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Abstract In chemical product design, the aim is to
formulate a product with desired performance. Ingredients
and internal product structure are two key drivers of
product performance with direct impact on the mechanical,
electrical, and thermal properties. Thus, there is a keen
interest in elucidating the dependence of product perfor-
mance on ingredients, structure, and the manufacturing
process to form the structure. Design of product structure,
particularly microstructure, is an intrinsically complex
problem that involves different phases of different
physicochemical properties, mass fraction, morphology,
size distribution, and interconnectivity. Recently, compu-
tational methods have emerged that assist systematic
microstructure quantification and prediction. The objective
of this paper is to review these computational methods and
to show how these methods as well as other developments
in product design can work seamlessly in a proposed
performance, ingredients, structure, and manufacturing
process framework for the design of structured chemical
products. It begins with the desired target properties and
key ingredients. This is followed by computation for
microstructure and then selection of processing steps to
realize this microstructure. The framework is illustrated
with the design of nanodielectric and die attach adhesive
products.

Keywords product design, performance, ingredients,
structure, manufacturing process framework, structured
chemical products, microstructure design

1 Introduction

The design and optimization of processes to produce
chemicals has been the primary focus of traditional
chemical engineering. Recently, this focus has been
gradually shifting towards the design of performance-

based products such as cosmetic, personal care, food,
healthcare, pharmaceutical, and electronic products. The
cynosure of these products is their performance character-
istics, not just their physicochemical properties. Chemical
product design emphasizes the identification of consu-
mers’ needs, and conceptualization of viable products to
meet them [1–7]. Many product design methods have been
developed. For example, Wibowo and Ng proposed a
procedure for product-oriented process synthesis that
includes identification of product attributes, selection of
ingredients and microstructure, performance analysis, and
process design [8,9]. They applied the framework to design
creams and pastes, and other chemical-based consumer
products. Perspective on chemical product design was
explored through case studies for different structured
products [10]. Seider et al. discussed product design in a
comprehensive manner considering house of quality,
stage-gate product development process, and so on [11].
A consumer-integrated product design framework was
presented by Smith and Ierapepritou who incorporated
consumer input and economic criteria in product design
and a case study on under eye cream was used to illustrate
the method [12]. Gani and Ng proposed a multidisciplin-
ary, hierarchical framework, which integrates the model-
based computer-aided techniques with knowledge based
and experimental approaches to design the four types of
chemical products—molecular, formulated, functional,
and device product [13].
Chemical product design was viewed as the inversion of

quality, property, and process functions by Bernardo and
Saraiva and the technique was illustrated using case studies
on perfumes, moisturizing lotion, and pharmaceutical
ointment [14]. A comprehensive design framework
presented by Mattei et al. for emulsion-based products
was applied for the design of sunscreen and hand-wash
lotions [15]. The scope of product design has expanded
over time to include marketing, economics, social
responsibility, and finance [16,17]. To unify the disparate
issues in product design, a grand product design (GPD)
model has been proposed [18]. Zhang et al. has applied this
concept to develop an integrated framework for designing
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formulated products [19]. Recently, GPD has been
expanded to include product pricing [20], government
policy [21], and supplier selection [22] as shown in Fig. 1.
The multifaceted relationships of ingredients, structure and
processing to realize the desired product quality based on
consumer preference are surrounded by the dotted line.
The prediction of the macro properties of heterogeneous

media in which the size, geometry, and property of the
phases vary widely has been an active research area in
materials science for a while [23]. Recent developments in
computational material design have provided promising
modelling methods for the design of microstructure with
desired properties [24–27].
With the increasing demand for high-quality chemical

products, both experimental and computational approaches
are needed to accelerate the product conceptualization
process. However, little work has been done on the
conceptual and computational design of structured pro-
ducts. To fill this gap, a systematic design framework—
performance, ingredients, structure, and manufacturing
process (PRISM) is proposed. The desired product
properties and performance are achieved by selecting
appropriate ingredients and identifying suitable product
structures, which in turn need to be fabricated by a
manufacturing process. The PRISM framework is

