Journal home Browse Most Down Articles

Most Down Articles

  • Select all
  • RESEARCH ARTICLE
    Huimei Yu, Xiaoxing Wang, Zhu Shu, Mamoru Fujii, Chunshan Song
    Frontiers of Chemical Science and Engineering, 2018, 12(1): 83-93. https://doi.org/10.1007/s11705-017-1691-6

    A series of Al2O3 and CeO2 modified MgO sorbents was prepared and studied for CO2 sorption at moderate temperatures. The CO2 sorption capacity of MgO was enhanced with the addition of either Al2O3 or CeO2. Over Al2O3-MgO sorbents, the best capacity of 24.6 mg-CO2/g-sorbent was attained at 100 °C, which was 61% higher than that of MgO (15.3 mg-CO2/g-sorbent). The highest capacity of 35.3 mg-CO2/g-sorbent was obtained over the CeO2-MgO sorbents at the optimal temperature of 200 °C. Combining with the characterization results, we conclude that the promotion effect on CO2 sorption with the addition of Al2O3 and CeO2 can be attributed to the increased surface area with reduced MgO crystallite size. Moreover, the addition of CeO2 increased the basicity of MgO phase, resulting in more increase in the CO2 capacity than Al2O3 promoter. Both the Al2O3-MgO and CeO2-MgO sorbents exhibited better cyclic stability than MgO over the course of fifteen CO2 sorption-desorption cycles. Compared to Al2O3, CeO2 is more effective for promoting the CO2 capacity of MgO. To enhance the CO2 capacity of MgO sorbent, increasing the basicity is more effective than the increase in the surface area.

  • RESEARCH ARTICLE
    Yang Zhang, Guowu Zhan, Yibo Song, Yiping Liu, Jiale Huang, Shu-Feng Zhou, Kok Bing Tan, Qingbiao Li
    Frontiers of Chemical Science and Engineering, 2022, 16(12): 1793-1806. https://doi.org/10.1007/s11705-022-2191-x

    Recycling industrial solid waste not only saves resources but also eliminates environmental concerns of toxic threats. Herein, we proposed a new strategy for the utilization of petrochemical-derived carbon black waste, a waste vanadium-bearing resource (V > 30000 ppm (10 −6)). Chemical leaching was employed to extract metallic vanadium from the waste and the leachate containing V was used as an alternative raw material for the fabrication of vanadate nanomaterials. Through the screening of various metal cations, it was found that the contaminated Na+ during the leaching process showed strong competitive coordination with the vanadium ions. However, by adding foreign Ce3+ and Y3+ cations, two rare-earth vanadates, viz., flower-like CeVO4 and spherical YVO4 nanomaterials, were successfully synthesized. Characterization techniques such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, Fourier-transform infrared, and N2 physisorption were applied to analyze the physicochemical properties of the waste-derived nanomaterials. Importantly, we found that rare-earth vanadate catalysts exhibited good activities toward the semi-hydrogenation of α,β-unsaturated aldehydes. The conversion of cinnamaldehyde and cinnamic alcohol selectivity were even higher than those of the common CeVO4 prepared using pure chemicals (67.2% vs. 27.7% and 88.4% vs. 53.5%). Our work provides a valuable new reference for preparing vanadate catalysts by the use of abundant vanadium-bearing waste resources.

  • RESEARCH ARTICLE
    Xiaoyu Wei, Lijie Yang, Haiyan Wang, Zhen Chen, Yiyuan Xu, Yue Weng, Mingfeng Cao, Qingbiao Li, Ning He
    Frontiers of Chemical Science and Engineering, 2022, 16(12): 1751-1760. https://doi.org/10.1007/s11705-022-2211-x

    Poly-γ-glutamic acid is an extracellular polymeric substance with various applications owing to its valuable properties of biodegradability, flocculating activity, water solubility, and nontoxicity. However, the ability of natural strains to produce poly-γ-glutamic acid is low. Atmospheric and room temperature plasma was applied in this study to conduct mutation breeding of Bacillus licheniformis CGMCC 2876, and a mutant strain M32 with an 11% increase in poly-γ-glutamic acid was obtained. Genome resequencing analysis identified 7 nonsynonymous mutations of ppsC encoding lipopeptide synthetase associated with poly-γ-glutamic acid metabolic pathways. From molecular docking, more binding sites and higher binding energy were speculated between the mutated plipastatin synthase subunit C and glutamate, which might contribute to the higher poly-γ-glutamic acid production. Moreover, the metabolic mechanism analysis revealed that the upregulated amino acids of M32 provided substrates for glutamate and promoted the conversion between L- and D-glutamate acids. In addition, the glycolytic pathway is enhanced, leading to a better capacity for using glucose. The maximum poly-γ-glutamic acid yield of 14.08 g·L–1 was finally reached with 30 g·L–1 glutamate.

  • Research articles
    Xiaohong LI, Wenying LI,
    Frontiers of Chemical Science and Engineering, 2010, 4(2): 142-146. https://doi.org/10.1007/s11705-009-0233-2
    TiO2-Al2O3 mixed oxides with different compositions ranging from 40wt-% to 95wt-% of TiO2 were prepared by sol-gel method and impregnated with different amounts of VOx. Supports and catalysts were characterized by X-ray diffraction (XRD), physisorption, temperature preprogrammed reduction (H2-TPR), and ammonia temperature programmed desorption (NH3-TPD). TiO2 content in the support had obvious effect on the crystal structure, texture characteristic, acid property, and catalytic activity in dehydrogenation of ethylbenzene (EB) with carbon dioxide. The highest catalytic activity was acquired when the TiO2 content was 50 wt-%.
  • RESEARCH ARTICLE
    Jing Wang, Guoyuan Pan, Yu Li, Yang Zhang, Hongwei Shi, Xuanbo Liu, Hao Yu, Muhua Zhao, Yiqun Liu, Changjiang Wu
    Frontiers of Chemical Science and Engineering, 2022, 16(8): 1268-1280. https://doi.org/10.1007/s11705-022-2143-5

    The micro-nano composite structure can endow separation membranes with special surface properties, but it often has the problems of inefficient preparation process and poor structural stability. In this work, a novel atomization-assisted nonsolvent induced phase separation method, which is also highly efficient and very simple, has been developed. By using this method, a bicontinuous porous microfiltration membrane with robust micro-nano composite structure was obtained via commercially available polymers of polyacrylonitrile and polyvinylpyrrolidone. The formation mechanism of the micro-nano composite structure was proposed. The microphase separation of polyacrylonitrile and polyvinylpyrrolidone components during the atomization pretreatment process and the hydrogen bonding between polyacrylonitrile and polyvinylpyrrolidone molecules should have resulted in the nano-protrusions on the membrane skeleton. The membrane exhibits superhydrophilicity in air and superoleophobicity underwater. The membrane can separate both surfactant-free and surfactant-stabilized oil-in-water emulsions with high separation efficiency and permeation flux. With excellent antifouling property and robust microstructure, the membrane can easily be recycled for long-term separation. Furthermore, the scale-up verification from laboratory preparation to continuous production has been achieved. The simple, efficient, cost-effective preparation method and excellent membrane properties indicate the great potential of the developed membranes in practical applications.

  • REVIEW ARTICLE
    Sanaa Hafeez, Tayeba Safdar, Elena Pallari, George Manos, Elsa Aristodemou, Zhien Zhang, S. M. Al-Salem, Achilleas Constantinou
    Frontiers of Chemical Science and Engineering, 2021, 15(4): 720-754. https://doi.org/10.1007/s11705-020-1992-z

    With fossil fuel being the major source of energy, CO2 emission levels need to be reduced to a minimal amount namely from anthropogenic sources. Energy consumption is expected to rise by 48% in the next 30 years, and global warming is becoming an alarming issue which needs to be addressed on a thorough technical basis. Nonetheless, exploring CO2 capture using membrane contactor technology has shown great potential to be applied and utilised by industry to deal with post- and pre-combustion of CO2. A systematic review of the literature has been conducted to analyse and assess CO2 removal using membrane contactors for capturing techniques in industrial processes. The review began with a total of 2650 papers, which were obtained from three major databases, and then were excluded down to a final number of 525 papers following a defined set of criteria. The results showed that the use of hollow fibre membranes have demonstrated popularity, as well as the use of amine solvents for CO2 removal. This current systematic review in CO2 removal and capture is an important milestone in the synthesis of up to date research with the potential to serve as a benchmark databank for further research in similar areas of work. This study provides the first systematic enquiry in the evidence to research further sustainable methods to capture and separate CO2.

