29(19), 51–54
19 Zhang, J. L. 2012. Industry chain model of ecological and low-carbon economy in non-ferrous metal industry. China Nonferrous Metallurgy, 41(2), 79–83
20 Zhang, J. 2012. Research on collaborative development of Guangzhou automobile industry cluster and regional logistics (Master’s degree thesis). Guangzhou: South China University of Technology
21 Zhao, Y. 2011. Research on collaborative development of manufacturing industry and the third party logistics (Master’s degree thesis). Changsha: Central South University
22 Zheng, J., & Chen, W. 2009. On the development of energy-intensive industrial cluster based on circular economy. Science and Technology Management Research, 29(9), 271–273
23 Zheng, J., & Chen, W. 2010. Discuss on the circular economy coordination development of energy intensive industries. Science and Technology Progress and Policy, 27(1), 53–56
24 Zheng, J., Chen, W., & Chen, Z. 2008. Analysis on the circular economy development strategy of energy-intensive industry in Yunnan Province. Science and Technology Management Research, 28(8), 92–94
25 Zheng, J., & Li, J. 2013. The circular economy coordination development mode of energy intensive industries based on building material. 2013 China Engineering Management Forum Proceedings, 35–38
26 Zhong, M., Wu, Y., & Luan, W. 2011. Model of synergy degree between port logistics and urban economy. Journal of Dalian Maritime University, 37(1), 80–82
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 高等教育出版社.
电话: 010-58556848 (技术); 010-58556485 (订阅) E-mail: subscribe@hep.com.cn