embedded in the GPD model, which considers all the
other issues related to product design such as sustainability,
pricing, consumer desires, supply chain, corporate social
responsibility, product cost, marketing, etc. Note that the
GPD model is a living model that is expected to expand
over time.
As many consumer-oriented chemical products are

available, it is of utmost importance to define the products
that come under the domain of structured chemical
products. Gani and Ng classify chemical products into
molecular products, formulated products, functional pro-
ducts, and devices as illustrated in Fig. 2 [13]. The function
and performance of most functional products, and to some
extent formulated products, are related to the physico-
chemical properties of constituents (or phases) and the
resultant product structure, which fit into the description of
structured chemical products such as composite, emulsion,
powders (e.g., granulated and compressed), extruded
solids, suspensions, and so on. Therefore, molecular
products and devices are not the focus of this paper.
The paper is organized as follows. The PRISM frame-

work is discussed in Section 2. At the outset, the
physicochemical phenomena of relevance to product
performance are identified (Section 2.1). This is followed
by selection of the ingredients in Section 2.2. Product

Fig. 1 Schematic representation of GPD Model. Red dotted line encircled the target technological area.
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structure is described by product form, macrostructure, and
microstructure (Section 2.3). Analytical models and
computational methods for structural design are reviewed
in Section 2.4 and 2.5, respectively. The processes for
fabricating the desired structures are reviewed in Section
2.6. The PRISM framework has been applied on nanodi-
electrics in Section 3.1 and die attach adhesive (DAA) in
Section 3.2. Concluding remarks are provided in Section 4.

2 The PRISM framework

Figure 3 shows a PRISM indicating that product
performance is dependent on ingredients, structure, and
manufacturing process. Product performance is decided by

consumer preference and/or market requirements. They
tend to be qualitative in nature and are related to the
technical requirements using the house of quality. It is
more than the physicochemical properties of the product.
Both ingredient type and composition in a product should
be considered. Products with two or more phases possess a
structure. The overall physicochemical properties of the
product depend on the properties of the constituents and
the spatial distribution, composition, size, and shape of the
phases in the product. Finally, the manufacturing process is
designed to realize the desired product structure.
Figure 4 shows a workflow diagram for systematically

executing the PRISM framework. It begins with market
survey to identify the consumer preferences. Information
on market needs, market size, competing products, and so

Fig. 2 Classification of consumer-oriented chemical products.

Fig. 3 The PRISM framework.
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on is collected. This is followed by identification of
product attributes and product use conditions, which
account for the fact that the product quality depends on
how it is used. For example, the quality of an ink for a
screen printer cannot be exactly defined until the design
and operating conditions of the printer are fixed. In general,
a product must go through a series of rigorous tests to
validate its performance. If the performance does not meet
the expectations, another product concept will be identi-
fied, and the workflow is repeated. The key elements of the
PRISM framework are discussed below in details.

2.1 Product performance and relevant physicochemical
phenomena

Product performance is often characterized by a single or a
group of parameters. For example, the performance of a
DAA is governed by the physicochemical phenomena—
heat conduction, which can be quantified by its thermal
conductivity, k. However, it may also be necessary to
specify its specific stiffness, E/ρ, where E is elastic
modulus and ρ is density. For many products, decision
making often requires a compromise among multiple
criteria such as product performance and product cost. A
trade-off is usually sought between multiple criteria using
multi-objective optimization (i.e., Pareto optimal solution
using epsilon-constraint method) [28]. Table 1 lists a
number of structural products along with their key
functions, desired performance, relevant physicochemical
phenomena, and types of ingredients.
The relevant governing equations model the overall

product performance based on the identified physicochem-

ical phenomena. At steady state with no generation or
destruction of energy, the divergence of a generic flux F is
zero.

r$F ¼ 0: (1)

The constitutive equation for a gradient-based phenom-
enon relates the flux to a material property P and the
corresponding state variable φ.