  • REVIEW ARTICLE
    Sainab Omar, Yang Yang, Jiawei Wang
    Frontiers of Chemical Science and Engineering, 2021, 15(1): 4-17. https://doi.org/10.1007/s11705-020-1933-x

    This review article summarizes the key published research on the topic of bio-oil upgrading using catalytic and non-catalytic supercritical fluid (SCF) conditions. The precious metal catalysts Pd, Ru and Pt on various supports are frequently chosen for catalytic bio-oil upgrading in SCFs. This is reportedly due to their favourable catalytic activity during the process including hydrotreating, hydrocracking, and esterification, which leads to improvements in liquid yield, heating value, and pH of the upgraded bio-oil. Due to the costs associated with precious metal catalysts, some researchers have opted for non-precious metal catalysts such as acidic HZSM-5 which can promote esterification in supercritical ethanol. On the other hand, SCFs have been effectively used to upgrade crude bio-oil without a catalyst. Supercritical methanol, ethanol, and water are most commonly used and demonstrate catalyst like activities such as facilitating esterification reactions and reducing solid yield by alcoholysis and hydrolysis, respectively.

  • RESEARCH ARTICLE
    Chenxi Xu, Shunli Li, Zhaohui Hou, Liming Yang, Wenbin Fu, Fujia Wang, Yafei Kuang, Haihui Zhou, Liang Chen
    Frontiers of Chemical Science and Engineering, 2023, 17(6): 679-690. https://doi.org/10.1007/s11705-022-2266-8

    The massive conversion of resourceful biomass to carbon nanomaterials not only opens a new avenue to effective and economical disposal of biomass, but provides a possibility to produce highly valued functionalized carbon-based electrodes for energy storage and conversion systems. In this work, biomass is applied to a facile and scalable one-step pyrolysis method to prepare three-dimensional (3D) carbon nanotubes/mesoporous carbon architecture, which uses transition metal inorganic salts and melamine as initial precursors. The role of each employed component is investigated, and the electrochemical performance of the attained product is explored. Each component and precise regulation of their dosage is proven to be the key to successful conversion of biomass to the desired carbon nanomaterials. Owing to the unique 3D architecture and integration of individual merits of carbon nanotubes and mesoporous carbon, the as-synthesized carbon nanotubes/mesoporous carbon hybrid exhibits versatile application toward lithium-ion batteries and Zn-air batteries. Apparently, a significant guidance on effective conversion of biomass to functionalized carbon nanomaterials can be shown by this work.

  • REVIEW ARTICLE
    Ting He, Jipeng Yan, Wenzhe Xiao, Jian Sun
    Frontiers of Chemical Science and Engineering, 2023, 17(7): 798-816. https://doi.org/10.1007/s11705-023-2316-x

    The utilization of sustainable resources provides a path to relieving the problem of dependence on fossil resources. In this context, biomass materials have become a feasible substitute for petroleum-based materials. The development of biomass materials is booming and advanced biomass materials with various functional properties are used in many fields including medicine, electrochemistry, and environmental science. In recent years, ionic liquids have been widely used in biomass pretreatments and processing owing to their “green” characteristics and adjustable physicochemical properties. Thus, the effects of ionic liquids in biomass materials generation require further study. This review summarizes the multiple roles of ionic liquids in promoting the synthesis and application of advanced biomass materials as solvents, structural components, and modifiers. Finally, a prospective approach is proposed for producing additional higher-quality possibilities between ionic liquids and advanced biomass materials.

  • RESEARCH ARTICLE
    Pengcheng Zou, Kai Wang, Guangsheng Luo
    Frontiers of Chemical Science and Engineering, 2022, 16(12): 1818-1825. https://doi.org/10.1007/s11705-022-2182-y

    The deacylation of amides, which is widely employed in the pharmaceutical industry, is not a fast reaction under normal conditions. To intensify this reaction, a high-temperature and high-pressure continuous microreaction technology was developed, whose space-time yield was 49.4 times that of traditional batch reactions. Using the deacylation of acetanilide as a model reaction, the effects of the temperature, pressure, reaction time, molar ratio of reactants, and water composition on acetanilide conversion were carefully studied. Based on the rapid heating and cooling capabilities, the kinetics of acetanilide deacylation at high temperatures were investigated to determine the orders of reactants and activation energy. This microreaction technology was further applied to a variety of other amides to understand the influence of substituents and steric hindrance on the deacylation reaction.

  • RESEARCH ARTICLE
    Jianlin Li, Ti Wang, Pei Liu, Zheng Li
    Frontiers of Chemical Science and Engineering, 2022, 16(2): 198-209. https://doi.org/10.1007/s11705-021-2057-7

    Solvent-based post-combustion capture technologies have great potential for CO2 mitigation in traditional coal-fired power plants. Modelling and simulation provide a low-cost opportunity to evaluate performances and guide flexible operation. Composed by a series of partial differential equations, first-principle post-combustion capture models are computationally expensive, which limits their use in real time process simulation and control. In this study, we propose a first-principle approach to develop the basic structure of a reduced-order model and then the dominant factor is used to fit properties and simplify the chemical and physical process, based on which a universal and hybrid post-combustion capture model is established. Model output at steady state and trend at dynamic state are validated using experimental data obtained from the literature. Then, impacts of liquid-to-gas ratio, reboiler power, desorber pressure, tower height and their combination on the absorption and desorption effects are analyzed. Results indicate that tower height should be designed in conjunction with the flue gas flow, and the gas-liquid ratio can be optimized to reduce the reboiler power under a certain capture target.

  • RESEARCH ARTICLE
    Xinhe Wang, Liuqing Yang, Xiaolin Ji, Yunfei Gao, Fanxing Li, Junshe Zhang, Jinjia Wei
    Frontiers of Chemical Science and Engineering, 2022, 16(12): 1726-1734. https://doi.org/10.1007/s11705-022-2188-5

    Chemical looping reforming of methane is a novel and effective approach to convert methane to syngas, in which oxygen transfer is achieved by a redox material. Although lots of efforts have been made to develop high-performance redox materials, a few studies have focused on the redox kinetics. In this work, the kinetics of SrFeO3−δ–CaO∙MnO nanocomposite reduction by methane was investigated both on a thermo-gravimetric analyzer and in a packed-bed microreactor. During the methane reduction, combustion occurs before the partial oxidation and there exists a transition between them. The weight loss due to combustion increases, but the transition region becomes less inconspicuous as the reduction temperature increased. The weight loss associated with the partial oxidation is much larger than that with combustion. The rate of weight loss related to the partial oxidation is well fitted by the Avrami–Erofeyev equation with n = 3 (A3 model) with an activation energy of 59.8 kJ∙mol‒1. The rate law for the partial oxidation includes a solid conversion term whose expression is given by the A3 model and a methane pressure-dependent term represented by a power law. The partial oxidation is half order with respect to methane pressure. The proposed rate law could well predict the reduction kinetics; thus, it may be used to design and/or analyze a chemical looping reforming reactor.

  • RESEARCH ARTICLE
    Yunpeng Shang, Xiaohong Sun, Zhe Chen, Kunzhou Xiong, Yunmei Zhou, Shu Cai, Chunming Zheng
    Frontiers of Chemical Science and Engineering, 2021, 15(6): 1500-1513. https://doi.org/10.1007/s11705-021-2086-2

    As a hybrid energy storage device of lithium-ion batteries and supercapacitors, lithium-ion capacitors have the potential to meet the demanding needs of energy storage equipment with both high power and energy density. In this work, to solve the obstacle to the application of lithium-ion capacitors, that is, the balancing problem of the electrodes kinetic and capacity, two electrodes are designed and adequately matched. For the anode, we introduced in situ carbon-doped and surface-enriched unsaturated sulfur into the graphene conductive network to prepare transition metal sulfides, which enhances the performance with a faster lithium-ion diffusion and dominant pseudocapacitive energy storage. Therefore, the lithium-ion capacitors anode material delivers a remarkable capacity of 810 mAh∙g–1 after 500 cycles at 1 A∙g–1. On the other hand, the biomass-derived porous carbon as the cathode also displays a superior capacity of 114.2 mAh∙g–1 at 0.1 A∙g–1. Benefitting from the appropriate balance of kinetic and capacity between two electrodes, the lithium-ion capacitors exhibits superior electrochemical performance. The assembled lithium-ion capacitors demonstrate a high energy density of 132.9 Wh∙kg–1 at the power density of 265 W∙kg–1, and 50.0 Wh∙kg–1 even at 26.5 kW∙kg–1. After 10000 cycles at 1 A∙g–1, lithium-ion capacitors still demonstrate the high energy density retention of 81.5%.

  • REVIEW ARTICLE
    Yan Zheng, Dunyun Shi, Zheng Wang
    Frontiers of Chemical Science and Engineering, 2023, 17(12): 1866-1878. https://doi.org/10.1007/s11705-023-2340-x

    Continuous glucose monitoring (CGM) systems play an increasingly vital role in the glycemic control of patients with diabetes mellitus. However, the immune responses triggered by the implantation of poorly biocompatible sensors have a significant impact on the accuracy and lifetime of CGM systems. In this review, research efforts over the past few years to mitigate the immune responses by enhancing the anti-biofouling ability of sensors are summarized. This review divided these works into active immune engaging strategy and passive immune escape strategy based on their respective mechanisms. In each strategy, the various biocompatible layers on the biosensor surface, such as drug-releasing membranes, hydrogels, hydrophilic membranes, anti-biofouling membranes based on zwitterionic polymers, and bio-mimicking membranes, are described in detail. This review, therefore, provides researchers working on implantable biosensors for CGM systems with vital information, which is likely to aid in the research and development of novel CGM systems with profound anti-biofouling properties.

  • RESEARCH ARTICLE
    Yingjie Zhao, Xinyue Wang, Xiahan Sang, Sixing Zheng, Bin Yang, Lecheng Lei, Yang Hou, Zhongjian Li
    Frontiers of Chemical Science and Engineering, 2022, 16(12): 1772-1781. https://doi.org/10.1007/s11705-022-2197-4

    Unlocking of the extremely inert C=O bond during electrochemical CO2 reduction demands subtle regulation on a key “resource”, protons, necessary for intermediate conversion but also readily trapped in water splitting, which is still challenging for developing efficient single-atom catalysts limited by their structural simplicity usually incompetent to handle this task. Incorporation of extra functional units should be viable. Herein, a proton deployment strategy is demonstrated via “atomic and nanostructured iron (A/N-Fe) pairs”, comprising atomically dispersed iron active centers spin-polarized by nanostructured iron carbide ferromagnets, to boost the critical protonation steps. The as-designed catalyst displays a broad window (300 mV) for CO selectivity > 90% (98% maximum), even outperforming numerous cutting-edge M–N–C systems. The well-placed control of proton dynamics by A/N-Fe can promote *COOH/*CO formation and simultaneously suppress H2 evolution, benefiting from the magnetic-proximity-induced exchange splitting (spin polarization) that properly adjusts energy levels of the Fe sites’ d-shells, and further those of the adsorbed intermediates’ antibonding molecular orbitals.

  • RESEARCH ARTICLE
    Xiyuan Bu, Ming Tian, Hongqing Wang, Lin Wang, Liyong Yuan, Weiqun Shi
    Frontiers of Chemical Science and Engineering, 2022, 16(11): 1632-1642. https://doi.org/10.1007/s11705-022-2187-6

    Although metal–organic frameworks offer a new platform for developing versatile sorption materials, yet coordinating the functionality, structure and component of these materials remains a great challenge. It depends on a comprehensive knowledge of a “real sorption mechanism”. Herein, a ternary mechanism for U(VI) uptake in metal–organic frameworks was reported. Analogous MIL-100s (Al, Fe, Cr) were prepared and studied for their ability to sequestrate U(VI) from aqueous solutions. As a result, MIL-100(Al) performed the best among the tested materials, and MIL-100(Cr) performed the worst. The nuclear magnetic resonance technique combined with energy-dispersive X-ray spectroscopy and zeta potential measurement reveal that U(VI) uptake in the three metal–organic frameworks involves different mechanisms. Specifically, hydrated uranyl ions form outer-sphere complexes in the surface of MIL-100s (Al, Fe) by exchanging with hydrogen ions of terminal hydroxyl groups (Al-OH2, Fe-OH2), and/or, hydrated uranyl ions are bound directly to Al(III) center in MIL-100(Al) through a strong inner-sphere coordination. For MIL-100(Cr), however, the U(VI) uptake is attributed to electrostatic attraction. Besides, the sorption mechanism is also pH and ionic strength dependent. The present study suggests that changing metal center of metal–organic frameworks and sorption conditions alters sorption mechanism, which helps to construct effective metal–organic frameworks-based sorbents for water purification.

  • RESEARCH ARTICLE
    Yuemin Lin, Yuanyuan Zhang, Renfeng Nie, Kai Zhou, Yao Ma, Mingjie Liu, Dan Lu, Zongbi Bao, Qiwei Yang, Yiwen Yang, Qilong Ren, Zhiguo Zhang
    Frontiers of Chemical Science and Engineering, 2022, 16(12): 1782-1792. https://doi.org/10.1007/s11705-022-2220-9

    Ultra-dispersed Ni nanoparticles (7.5 nm) on nitrogen-doped carbon nanoneedles (Ni@NCNs) were prepared by simple pyrolysis of Ni-based metal–organic-framework for selective hydrogenation of halogenated nitrobenzenes to corresponding anilines. Two different crystallization methods (stirring and static) were compared and the optimal pyrolysis temperature was explored. Ni@NCNs were systematically characterized by wide analytical techniques. In the hydrogenation of p-chloronitrobenzene, Ni@NCNs-600 (pyrolyzed at 600 °C) exhibited extraordinarily high performance with 77.9 h–1 catalytic productivity and > 99% p-chloroaniline selectivity at full p-chloronitrobenzene conversion under mild conditions (90 °C, 1.5 MPa H2), showing obvious superiority compared with reported Ni-based catalysts. Notably, the reaction smoothly proceeded at room temperature with full conversion and > 99% selectivity. Moreover, Ni@NCNs-600 afforded good tolerance to various nitroarenes substituted by sensitive groups (halogen, nitrile, keto, carboxylic, etc.), and could be easily recycled by magnetic separation and reused for 5 times without deactivation. The adsorption tests showed that the preferential adsorption of –NO2 on the catalyst can restrain the dehalogenation of p-chloronitrobenzene, thus achieving high p-chloroaniline selectivity. While the high activity can be attributed to high Ni dispersion, special morphology, and rich pore structure of the catalyst.

  • RESEARCH ARTICLE
    Shangcong Zhang, Qian Liu, Xinyue Tang, Zhiming Zhou, Tieyan Fan, Yingmin You, Qingcheng Zhang, Shusheng Zhang, Jun Luo, Xijun Liu
    Frontiers of Chemical Science and Engineering, 2023, 17(6): 726-734. https://doi.org/10.1007/s11705-022-2274-8

    Designing advanced and cost-effective electrocatalytic system for nitric oxide (NO) reduction reaction (NORR) is vital for sustainable NH3 production and NO removal, yet it is a challenging task. Herein, it is shown that phosphorus (P)-doped titania (TiO2) nanotubes can be adopted as highly efficient catalyst for NORR. The catalyst demonstrates impressive performance in ionic liquid (IL)-based electrolyte with a remarkable high Faradaic efficiency of 89% and NH3 yield rate of 425 μg·h−1·mgcat.−1, being close to the best-reported results. Noteworthy, the obtained performance metrics are significantly larger than those for N2 reduction reaction. It also shows good durability with negligible activity decay even after 10 cycles. Theoretical simulations reveal that the introduction of P dopants tunes the electronic structure of Ti active sites, thereby enhancing the NO adsorption and facilitating the desorption of *NH3. Moreover, the utilization of IL further suppresses the competitive hydrogen evolution reaction. This study highlights the advantage of the catalyst−electrolyte engineering strategy for producing NH3 at a high efficiency and rate.

  • RESEARCH ARTICLE
    Yixuan Chang, Fanwei Kong, Zihao Zhu, Ziai Wang, Chunxia Chen, Xiaobai Li, Hongwei Ma
    Frontiers of Chemical Science and Engineering, 2023, 17(7): 966-975. https://doi.org/10.1007/s11705-022-2244-1

    The efficient utilization of natural lignin, which is the main by-product of the cellulose industry, is crucial for enhancing its economic value, alleviating the environmental burden, and improving ecological security. By taking advantage of the large sp2 hybrid domain of lignin and introducing amino functional groups, new lignin-derived carbon dots (SPN-CDs) with red fluorescence were successfully synthesized. Compared with green and blue fluorescent materials, red SPN-CDs have desirable anti-interference properties of short-wave background and exhibit superior luminescence stability. The SPN-CDs obtained exhibited sensitive and distinctive visible color with fluorescence-dual responses toward hypochlorite. Considering this feature, a portable, low-cost, and sensitive fluorescence sensing paper with a low limit of detection of 0.249 μmol∙L–1 was fabricated using the SPN-CDs for hypochlorite detection. Furthermore, a new type of visible-light and fluorescence dual-channel information encryption platform was constructed. Low-concentration hypochlorite can be employed as an accessible and efficient information encryption/decryption stimulus, as well as an information “eraser”, facilitating a safe and diversified transmission and convenient decryption of information. This work opens new avenues for high-value-added applications of lignin-based fluorescent materials.