F ¼ P$rφ: (2)

Consider the DAA in Table 1. It is a polymer composite
with silver microparticles used for attaching a light
emitting diode (LED) chip to a substrate. The polymer
serves as an adhesive while the silver particles facilitate the
conduction of heat from the chip to the substrate. For
DAA, F represents the heat flux which is related to the
thermal conductivity k and the temperature gradient rT .
Similarly, for nanodielectrics, the electric flux is related to
the relative permittivity and the gradient of the electric
field.
The combination of Eq. (1) and Eq. (2) provides the

governing equation. In accordance with the GPD model
[18], product quality (q) can then be expressed as a
function of its structure (s), material properties (p), and
product use conditions (u), which is mathematically
represented in Fig. 1 as

q←Tq p, s, u
� �

: (3)

The selection of the ingredients and their properties are
discussed next.

Fig. 4 A workflow diagram of computation-based PRISM framework of product design.
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2.2 Ingredients and physicochemical properties

Selection of ingredients for a specific product requires
different considerations. In addition to meeting perfor-
mance requirements, cost is an important factor. Interna-
tional, national, and local regulations regarding the use of
the selected ingredients have to be followed as some
ingredients may be banned due to toxicity and health
concerns. Fabrication requirements such as ease of
machining, corrosion effect on the equipment, etc. should
be considered. Environmental issues include the impact of
the chosen material on waste gas, water, and solids. Other
requirements include availability, recyclability, and sus-
tainability.
The ingredients are divided into two categories, as

shown in Table 1. Key ingredients are the constituents
whose properties are directly related to the primary
function of the product; e.g., metallic filler and polymer
in DAA. Supporting ingredients are the constituents whose
properties are not directly linked to the primary product
function; however, their addition is needed to enhance
product performance, facilitate manufacturing, etc. For
example, ethanol has to be added to aid fillers dispersion in
the DAA.
Ingredient selection often starts with a materials

database, typical compositions for the product, and
selection heuristics. Then, the formulation is fixed by
experimental iteration using a causal table to guide the
process. This traditional approach was systematized and
illustrated using a skin-care cream [16]. Alternatively,
theoretical calculations are used to screen various base-
case formulations, followed by experimental verification.

This approach was adopted by Conte et al. for the
formulation of an insect repellent spray [37,38]. In
practice, both approaches are used in ingredient selection
depending on the availability, suitability, relevance, and
reliability of the theoretical models. It is particularly
difficult to find models for selecting ingredients that
involve the prediction of the five senses— touch, taste,
smell, hearing, and sight although progress is being made
with the advent of machine learning models [39].

2.3 Product structure

Product structure is the spatial distribution of the
constituents and is related to product quality and proces-
sing. Knowledge of the number of phases, their nature,
phase fraction, and geometrical features is essential for
property prediction and structural optimization. To under-
stand product structure, it is convenient to arrange the
structural information in three different scales— product
form, macrostructure, and microstructure, as shown in
Table 2. A brief description is provided below. Note that
this is only one way, among others, to classify the product
structure.
Product form. Product form is what a layman uses to

describe a product. The product can be a solid, a semi-
solid, liquid, or gas, and can be a film, powder, foam, paste,
cream as well as other physical forms. For more science-
oriented consumers, the product can be classified as
composite, emulsion, solution, mixture, and so on.
Macrostructure. Macrostructure refers to the gross

structure of the product, which reveals how the ingredients
are arranged spatially as observed with an unaided eye or

Table 1 Intended functions, desired performance, relevant physicochemical phenomena, and ingredients information of structural products

Product Intended (main) function Desired performance
Relevant physicochem-

ical phenomena

Types of ingredients

Key ingredients Supporting ingredients

DAA [29] Provides heat management Enhanced heat transfer Heat conduction Filler
Polymer matrix

Solvent

Nanodielectrics [30] Resists the flow of electric
charges through a material

Enhanced dielectric
properties

Electrostatics Filler
Polymer matrix

Dispersing agent
Solvent

Mosquito repellent
mat [31]

Stores the repellent solution
and releases it to air when

being heated

Controlled diffusion Mass transfer
(diffusion)

Active ingredient
Solvent

Propellant

Fragrance
Emollients

Sound absorption
foam [32]

Absorbs noise from the
environment

High sound absorption Acoustics absorption Polymer matrix
Foaming agent

Surfactant

Thermal barrier
coating [33]

Protects the metallic component
from heat

High heat resistance Heat conduction/
convection

Coating material
Substrate

–

Solar cell encapsulant
film [34]

Provides electrical insulation
and heat management

Electrical resistance and
enhanced heat transfer

Electrical conduction
Heat conduction

Filler
Polymer matrix

Coupling agent
Solvent

Electromagnetic
interference (EMI)
shield [35]

Adsorbs and reflects
electromagnetic waves

EMI shielding effectiveness Electromagnetics Filler
Polymer matrix

Solvent

Piezoresistive sensor
[36]

Changes electrical resistivity
when compressed or strained

High piezoresistive
sensitivity (gauge factor)

Electrical conduction
Elasticity

Filler
Polymer matrix

Solvent
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using a light microscope (i.e., at£10 � magnification). In
this paper, macrostructure refers to product features of a
length scale> 100 μm. For mixtures, it can be described as
homogeneous or heterogeneous. The latter can be further
described as isotropic or anisotropic. Its phase distribution
can be dispersed, porous, segregated, patterned, etc. The
patterned products can be further classified as honeycomb,
lamellar, layered structure, and so on. Based on phase
distribution, four common types of macrostructure in
structural chemical products are described below, and the
examples are listed in Table 3. Note that a product can be
of different macrostructures. For example, dispersed
structure is more common for EMI shield. However,
more EMI shields are developed with segregated structure

recently because of the low volume fraction of fillers in the
segregated structure [35].
Dispersion is common in multiphase materials such as

composites. The way that fillers dispersed in a composite
affects its material properties such as mechanical strength,
effective thermal conductivity, etc. [40]. A well-dispersed
structure is generally desirable; however, agglomeration
and aggregation are the major problems associated with a
dispersion [41]. A porous structure is characterized in
terms of the size and interconnectivity of the pores. If the
pores are connected, fluid flow in these porous channels is
possible and the product is a bi-continuous structure.
Recently, hierarchical design and synthesis of porous
materials has gained considerable interest [42,43]. Lamel-

Table 2 Different levels of product structure

Product structure Structure representation/categorization Descriptions

Product form Solid Composite, tablet, encapsulate, powder, granules, film

Semi-solid Paste, cream

Liquid Emulsion, liquid foam, suspension, mixture

Gas Aerosol

Macrostructure Composition No. of phases, volume fraction

Phase distribution/arrangement Dispersed, porous, segregated, patterned (honeycomb, lamellar, layered, onion)

Microstructure Phase fraction Local volume fraction

Phase distribution/arrangement Local dispersion (orientation, distance between the inclusions)

Shape of inclusion Sphere, needle, cubic, disk, rod, fiber

Size of inclusion Micro, nano

Interfacial interaction Interfacial layer

Crystallinity Single crystalline, polycrystalline, amorphous

Porosity Pore size

Table 3 Common macrostructures in structural products

Macrostructure Description Examples of products

Dispersed One phase is dispersed in a continuous phase DAA nanodielectrics

Porous Presence of pores within a structure Mosquito repellent mat
Sound absorption foam

Lamellar A structure composed of thin, flat, and interchanging lamellae of different
materials

Thermal barrier coating
Solar cell encapsulant film

Segregated One phase forms a continuous network in the structure EMI shield
Piezoresistive sensor
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lar structure composes of thin, flat, and interchanging
layers (lamellae) of different phases/materials. Structural
parameters such as particle size, lamellar spacing, and the
orientation of the lamellar layers determine the properties
of a lamellar structure [44]. A segregated structure is the
opposite of a dispersed structure. The fillers form a
continuous network even at a low mass fraction [45]. The
percolation threshold can be further lowered using a
double percolation strategy. First, polymer A forms a
continuous path in polymer B. Then, the fillers form a
continuous path in polymer A [46].
Microstructure. In this paper, microstructure refers to