  • RESEARCH ARTICLE
    Huiquan Wu, Erik Read, Maury White, Brittany Chavez, Kurt Brorson, Cyrus Agarabi, Mansoor Khan
    Frontiers of Chemical Science and Engineering, 2015, 9(3): 386-406. https://doi.org/10.1007/s11705-015-1533-3

    Compared to small molecule process analytical technology (PAT) applications, biotechnology product PAT applications have certain unique challenges and opportunities. Understanding process dynamics of bioreactor cell culture process is essential to establish an appropriate process control strategy for biotechnology product PAT applications. Inline spectroscopic techniques for real time monitoring of bioreactor cell culture process have the distinct potential to develop PAT approaches in manufacturing biotechnology drug products. However, the use of inline Fourier transform infrared (FTIR) spectroscopic techniques for bioreactor cell culture process monitoring has not been reported. In this work, real time inline FTIR Spectroscopy was applied to a lab scale bioreactor mAb IgG3 cell culture fluid biomolecular dynamic model. The technical feasibility of using FTIR Spectroscopy for real time tracking and monitoring four key cell culture metabolites (including glucose, glutamine, lactate, and ammonia) and protein yield at increasing levels of complexity (simple binary system, fully formulated media, actual bioreactor cell culture process) was evaluated via a stepwise approach. The FTIR fingerprints of the key metabolites were identified. The multivariate partial least squares (PLS) calibration models were established to correlate the process FTIR spectra with the concentrations of key metabolites and protein yield of in-process samples, either individually for each metabolite and protein or globally for all four metabolites simultaneously. Applying the 2nd derivative pre-processing algorithm to the FTIR spectra helps to reduce the number of PLS latent variables needed significantly and thus simplify the interpretation of the PLS models. The validated PLS models show promise in predicting the concentration profiles of glucose, glutamine, lactate, and ammonia and protein yield over the course of the bioreactor cell culture process. Therefore, this work demonstrated the technical feasibility of real time monitoring of the bioreactor cell culture process via FTIR spectroscopy. Its implications for enabling cell culture PAT were discussed.

  • RESEARCH ARTICLE
    Jianzhong Ma, Lu Wen, Qianqian Fan, Siying Wei, Xueyun Hu, Fan Yang
    Frontiers of Chemical Science and Engineering, 2023, 17(12): 1925-1936. https://doi.org/10.1007/s11705-023-2344-6

    In recent years, limited photocatalysis efficiency and wide band gap have hindered the application of TiO2 in the field of photocatalysis. A leading star in photocatalysis has been revealed as lead-free Cs2AgBiBr6 double halide perovskite nanocrystals, owing to its strong visible light absorption and tunable band gap. In this work, this photocatalytic process was facilitated by a unique TiO2/Cs2AgBiBr6 composite, which was identified as an S-cheme heterojunction. TiO2/Cs2AgBiBr6 composite was investigated for its structure and photocatalytic behavior. The results showed that when the perovskite dosage is 40%, the photocatalytic rate of TiO2 could be boosted to 0.1369 min–1. This paper discusses and proposes the band gap matching, carrier separation, and photocatalytic mechanism of TiO2/Cs2AgBiBr6 composites, which will facilitate the generation of new ideas for improving TiO2’s photocatalytic performance.

  • RESEARCH ARTICLE
    Beibei Wang, Kejiang Qian, Weiping Yang, Wenjing An, Lan-Lan Lou, Shuangxi Liu, Kai Yu
    Frontiers of Chemical Science and Engineering, 2023, 17(11): 1728-1740. https://doi.org/10.1007/s11705-023-2322-z

    A novel Z-scheme ZnFe2O4/BiVO4 heterojunction photocatalyst was successfully synthesized using a convenient solvothermal method and applied in the visible light photocatalytic degradation of ciprofloxacin, which is a typical antibiotic contaminant in wastewater. The heterostructure of as-synthesized catalysts was confirmed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy characterizations. Compared with the single-phase counterparts, ZnFe2O4/BiVO4 demonstrated considerably enhanced photogenerated charge separation efficiencies because of the Z-scheme transfer mechanism of electrons between the composite photocatalysts. Consequently, the 30% ZnFe2O4/BiVO4 catalyst afforded a degradation rate of up to 97% of 20 mg/L ciprofloxacin under 30 min of visible light irradiation with a total organic carbon removal rate of 50%, which is an excellent activity compared with ever reported BiVO4-based catalysts. In addition, the liquid chromatography-mass spectrometry and quantitative structure-activity relationships model analyses demonstrated that the toxicity of the intermediates was lower than that of the parent ciprofloxacin. Moreover, the as-synthesized ZnFe2O4/BiVO4 heterojunctions were quite stable and could be reused at least four times. This study thus provides a promising Z-scheme heterojunction photocatalyst for the efficient removal and detoxication of antibiotic pollutants from wastewater.

  • RESEARCH ARTICLE
    Yu-Chao Wang, Tian-Tian Li, Li Huang, Xiao-Qin Liu, Lin-Bing Sun
    Frontiers of Chemical Science and Engineering, 2022, 16(11): 1623-1631. https://doi.org/10.1007/s11705-022-2202-y

    The number of active components and their dispersion degree are two key factors affecting the performance of adsorbents. Here, we report a simple but efficient strategy for dispersing active components by using a confined space, which is formed by mesoporous silica walls and templates in the as-prepared SBA-15 (AS). Such a confined space does not exist in the conventional support, calcined SBA-15, which does not contain a template. The Cu and Zn precursors were introduced to the confined space in the AS and were converted to CuO and ZnO during calcination, during which the template was also removed. The results show that up to 5 mmol·g–1 of CuO and ZnO can be well dispersed; however, severe aggregation of both oxides takes place in the sample derived from the calcined SBA-15 with the same loading. Confined space in the AS and the strong interactions caused by the abundant hydroxyl groups are responsible for the dispersion of CuO and ZnO. The bimetallic materials were employed for the adsorptive separation of propene and propane. The samples prepared from the as-prepared SBA-15 showed superior performance to their counterparts from the calcined SBA-15 in terms of both adsorption capacity of propene and selectivity for propene/propane.

  • RESEARCH ARTICLE
    Jiannan Zhu, Vladimir Mahalec, Chen Fan, Minglei Yang, Feng Qian
    Frontiers of Chemical Science and Engineering, 2023, 17(6): 759-771. https://doi.org/10.1007/s11705-022-2269-5

    This work introduces a deep-learning network, i.e., multi-input self-organizing-map ResNet (MISR), for modeling refining units comprised of two reactors and a separation train. The model is comprised of self-organizing-map and the neural network parts. The self-organizing-map part maps the input data into multiple two-dimensional planes and sends them to the neural network part. In the neural network part, residual blocks enhance the convergence and accuracy, ensuring that the structure will not be overfitted easily. Development of the MISR model of hydrocracking unit also benefits from the utilization of prior knowledge of the importance of the input variables for predicting properties of the products. The results show that the proposed MISR structure predicts more accurately the product yields and properties than the previously introduced self-organizing-map convolutional neural network model, thus leading to more accurate optimization of the hydrocracker operation. Moreover, the MISR model has smoother error convergence than the previous model. Optimal operating conditions have been determined via multi-round-particle-swarm and differential evolution algorithms. Numerical experiments show that the MISR model is suitable for modeling nonlinear conversion units which are often encountered in refining and petrochemical plants.

  • RESEARCH ARTICLE
    Lihong Chen, Ruxin Deng, Shaoshi Guo, Zihuan Yu, Huiqin Yao, Zhenglong Wu, Keren Shi, Huifeng Li, Shulan Ma
    Frontiers of Chemical Science and Engineering, 2023, 17(1): 102-115. https://doi.org/10.1007/s11705-022-2179-6

    High-performance and stable electrocatalysts are vital for the oxygen evolution reaction (OER). Herein, via a one-pot hydrothermal method, Ni/Fe/V ternary layered double hydroxides (NiFeV-LDH) derived from Ni foam are fabricated to work as highly active and durable electrocatalysts for OER. By changing the feeding ratio of Fe and V salts, the prepared ternary hydroxides were optimized. At an Fe:V ratio of 0.5:0.5, NiFeV-LDH exhibits outstanding OER activity superior to that of the binary hydroxides, requiring overpotentials of 269 and 274 mV at 50 mA·cm–2 in the linear sweep voltammetry and sampled current voltammetry measurements, respectively. Importantly, NiFeV-LDH shows extraordinary long-term stability (≥ 75 h) at an extremely high current density of 200 mA·cm–2. In contrast, the binary hydroxides present quick decay at 200 mA·cm–2 or even reduced current densities (150 and 100 mA·cm–2). The outstanding OER performance of NiFeV-LDH benefits from the synergistic effect of V and Fe while doping the third metal into bimetallic hydroxide layers: (a) Fe plays a crucial role as the active site; (b) electron-withdrawing V stabilizes the high valence state of Fe, thus accelerating the OER process; (c) V further offers great stabilization for the formed intermediate of FeOOH, thus achieving superior durability.

  • RESEARCH ARTICLE
    Mahsa Javidi Nobarzad, Maryam Tahmasebpoor, Mohammad Heidari, Covadonga Pevida
    Frontiers of Chemical Science and Engineering, 2022, 16(10): 1460-1475. https://doi.org/10.1007/s11705-022-2159-x

    Carbon nanotubes-based materials have been identified as promising sorbents for efficient CO2 capture in fluidized beds, suffering from insufficient contact with CO2 for the high-level CO2 capture capacity. This study focuses on promoting the fluidizability of hard-to-fluidize pure and synthesized silica-coated amine-functionalized carbon nanotubes. The novel synthesized sorbent presents a superior sorption capacity of about 25 times higher than pure carbon nanotubes during 5 consecutive adsorption/regeneration cycles. The low-cost fluidizable-SiO2 nanoparticles are used as assistant material to improve the fluidity of carbon nanotubes-based sorbents. Results reveal that a minimum amount of 7.5 and 5 wt% SiO2 nanoparticles are required to achieve an agglomerate particulate fluidization behavior for pure and synthesized carbon nanotubes, respectively. Pure carbon nanotubes + 7.5 wt% SiO2 and synthesized carbon nanotubes + 5 wt% SiO2 indicates an agglomerate particulate fluidization characteristic, including the high-level bed expansion ratio, low minimum fluidization velocity (1.5 and 1.6 cm·s–1), high Richardson−Zakin index (5.2 and 5.3 > 5), and low Π value (83.2 and 84.8 < 100, respectively). Chemical modification of carbon nanotubes causes not only enhanced CO 2 uptake capacity but also decreases the required amount of silica additive to reach a homogeneous fluidization behavior for synthesized carbon nanotubes sorbent.

  • REVIEW ARTICLE
    Jiaxin Li, Chengguang Yue, Wenhao Ji, Bangman Feng, Mei-Yan Wang, Xinbin Ma
    Frontiers of Chemical Science and Engineering, 2023, 17(12): 1879-1894. https://doi.org/10.1007/s11705-023-2354-4

    The atom-economical cycloaddition of CO2 with epoxides to synthesize cyclic carbonates is a promising route for valuable utilization of CO2. Halogenide such as alkali metal halides and quaternary ammonium salt have been developed as the efficient catalysts. However, the spilled halogen causes equipment corrosion and affects the product purity. To address these concerns, the halogen-free cycloaddition of CO2 with epoxides has always been desired. In this review, we systematically discussed the halogen-free catalysis for cycloaddition of CO2 with epoxides from the mechanistic insights, aiming to promote the development of efficient halogen-free catalysts. Two types of catalysts, i.e., alternatives of halogen nucleophiles for epoxide activation, and bifunctional catalysts with Lewis acid-base sites for synergistic activation of CO2 and epoxides are summarized and emphasized. Specially, metal oxides as the potential halogen-free catalysts are highlighted due to their flexible acid-base sites for synergistic activation of CO2 and epoxides, facile preparation, and low cost.

  • RESEARCH ARTICLE
    Qiaoyan Zhou, Huan Liu, Yipeng Wang, Kangxin Xiao, Guangyan Yang, Hong Yao
    Frontiers of Chemical Science and Engineering, 2023, 17(7): 942-953. https://doi.org/10.1007/s11705-022-2264-x

    Volatile organic compounds have posed a serious threat to the environment and human health, which require urgent and effective removal. In recent years, the preparation of porous carbon from biomass waste for volatile organic compounds adsorption has attracted increasing attention as a very cost-effective and promising technology. In this study, porous carbon was synthesized from orange peel by urea-assisted hydrothermal carbonization and KOH activation. The role of typical components (cellulose, hemicellulose, and lignin) in pore development and volatile organic compounds adsorption was investigated. Among the three components, hemicellulose was the major contributor to high porosity and abundant micropores in porous carbon. Higher hemicellulose content led to more abundant –COOR, amine-N, and pyrrolic/pyridonic-N in the derived hydrochar, which were favorable for porosity formation during activation. In this case, the toluene adsorption capacity of the porous carbon improved from 382.8 to 485.3 mg·g–1. Unlike hemicellulose, cellulose reduced the >C=O, amine-N, and pyrrolic/pyridonic-N content of the hydrochar, which caused porosity deterioration and worse toluene adsorption performance. Lignin bestowed the hydrochar with slightly increased –COOR, pyrrolic/pyridonic-N, and graphitic-N, and reduced >C=O, resulting in comparatively poor porosity and more abundant micropores. In general, the obtained porous carbon possessed abundant micropores and high specific surface area, with the highest up to 2882 m2·g–1. This study can provide guidance for selecting suitable biomass waste to synthesize porous carbon with better porosity for efficient volatile organic compounds adsorption.

  • RESEARCH ARTICLE
    Kechao Zhao,Zhenhua Li,Li Bian
    Frontiers of Chemical Science and Engineering, 2016, 10(2): 273-280. https://doi.org/10.1007/s11705-016-1563-5

    A series of Mn-promoted 15 wt-% Ni/Al2O3 catalysts were prepared by an incipient wetness impregnation method. The effect of the Mn content on the activity of the Ni/Al2O3 catalysts for CO2 methanation and the co-methanation of CO and CO2 in a fixed-bed reactor was investigated. The catalysts were characterized by N2 physisorption, hydrogen temperature-programmed reduction and desorption, carbon dioxide temperature-programmed desorption, X-ray diffraction and high-resolution transmission electron microscopy. The presence of Mn increased the number of CO2 adsorption sites and inhibited Ni particle agglomeration due to improved Ni dispersion and weakened interactions between the nickel species and the support. The Mn-promoted 15 wt-% Ni/Al2O3 catalysts had improved CO2 methanation activity especially at low temperatures (250 to 400 °C). The Mn content was varied from 0.86% to 2.54% and the best CO2 conversion was achieved with the 1.71Mn-Ni/Al2O3 catalyst. The co-methanation tests on the 1.71Mn-Ni/Al2O3 catalyst indicated that adding Mn markedly enhanced the CO2 methanation activity especially at low temperatures but it had little influence on the CO methanation performance. CO2 methanation was more sensitive to the reaction temperature and the space velocity than the CO methanation in the co-methanation process.

  • RESEARCH ARTICLE
    Weiwei Wang, Xiaoyu Zhang, Min Guo, Jianan Li, Chong Peng
    Frontiers of Chemical Science and Engineering, 2022, 16(6): 950-962. https://doi.org/10.1007/s11705-022-2162-2

    A series of Cu–Ce–Zr catalysts with different Ce contents are applied to the hydrogenation of CO2 to CO/CH3OH products. The Cu–Ce–Zr catalyst with 2 wt% Ce loading shows higher CO selectivity (SCO = 0.0%–87.8%) from 200–300 °C, while the Cu–Ce–Zr catalyst with 8 wt% Ce loading presents higher CO2 conversion ( X C O2 = 5.4%–15.6%) and CH3OH selectivity ( S C H3OH = 97.8%–40.6%). The number of hydroxyl groups and solid solution nature play a significant role in changing the reaction pathway. The solid solution enhances the CO2 adsorption ability. At the CO2 adsorption step, a larger number of hydroxyl groups over the Cu–Ce–Zr catalyst with 8 wt% Ce loading leads to the production of H-containing adsorption species. At the CO2 hydrogenation step, a larger number of hydroxyl groups assists in encouraging the further hydrogenation of intermediate species to CH3OH and improving the hydrogenation rate. Hence, the Cu–Ce–Zr catalyst with 8 wt% Ce loading favors CH3OH selectivity and CO2 activation, while CO is preferred on the Cu–Ce–Zr catalyst with 2 wt% Ce loading, a smaller number of hydroxyl groups and a solid solution nature. Additionally, high-pressure in situ diffuse reflectance infrared Fourier transform spectroscopy shows that CO is produced from formate decomposition and that both monodentate formate and bidentate formate are active intermediate species of CO2 hydrogenation to CH3OH.