the phase features of a product viewed under a microscope
at> 25� magnification, and with a length scale ranging
from 0.01 to 100 μm. Table 4 summarizes the micro-
structural features having strong impact on product
performance such as phase fraction, shape of inclusion,
size of inclusion, phase distribution, and so on.
Figure 5 schematically illustrates the three levels of

product structure by three examples. The first one is a
nanodielectric, which is a nanoparticle-loaded polymer
composite. The product form is a solid and the macro-
structure is a dispersed system. The key microstructural
features include the amount, shape, size, and size
distribution of the nanoparticles. Another example is a
DAA, which is a polymer-based composite loaded with
filler particles. The product form is a solid layer with a
dispersed macrostructure. The important microstructural
parameters include the loading of the filler particles, the
shape, size, and distribution of the nano- and micron-sized
filler particles. The third example is a piezoresistive sensor
which is a piezoresistive film with a segregated macro-
structure. The key microstructural features include amount,
size, and size distribution of nanotubes as well as the size
of polymer particles.

2.4 Analytical models

A number of analytical models are available for predicting
the structure-property relationship. For a rough estimate,
the linear mixing rule can be used to calculate the effective
property le of a composite:

le ¼ l1ð1 –fÞ þ fl2, (4)

where f is the volume fraction of the dispersed phase, l1
and l2 are the property of the continuous phase and
dispersed phase, respectively. It provides reasonable values
for properties such as density while deviates significantly
for other properties that are strongly dependent on
structural arrangements. Table 5 summarizes basic models
for predicting the effective property of two-phase structural
products possessing various macroscopic structures.
Improvements to these basic models have been proposed
for heat conduction phenomenon that led to 1) models with
empirical parameters to account for certain structural
features [48–50]; 2) combined models in which combina-
tion of two or more basic models are utilized for complex
structures [51,52]; 3) network models that decompose a
complex microstructure into a network formed by a large
number of parallel and series models [53,54].

2.5 Computation-driven framework/methods/techniques

The models described above are intended for analysis; that
is, the product structure is fixed, and the model simply
predicts the effective properties. This section focuses on
synthesis; that is, after selecting the ingredients, the model
determines the ingredient composition and microstructure
to fulfill the desired product performance. Various
mathematical frameworks/techniques for structure

Table 4 Key microstructural features of composite material

Microstructural features Examples of microstructural features parameters Graphical representation

Phase fraction Weight fraction, volume fraction –

Shape of inclusion Aspect ratio, roundedness, rectangularity

Particulate Fibrous

Size of inclusion Equivalent diameter, particle size distribution

Microparticles Nanoparticles

Phase distribution Average nearest center/surface distance between
inclusion (interconnectivity), orientation

Preferred orientation Interconnected

Interfacial interaction Thickness of interfacial layer –

Faheem Mushtaq et al. Computational design of structured chemical products 1039



generation have been proposed and can be divided into two
main groups. The first one is a microstructure character-
ization and reconstruction (MCR) technique that deals with
the structure-property calculation in two steps. It starts by
generating/reproducing the microstructure based on
experimental/simulation data using appropriate computer
algorithm, followed by solving the relevant governing
equations to predict the performance. These methods are
applied when the structural information is not physically
well defined, but can be quantified statistically. In other
words, the MCR technique first captures the microstruc-
tural information (characterization), then generates statis-
tically equivalent microstructures (reconstruction) [47].
The second group is microstructure design optimization,
which solves the microstructure problem and the relevant

transport equations together. Awell-defined microstructure
in terms of structure type and parameters is essential to
start the optimization problem [55]. Some of these methods
are briefly described below, and the first three methods are
MCR technique.

2.5.1 Correlation function (CF)-based reconstruction

CF-based methods reconstruct statistically equivalent
digitized microstructure via various statistical functions
that capture the degree of spatial correlation related to the
morphological features of the microstructure. Basic steps of
CF-based reconstruction are depicted in Fig. 6 [56]. Note
that the physical descriptors-based method to be described
below basically follow the same reconstruction steps.