  • ZHAO Yongxian, SHAO Huafeng, WANG Bo, YAO Wei, HUANG Baochen
    Frontiers of Chemical Science and Engineering, 2007, 1(3): 304-309. https://doi.org/10.1007/s11705-007-0056-y
    With TiCl4/MgCl2 (Ti) and Al(i-Bu)3 (Al) as catalysts, the thermoplastic copolymer of 1-butene(Bt) and 1-hexene(He) was synthesized successfully. The effects of Bt/He, Ti/(He+Bt), Al/Ti, temperature and reaction time on conversion, catalyst efficiency(CE), intrinsic viscosity([η]) and insoluble content were studied. The copolymer was analyzed with Fourier transform-infrared (FTIR) and nuclear magnetic resonance (1H-NMR). Results showed that the optimal polymerization conditions were: He/Bt = 0.25, temperature 40ºC–50ºC, Al/Ti = 400–500, Ti/(Bt+He) = 3×10-5-4*times;10-5, time 4 h. Intrinsic viscosity was found to increase with increasing Ti/(Bt+He) and decreasing Al/Ti and polymerization temperature. When the molar content of He, Al/Ti and polymerization temperature increased, the insoluble content in CH2Cl2 of copolymers decreased. When Ti/(Bt+He) and reaction time increased, the insoluble content in CH2Cl2 of copolymers also increased. The crystallization and stereoregularity of poly(1-butene) decreased with the addition of He.
  • RESEARCH ARTICLE
    Xiuzhi Tian, Rui Yang, Chuanyin Xiong, Haibo Deng, Yonghao Ni, Xue Jiang
    Frontiers of Chemical Science and Engineering, 2023, 17(7): 853-866. https://doi.org/10.1007/s11705-022-2256-x

    The discharge of large amounts of dye-containing wastewater seriously threats the environment. Adsorbents have been adopted to remove these dyes present in the wastewater. However, the high adsorption capacity, predominant pH-responsibility, and excellent recyclability are three challenges to the development of efficient adsorbents. The poly(acryloxyethyl trimethylammonium chloride)-graft-dialdehyde cellulose nanocrystals were synthesized in our work. Subsequently, the cationic dialdehyde cellulose nanocrystal cross-linked chitosan nanocomposite foam was fabricated via freeze-drying of the hydrogel. Under the optimal ratio of the cationic dialdehyde cellulose nanocrystal/chitosan (w/w) of 12/100, the resultant foam (Foam-12) possesses excellent absorption properties, such as high porosity, high content of active sites, strong acid resistance, and high amorphous region. Then, Foam-12 was applied as an eco-friendly adsorbent to remove acid red 134 (a representative of anionic dyes) from aqueous solutions. The maximum dye adsorption capacity of 1238.1 mg∙g‒1 is achieved under the conditions of 20 mg∙L‒1 adsorbents, 100 mg∙L‒1 dye, pH 3.5, 24 h, and 25 °C. The dominant adsorption mechanism for the anionic dye adsorption is electrostatic attraction, and Foam-12 can effectively adsorb acid red 134 at pH 2.5–5.5 and be desorbed at pH 8. Its easy recovery and good reusability are verified by the repeated acid adsorption–alkaline desorption experiments.

  • RESEARCH ARTICLE
    Ying ZHANG, Shili ZHENG, Yifei ZHANG, Hongbin XU, Yi ZHANG
    Frontiers of Chemical Science and Engineering, 2009, 3(1): 88-92. https://doi.org/10.1007/s11705-009-0133-5

    A novel process of caustic aluminate solution decomposition by alcohol medium was developed by the Institute of Process Engineering, Chinese Academy of Sciences in order to solve the problem of low decomposition ratio in the traditional Bayer seeded hydrolysis process. In this research, effects of additives on the crystallization ratio, secondary particle size and morphology of aluminum hydroxide in the new process were studied to obtain high-quality products. On the basis of primary selection of additives, an orthogonal design L9(34) was used as a chemometric method to investigate the effects of additives. The studied parameters include the reaction style, quantity of additives, caustic soda concentration, as well as the combination manner. The crystallization ratios of sodium aluminate solution and crystal size of aluminum hydroxide, determined by ICP-OES, SEM and MLPSA (Malvern Laser Particle Size Analyzer), were used to evaluate the effects of the additives. The results showed that different combination manners could promote agglomeration or dispersion. An additive composed by Tween 80 and PEG 200 could promote agglomeration, while a spot of PEG species had a relatively strong dispersion effect. However, the additives had little effects on the crystallization ratios. According to the Raman spectra result, the added alcohol medium might serve as a kind of solvent.

  • RESEARCH ARTICLE
    Xiaojing Li, Chunran Zhao, Junfeng Wang, Jiayu Zhang, Ying Wu, Yiming He
    Frontiers of Chemical Science and Engineering, 2023, 17(10): 1412-1422. https://doi.org/10.1007/s11705-023-2312-1

    In this paper, Cu-doped Bi2WO6 was synthesized via a solvothermal method and applied it in photocatalytic N2 immobilization. Characterization results showed the presence of a small amount of metallic Bi in the photocatalyst, indicating that the synthesized photocatalyst is actually Bi/Cu-Bi2WO6 composite. The doped Cu had a valence state of +2 and most likely substituted the position of Bi3+. The introduced Cu did not affect the metallic Bi content, but mainly influenced the energy band structure of Bi2WO6. The band gap was slightly narrowed, the conduction band was elevated, and the work function was reduced. The reduced work function improved the transfer and separation of charge carriers, which mainly caused the increased photoactivity. The optimized NH3 generation rates of Bi/Cu-Bi2WO6 reached 624 and 243 μmol·L–1·g–1·h–1 under simulated solar and visible light, and these values were approximately 2.8 and 5.9 times higher those of Bi/Bi2WO6, respectively. This research provides a method for improving the photocatalytic N2 fixation and may provide more information on the design and preparation of heteroatom-doped semiconductor photocatalysts for N2-to-NH3 conversion.

  • RESEARCH ARTICLE
    Leijing Liu, Hao Zhang, Bo Xiao, Yang Liu, Bin Xu, Chen Wang, Shanpeng Wen, Erjun Zhou, Gang Chen, Chan Im, Wenjing Tian
    Frontiers of Chemical Science and Engineering, 2021, 15(1): 127-137. https://doi.org/10.1007/s11705-020-1936-7

    Effects of a benzotriazole (BTA)-based small molecule, BTA2, as the third component on the charge carrier generation and recombination behavior of poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) organic solar cells (OSCs) were investigated by optical simulation of a transfer matrix model (TMM), photo-induced charge extraction by linearly increasing voltage (photo-CELIV) technique, atomic force microscope (AFM), and the Onsager–Braun model analysis. BTA2 is an A2-A1-D-A1-A2-type non-fullerene small molecule with thiazolidine-2,4-dione, BTA, and indacenodithiophene as the terminal acceptor (A2), bridge acceptor (A1), and central donor (D), respectively. The short-circuit current density of the OSCs with BTA2 can be enhanced significantly owing to a complementary absorption spectrum. The optical simulation of TMM shows that the ternary OSCs exhibit higher internal absorption than the traditional binary OSCs without BTA2, resulting in more photogenerated excitons in the ternary OSCs. The photo-CELIV investigation indicates that the ternary OSCs suffer higher charge trap-limited bimolecular recombination than the binary OSCs. AFM images show that BTA2 aggravates the phase separation between the donor and the acceptor, which is disadvantageous to charge carrier transport. The Onsager-Braun model analysis confirms that despite the charge collection efficiency of the ternary OSCs being lower than that of the binary OSCs, the optimized photon absorption and exciton generation processes of the ternary OSCs achieve an increase in photogenerated current and thus improve power conversion efficiency.

  • RESEARCH ARTICLE
    Huiying Quan, Kejiang Qian, Ying Xuan, Lan-Lan Lou, Kai Yu, Shuangxi Liu
    Frontiers of Chemical Science and Engineering, 2021, 15(6): 1561-1571. https://doi.org/10.1007/s11705-021-2089-z

    It is of broad interest to develop emerging photocatalysts with excellent light-harvesting capacity and high charge carrier separation efficiency for visible light photocatalytic hydrogen evolution reaction. However, achieving satisfying hydrogen evolution efficiency under noble metal-free conditions remains challenging. In this study, we demonstrate the fabrication of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS nanoparticles for hydrogen production under visible light irradiation (λ>420 nm). Synergetic enhancement of photocatalytic activity is achieved by the slow photon effect and improved separation efficiency of photogenerated charge carriers. The obtained composites could afford very high hydrogen production efficiencies up to 19.67 mmol·g−1·h−1, with an apparent quantum efficiency of 35.9% at 420 nm, which is 4.2 and 23.9 times higher than those of pure Zn0.5Cd0.5S (4.67 mmol·g−1·h−1) and CdS (0.82 mmol·g−1·h−1), respectively. In particular, under Pt-free conditions, an attractive hydrogen production rate (3.23 mmol·g−1·h−1) was achieved, providing a low-cost and high-efficiency strategy to produce hydrogen from water splitting. Moreover, the composites showed excellent stability, and no obvious loss in activity was observed after five cycling tests.

  • REVIEW ARTICLE
    Mengyuan Wu, Zhijie Yuan, Yuchao Niu, Yingshuang Meng, Gaohong He, Xiaobin Jiang
    Frontiers of Chemical Science and Engineering, 2022, 16(6): 838-853. https://doi.org/10.1007/s11705-021-2129-8

    Microscale crystallization is at the frontier of chemical engineering, material science, and biochemical research and is affected by many factors. The precise regulation and control of microscale crystal processes is still a major challenge. In the heterogeneous induced nucleation process, the chemical and micro/nanostructural characteristics of the interface play a dominant role. Ideal crystal products can be obtained by modifying the interface characteristics, which has been proven to be a promising strategy. This review illustrates the application of interface properties, including chemical characteristics (hydrophobicity and functional groups) and the morphology of micro/nanostructures (rough structure and cavities, pore shape and pore size, surface porosity, channels), in various microscale crystallization controls and process intensification. Finally, possible future research and development directions are outlined to emphasize the importance of interfacial crystallization control and regulation for crystal engineering.