Fig. 5 Schematic illustration of levels of structures in (a) Nanodielectrics, (b) DAA, (c) piezoresistive sensor.
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First, during image transformation, the contrast adjust-
ment and noise filtration of grey-scale images are
performed before digitization of the image. Volume
fraction-based transformation strategy is commonly
adopted to convert the adjusted greyscale images to the
binary images that maintain the volume fraction consis-
tency [23,56]. The binary image is then quantified via
various statistical CFs. These functions capture the
statistical information through an indicator function IðX Þ

to check the material presence (e.g., phase of interest) at
some randomly chosen point, X , within the design domain.

IðX Þ ¼ 1, X 2 particular  phase=region

0, otherwise

(
: (5)

The indicator function has different role for different
CFs. For example, in two-point CF, S2, it is used to provide
the probability that two randomly chosen points, X1, X2, lie
in phase of interest, i via Eq. (6).

SðiÞ2 ðX1,X2Þ ¼< I ðiÞðX1ÞI ðiÞðX2Þ>: (6)

After selecting the statistical CFs, microstructure
reconstruction (i.e., phase distribution within the micro-
structure domain) is carried out through appropriate
techniques [23]. Reconstruction of a microstructure is
equivalent to identifying a set of CFs fjðrÞ that match the

experimentally/user defined determined CFs f̂ jðrÞ [27].

E ¼
Xm

j¼1

Xl

r¼0
αj f̂ jðrÞ – fjðrÞ
h i2

, (7)

where m is the total number of statistical functions
involved in reconstruction, αj is the weighting factor
used to quantify the function’s importance, while l is the
maximum length of r at which the functions are equated.
The generated microstructure is closer to target if E (refer
as energy) is very small. By using appropriate computa-
tional procedure (e.g., mesh generation to solve discretized

Table 5 Analytical models for predicting the effective properties of

two-phase structural products [47]

Models Expressions a)

Parallel model le ¼ ð1 –fÞl1 þ fl2

Series model
le ¼

1 –f

l1
þ f

l2

� � – 1

Effective medium theory
(EMT) model

le ¼ 1 –fð Þ l1 – le
l1 þ 2le

þ f
l2 – le
l2 þ 2le

Maxwell model le

l1
¼ 1þ 3ðα – 1Þf

ðαþ 2Þ – ðα – 1Þf
Hamilton model le

l1
¼ αþ ðn – 1Þ þ ðn – 1Þðα – 1Þf

αþ ðn – 1Þ þ ð1 – αÞf
Reciprocity model le

l1
¼ 1þ ð ffiffiffi

α
p

– 1Þf
1þ ð ffiffiffiffiffiffiffiffi

1=α
p

– 1Þf

a) α ¼ l2

l1
= property ratio, n = shape factor of the dispersed phase.

Fig. 6 The basic framework of CF-based reconstruction methods.
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version of governing equations), the generated micro-
structures are then used to perform numerical modelling to
predict their effective properties [56,57].
One of the major limitations associated with CFs is its

infinite dimensions and the absence of a physical meaning
in the CFs. Therefore, the relation of CF to sensible
microstructural features is yet to be established. The
statistical characterization step is only applicable to
isotropic microstructures, and has limitation on anisotropic
microstructures. This method is also computationally
expensive for use in iterative microstructure design.
Despite its limitations, the CF-based method is still an
important MCR technique as it facilitates the inverse
design of a microstructure. It has been widely applied in
the microstructure reconstruction of various complex,
heterogeneous, porous, and polycrystalline structures
such as composite [58], cathode materials [59], and
foods [60].