  • RESEARCH ARTICLE
    Tao Lin, Xiaoxun Ma
    Frontiers of Chemical Science and Engineering, 2022, 16(12): 1807-1817. https://doi.org/10.1007/s11705-022-2243-2

    The Ru/C catalyst prepared by impregnation method was used for hydrogenation of 3,5-dimethylpyridine in a trickle bed reactor. Under the same reduction conditions (300 °C in H2), the catalytic activity of the non-in-situ reduced Ru/C-n catalyst was higher than that of the in-situ reduced Ru/C-y catalyst. Therefore, an in-situ H2 reduction and moderate oxidation method was developed to increase the catalyst activity. Moreover, the influence of oxidation temperature on the developed method was investigated. The catalysts were characterized by Brunauer–Emmett–Teller method, hydrogen temperature programmed reduction H2-TPR, hydrogen temperature-programmed dispersion (H2-TPD), X-ray diffraction, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, O2 chemisorption and oxygen temperature-programmed dispersion (O2-TPD) analyses. The results showed that there existed an optimal Ru/RuOx ratio for the catalyst, and the highest 3,5-dimethylpyridine conversion was obtained for the Ru/C-i1 catalyst prepared by in-situ H2 reduction and moderate oxidation (oxidized at 100 °C). Excessive oxidation (200 °C) resulted in a significant decrease in the Ru/RuOx ratio of the in-situ H2 reduction and moderate oxidized Ru/C-i2 catalyst, the interaction between RuOx species and the support changed, and the hard-to-reduce RuOx species was formed, leading to a significant decrease in catalyst activity. The developed in-situ H2 reduction and moderate oxidation method eliminated the step of the non-in-situ reduction of catalyst outside the trickle bed reactor.

  • RESEARCH ARTICLE
    Tianyi Bao, Yuanyuan Shao, Haiping Zhang, Jesse Zhu
    Frontiers of Chemical Science and Engineering, 2022, 16(6): 985-995. https://doi.org/10.1007/s11705-021-2126-y

    The high contents of nitrogen-containing organic compounds in biocrude obtained from hydrothermal liquefaction of microalgae are one of the most concerned issues on the applications and environment. In the project, Chlorella sp. and Spirulina sp. were selected as raw materials to investigate the influence of different reaction conditions (i.e., reaction temperature, residence time, solid loading rate) on the distribution of nitrogen in the oil phase and aqueous phase. Three main forms of nitrogen-containing organic compounds including nitrogen-heterocyclic compounds, amide, and amine were detected in biocrudes. The contents of nitrogen-heterocyclic compounds decreased with temperature while amide kept increasing. The effect of residence time on the components of nitrogen-containing organic compounds was similar with that of temperature. However, the influence of solid loading rate was insignificant. Moreover, it was also found that the differences of amino acids in the protein components in the two microalgae might affect the nitrogen distribution in products. For example, nitrogen in basic amino acids of Spirulina sp. preferred to go into the aqueous phase comparing with the nitrogen in neutral amino acids of Chlorella sp. In summary, a brief reaction map was proposed to describe the nitrogen pathway during microalgae hydrothermal liquefaction.

  • RESEARCH ARTICLE
    Huaxin Qu, Jie Deng, Bei Wang, Lezi Ouyang, Yong Tang, Kai Yu, Lan-Lan Lou, Shuangxi Liu
    Frontiers of Chemical Science and Engineering, 2021, 15(6): 1514-1523. https://doi.org/10.1007/s11705-021-2092-4

    A base-free catalytic system for the aerobic oxidation of 5-hydroxymethyl-2-furfural was exploited by using Pt nanoparticles immobilized onto a thermoresponsive poly(acrylamide-co-acrylonitrile)-b-poly(N-vinylimidazole) block copolymer, with an upper critical solution temperature of about 45 °C. The Pt nanocatalysts were well-dispersed and highly active for the base-free oxidation of 5-hydroxymethyl-2-furfural by molecular oxygen in water, affording high yields of 2,5-furandicarboxylic acid (up to>99.9%). The imidazole groups in the block copolymer were conducive to the improvement of catalytic performance. Moreover, the catalysts could be easily separated and recovered based on their thermosensitivity by cooling the reaction system below the upper critical solution temperature. Good stability and reusability were observed over these copolymer-immobilized catalysts with no obvious decrease in catalytic activity in the five consecutive cycles.

  • CHENG Yongxi, LI Hongtao, WANG Li, LÜ Shuxiang
    Frontiers of Chemical Science and Engineering, 2008, 2(3): 335-340. https://doi.org/10.1007/s11705-008-0042-z
    The preparation of hydrogen peroxide from anthrahydroquinone by reactive extraction was investigated. The integration process of oxidation of anthrahydroquinone by air and extraction of hydrogen peroxide from the organic phase with water was carried out in a sieve plate column under pressure. The conversion of anthrahydroquinone increased with increasing pressure resulting in an increase of hydrogen peroxide concentration in the aqueous phase. However, no change in extraction efficiency of hydrogen peroxide was observed. A mathematical model for gas-liquid-liquid reactive extraction was established. In the model, the effects of pressure and gas superficial velocity on reaction were considered. With increasing gas superficial velocity, the conversion of anthrahydroquinone increased, and the fraction of hydrogen peroxide extracted reached a plateau with a maximum of 72.94%. However, both the conversion of anthrahydroquinone and the fraction of hydrogen peroxide extracted decreased with increasing organic phase superficial velocity.
  • RESEARCH ARTICLE
    Shangyuan Zhao, Fangjia Wang, Rui Zhou, Peisen Liu, Qizhong Xiong, Weifeng Zhang, Chaochun Zhang, Gang Xu, Xinxin Ye, Hongjian Gao
    Frontiers of Chemical Science and Engineering, 2023, 17(7): 840-852. https://doi.org/10.1007/s11705-022-2253-0

    Herein, a Fe3+-loaded aminated polypropylene fiber has been reported as an efficient phosphate adsorbent. The remarkable phosphate removal ability of the fiber is due to Fe3+ immobilization, and it demonstrates a maximum adsorption capacity of 33.94 mg·P·g–1. Adsorption experiments showed that the fiber is applicable over a wide pH range from 2 to 9. Furthermore, the adsorption kinetics and isotherm data were consistent with the pseudo-second-order and Langmuir adsorption models, respectively. The adsorption equilibrium of the fiber for phosphate was reached within 60 min, indicating an efficient monolayer chemisorption process. Moreover, the adsorbent maintained prominent phosphate removal in the presence of competitive ions such as NO3 and Cl, exhibiting high selectivity. More importantly, the fiber demonstrated excellent reusability (5 times) and low adsorption limit below 0.02 mg·P·g–1. In addition, the phosphate removal efficiency of the fiber can exceed 99% under continuous flow conditions. The adsorption mechanism was studied by X-ray photoelectron spectroscopy, showing that the adsorption of phosphate on the fiber mainly depended on the chemical adsorption of the modified Fe3+. Overall, this study proves that the fiber possesses many advantages for phosphate removal, including high adsorption efficiency, lower treatment limit, good recyclability, and environmental friendliness.

  • RESEARCH ARTICLE
    Dan Cui, Yanqin Li, Keke Pan, Jinbao Liu, Qiang Wang, Minmin Liu, Peng Cao, Jianming Dan, Bin Dai, Feng Yu
    Frontiers of Chemical Science and Engineering, 2023, 17(12): 1973-1985. https://doi.org/10.1007/s11705-023-2364-2

    Ammonia is crucial in industry and agriculture, but its production is hindered by environmental concerns and energy-intensive processes. Hence, developing an efficient and environmentally friendly catalyst is imperative. In this study, we employed a straightforward and efficient impregnation technique to create various Cu-doped catalysts. Notably, the optimized 10Fe-8Cu/TiO2 catalyst exhibited exceptional catalytic performance in converting NO to NH3, achieving an NO conversion rate exceeding 80% and an NH3 selectivity exceeding 98% at atmospheric pressure and 350 °C. We employed in situ diffuse reflectance Fourier transform infrared spectroscopy and conducted density functional theory calculations to investigate the intermediates and subsequent adsorption. Our findings unequivocally demonstrate that Cu doping enhances the rate-limiting hydrogenation step and lowers the energy barrier for NH3 desorption, thereby resulting in improved NO conversion and enhanced selectivity toward ammonia. This study presents a pioneering approach toward energy-efficient ammonia synthesis and recycling of nitrogen sources.