2.5.2 Physical descriptors-based reconstruction

In physical descriptors-based reconstruction methods, the
morphology is characterized using a small set of micro-
structure descriptors similar to the parameters listed in
Table 4, the statistical estimates of these descriptors are
then used to reconstruct statistically equivalent micro-
structure [61–63]. The generic workflow of physical-based
reconstruction follows what is shown in Fig. 6, except that
in the characterization step the physical descriptors are
identified using appropriate software techniques [61]. The
descriptors having a single value assigned to all micro-
structure images are called deterministic descriptors; e.g.,
volume fraction. For a random structure, direct measure-
ment of some descriptors is not feasible.
After determining the physical descriptors, optimiza-

tion-based techniques such as simulated annealing are then
used to determine the location of particle center by
matching dispersion descriptors; i.e., nearest center
distance between clusters/particles, while phase fraction
and geometry descriptors (size and shape of inclusion)
determine the number of cluster/particles. After specifying
particles centers’ locations, reconstruction of the particle
shape profile is carried out by geometry descriptors
(randomly generated value; e.g., exponential distribution
of nanoparticle’s diameter). Lastly, the output geometry in
the form of pixelated image is then discretized by using a
suitable mesh technique to perform property simulation.
Despite having clear physical meaning of the microstruc-
ture descriptors, the use of this method for complex
microstructures with irregular geometries is still a
challenge.

2.5.3 Machine learning (ML)

With advancement in high-throughput computing technol-

ogy in recent years, ML has found numerous applications
in materials design and discovery [64,65]. As a data driven
approach, ML provides comprehensive relationship
between key structural descriptors and properties of
interest. The generic process of ML for microstructure
design is shown in Fig. 7 followed by description of the
basic steps.

Data generation: similar to previous approaches, a
large amount of data is required that can be generated
either from experiments or rigorous mechanistic models
[65]. For example, computer aided tools such as COMSOL
can be used to run various simulation to obtain a structure-
property database that incorporates important structural
parameters [18]. For certain chemical products, the
structure-property database is publicly available (e.g.,
matweb, materials project, etc.) which expedites the design
process of chemical products [65].
Descriptor generation and identification: generate a

set of descriptors to describe the microstructures. Descrip-
tors can be statistical or physical. The input data is the
values of descriptors and output data is properties.
Descriptors can be highly related to each other. Therefore,
it is necessary to pre-process the high-dimensional input
datasets with dimension reduction tools prior to the
construction of ML models.
Model construction and validation: ML model is then

built, mostly using supervised learning (i.e., artificial
neural network, support vector machine, etc.), to correlate
identified descriptors and properties of interest [27]. The
evaluation or validation process is then applied to check
the performance of the model algorithm. For different
problems, different evaluation standards are available.

Fig. 7 Generic workflow of microstructure design using ML.
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However, cross-validation and bootstrapping are the
commonly used evaluation methods for microstructure
design [65].
Microstructure prediction and experimental verifi-

cation: generate-and-test and mathematical optimization
are the common approaches for microstructure prediction
and verification. The former is to generate all possible
microstructure leading to desired properties and then
compare the predicted ones with the experimental values.
The latter is to formulate the design problem as an
optimization problem where properties are maximized or
minimized by optimizing the descriptors. The problem can
be solved using deterministic or stochastic algorithms and
only the optimal solutions are verified [65].
ML techniques are considered fast and flexible in

dealing complex microstructures and have shown good
reconstruction accuracy in many applications such as for
bioinspired composite [66], renewable energy materials
[67], and food materials [68]. However, no explicit
microstructure descriptors or features in the model, and
large amount of required data (unavailable in most material
design cases) are the major issues in ML for microstructure
design.

2.5.4 Microstructure design optimization

Microstructure design optimization, e.g., topology optimi-
zation, is a mathematical framework that provides the
optimal spatial distribution of the target materials within
the design space (representative volume element (RVE)).
First, the RVE is divided into a large number of finite
elements. An optimization problem is solved to distribute
the materials within the RVE such that the objective
function f(x) representing the effective property of a
microstructure is either maximized or minimized subject to
various constraints [23]. A generic microstructure design
optimization problem can be expressed by Eq. (8) [69].

min=max  f ðxÞ

s:t:  gkðxÞ£0,  k ¼ 1,:::,  ng, (8)

xi 2 ½0,1�
where ng is total number of constraints. The design
variable xi is binary to represent whether the material is
present or absent in a particular element i.
A number of approaches such as homogenization, solid

isotropic material with penalization (SIMP), evolutionary
structural optimization, and level set method are available
to solve the microstructure design optimization [70–73].
For example, a smooth penalty function with a penalty
parameter is added to the objective function in the SIMP
method. This helps to enhance the convergence to 0–1
solutions and transform the original problem into a
smoother objective function with fewer local minima [74].