  • RESEARCH ARTICLE
    Yufeng Yang, Lihong Zhang, Tao Song, Yixing Huang, Xianglan Xu, Junwei Xu, Xiuzhong Fang, Qing Wang, Haiming Liu, Xiang Wang
    Frontiers of Chemical Science and Engineering, 2023, 17(11): 1741-1754. https://doi.org/10.1007/s11705-023-2332-x

    Based on monolayer dispersion theory, Co3O4/ZSM-5 catalysts with different loadings have been prepared for selective catalytic reduction of nitrogen oxides by ammonia. Co3O4 can spontaneously disperse on HZSM-5 support with a monolayer dispersion threshold of 0.061 mmol 100 m–2, equaling to a weight percentage around 4.5%. It has been revealed that the quantities of surface active oxygen (O2) and acid sites are crucial for the reaction, which can adsorb and activate NOx and NH3 reactants effectively. Below the monolayer dispersion threshold, Co3O4 is finely dispersed as sub-monolayers or monolayers and in an amorphous state, which is favorable to generate the two kinds of active sites, hence promoting the performance of ammonia selective catalytic reduction of nitrogen oxide. However, the formation of crystalline Co3O4 above the capacity is harmful to the reaction performance. 4% Co3O4/ZSM-5, the catalyst close to the monolayer dispersion capacity, possesses the most abundant active O2 species and acidic sites, thereby demonstrating the best reaction performance in all the samples. It is proposed the optimal Co3O4/ZSM-5 catalyst can be prepared by loading the capacity amount of Co3O4 onto HZSM-5 support.

  • RESEARCH ARTICLE
    Yanli Fang, Hui Wang, Xuyun Wang, Jianwei Ren, Rongfang Wang
    Frontiers of Chemical Science and Engineering, 2023, 17(4): 373-386. https://doi.org/10.1007/s11705-022-2223-6

    The bind-free carbon cloth-supported electrodes hold the promises for high-performance electrochemical capacitors with high specific capacitance and good cyclic stability. Considering the close connection between their performance and the amount of carbon material loaded on the electrodes, in this work, NiCo2O4 nanowires were firstly grown on the substrate of active carbon cloth to provide the necessary surface area in the longitudinal direction. Then, the quinone-rich nitrogen-doped carbon shell structure was formed around NiCo2O4 nanowires, and the obtained composite was used as electrode for electric double layer capacitor. The results showed that the composite electrode displayed an area-specific capacitance of 1794 mF∙cm–2 at the current density of 1 mA∙cm–2. The assembled symmetric electric double layer capacitor achieved a high energy density of 6.55 mW∙h∙cm–3 at a power density of 180 mW∙cm–3. The assembled symmetric capacitor exhibited a capacitance retention of 88.96% after 10000 charge/discharge cycles at the current density of 20 mA∙cm–2. These results indicated the potentials in the preparation of the carbon electrode materials with high energy density and good cycling stability.

  • REVIEW ARTICLE
    Stefano Capizzano, Mirko Frappa, Francesca Macedonio, Enrico Drioli
    Frontiers of Chemical Science and Engineering, 2022, 16(5): 592-613. https://doi.org/10.1007/s11705-021-2105-3

    One of the problems that most afflicts humanity is the lack of clean water. Water stress, which is the pressure on the quantity and quality of water resources, exists in many places throughout the World. Desalination represents a valid solution to the scarcity of fresh water and several technologies are already well applied and successful (such as reverse osmosis), producing about 100 million m3·d−1 of fresh water. Further advances in the field of desalination can be provided by innovative processes such as membrane distillation. The latter is of particular interest for the treatment of waste currents from conventional desalination processes (for example the retentate of reverse osmosis) as it allows to desalt highly concentrated currents as it is not limited by concentration polarization phenomena. New perspectives have enhanced research activities and allowed a deeper understanding of mass and heat transport phenomena, membrane wetting, polarization phenomena and have encouraged the use of materials particularly suitable for membrane distillation applications. This work summarizes recent developments in the field of membrane distillation, studies for module length optimization, commercial membrane modules developed, recent patents and advancement of membrane material.

  • RESEARCH ARTICLE
    Xuanze Li, Wenyan Tian, Caichao Wan, Sulai Liu, Xinyi Liu, Jiahui Su, Huayun Chai, Yiqiang Wu
    Frontiers of Chemical Science and Engineering, 2023, 17(10): 1593-1607. https://doi.org/10.1007/s11705-023-2348-2

    With increasing emphasis on green chemistry, biomass-based materials have attracted increased attention regarding the development of highly efficient functional materials. Herein, a new pore-rich cellulose nanofibril aerogel is utilized as a substrate to integrate highly conductive polypyrrole and active nanoflower-like nickel-cobalt layered double hydroxide through in situ chemical polymerization and electrodeposition. This ternary composite can act as an effective self-supported electrode for the electrocatalytic oxidation of glucose. With the synergistic effect of three heterogeneous components, the electrode achieves outstanding glucose sensing performance, including a high sensitivity (851.4 µA·mmol−1·L·cm−2), a short response time (2.2 s), a wide linear range (two stages: 0.001−8.145 and 8.145−35.500 mmol·L−1), strong immunity to interference, outstanding intraelectrode and interelectrode reproducibility, a favorable toxicity resistance (Cl), and a good long-term stability (maintaining 86.0% of the original value after 30 d). These data are superior to those of some traditional glucose sensors using nonbiomass substrates. When determining the blood glucose level of a human serum, this electrode realizes a high recovery rate of 97.07%–98.89%, validating the potential for high-performance blood glucose sensing.

  • RESEARCH ARTICLE
    Yue Liu, Ji-Wei Wang, Jian Zhang, Ting-Ting Qi, Guang-Wen Chu, Hai-Kui Zou, Bao-Chang Sun
    Frontiers of Chemical Science and Engineering, 2022, 16(10): 1476-1484. https://doi.org/10.1007/s11705-022-2165-z

    Green and efficient NOx removal at low temperature is still desired. NOx removal via non-thermal plasma (NTP) reduction is one of such technique. This work presents the experimental and theoretical study on the NOx removal via NTP reduction (NTPRD) in dielectric barrier discharge reactor (DBD). The effect of O2 molar fraction on NOx species in the outlet of DBD, and effects of NH3/NO molar ratio and discharge power of DBD on NOx removal efficiency are investigated. Results indicate that anaerobic condition and higher discharge power is beneficial to direct removal of NOx, and the NOx removal efficiency can be up to 98.5% under the optimal operating conditions. It is also found that adding NH3 is favorable for the reduction of NOx to N2 at lower discharge power. In addition, the NOx removal mechanism and energy consumption analysis for the NTPRD process are also studied. It is found that the reduced active species ( N, N, N+, N2, N H2+, etc.) generated in the NTPRD process play important roles for the reduction of NOx to N2. Our work paves a novel pathway for NOx removal from anaerobic gas in industrial application.

  • RESEARCH ARTICLE
    Ruiqi Li, Kang Li, Wei Wang, Fan Zhang, Shichao Tian, Zhongqi Ren, Zhiyong Zhou
    Frontiers of Chemical Science and Engineering, 2023, 17(6): 749-758. https://doi.org/10.1007/s11705-022-2261-0

    Since lithium iron phosphate cathode material does not contain high-value metals other than lithium, it is therefore necessary to strike a balance between recovery efficiency and economic benefits in the recycling of waste lithium iron phosphate cathode materials. Here, we describe a selective recovery process that can achieve economically efficient recovery and an acceptable lithium leaching yield. Adjusting the acid concentration and amount of oxidant enables selective recovery of lithium ions. Iron is retained in the leaching residue as iron phosphate, which is easy to recycle. The effects of factors such as acid concentration, acid dosage, amount of oxidant, and reaction temperature on the leaching of lithium and iron are comprehensively explored, and the mechanism of selective leaching is clarified. This process greatly reduces the cost of processing equipment and chemicals. This increases the potential industrial use of this process and enables the green and efficient recycling of waste lithium iron phosphate cathode materials in the future.

  • REVIEW ARTICLE
    Hao Guo, Xianhui Li, Wulin Yang, Zhikan Yao, Ying Mei, Lu Elfa Peng, Zhe Yang, Senlin Shao, Chuyang Y. Tang
    Frontiers of Chemical Science and Engineering, 2022, 16(5): 681-698. https://doi.org/10.1007/s11705-021-2103-5

    In recent decades, nanofiltration (NF) is considered as a promising separation technique to produce drinking water from different types of water source. In this paper, we comprehensively reviewed the progress of NF-based drinking water treatment, through summarizing the development of materials/fabrication and applications of NF membranes in various scenarios including surface water treatment, groundwater treatment, water reuse, brackish water treatment, and point of use applications. We not only summarized the removal of target major pollutants (e.g., hardness, pathogen, and natural organic matter), but also paid attention to the removal of micropollutants of major concern (e.g., disinfection byproducts, per- and polyfluoroalkyl substances, and arsenic). We highlighted that, for different applications, fit-for-purpose design is needed to improve the separation capability for target compounds of NF membranes in addition to their removal of salts. Outlook and perspectives on membrane fouling control, chlorine resistance, integrity, and selectivity are also discussed to provide potential insights for future development of high-efficiency NF membranes for stable and reliable drinking water treatment.