Microstructure design optimization, i.e., topology opti-
mization, can be considered as a multiscale hierarchical
design technique to optimize the product performance and
the distribution of the materials at a micro-level simulta-
neously [75]. The key challenge associated with the
microstructure design optimization is on how to incorpo-
rate the structural parameters in Table 4 in the design
problem. Also, getting stable and rapid convergence with
reduced sensitivity while handling various numerical
instabilities can be challenging [76]. Some progress has
been made recently to handle these challenges [55].
Microstructure design optimization has been widely
applied to design cellular materials [77] and composite
materials [78].

2.6 Manufacturing process design

The fourth element of the PRISM framework is the
manufacturing process. To execute process design, the
process flowsheets as well as the processing techniques
that produce the product with the desired structure are first
identified. Next, equipment type, dimensions, and operat-
ing conditions are specified. An example on polypropy-
lene/aluminum nitride (AlN) conductive polymer
composite (CPC) is illustrated in Table 6 [79]. Two
processing techniques that are able to produce a segregated
structure are identified based on experience. Experiments
were then conducted to identify the optimal flowsheet and
its operating conditions. AlN network was well connected
in the composite fabricated using mechanical grinding, as
the AlN coating forms a continuous path upon hot pressing
of the AlN-coated polymer resin particles. Experimental
data show that, with 10 vol%AlN, the mechanical grinding
approach offered a higher thermal conductivity (0.37
W∙m–1∙K–1) than the composites prepared by melt mixing
(0.30 W∙m–1∙K–1).
The integration of processing technique in microstruc-

ture design optimization is still missing, as the manufacture
of most structural products cannot be processed by
conventional unit operations in which process design and
simulation is well-developed. Progress has been made in
this area by introducing microstructure-sensitive design
[80], in which the optimal processing route can be selected
for a product with the desired performance, given an initial
material design and a desired product structure [24]. More
research effort has to be made along this direction.

3 Examples

In this section, two examples, namely nanodielectrics and
DAA, are used to illustrate how the PRISM framework is
used to design the structured chemical products. MCR
technique is used for the computational design of nanodi-
electrics, whereas the microstructure design optimization is
used to design DAA.
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3.1 Nanodielectrics

The PRISM framework is applied to design a nanodi-
electric product depicted in Fig. 4(a).

3.1.1 Product performance and relevant physicochemical
phenomena

A nanodielectric is a multi-component dielectric nanos-
tructure that leads to the change in dielectric properties,
and is characterized by its relative permittivity and
dielectric loss factor. A typical desired permittivity of
nanodielectrics is around 4 and the dielectric loss factor
should be kept at minimal [81]. Other properties such as
thermal conductivity, mechanical strength, adhesion, and
so on are also important, but they are not considered in this
example.

3.1.2 Ingredients and physicochemical properties

Table 1 shows that the key ingredients in a nanodielectric
are the polymer matrix and filler. The type of filler, its
morphology, loading, etc., affect the dielectric property.
Metal oxides, metal nitride, glass, and minerals are
common fillers used in nanodielectrics [81]. Silica is
selected as the filler in this example as it provides the
desired dielectric performance as well as improved thermal
and mechanical characteristics, whereas epoxy is com-
monly used as the polymer matrix [41,82]. Glycidoxypro-
pyltrimethoxysilane (GPTMS) and ethanol are selected as
the coupling agent and solvent, respectively [83].

3.1.3 Product structure

Figure 4(a) shows that the product form is a solid layer, in
which the fillers are dispersed in a polymer matrix. The

amount, size, and its distribution in the polymer are
important microstructural parameters to be considered
[84,85].

3.1.4 Analytical models

EMT based models such as Maxwell Garnett model can be
used to estimate the volume fraction of the filler particles
such that the resultant permittivity matches with the
desired product performance. This volume fraction can be
used as the initial guess or bound for the computation-
driven method in the next step [86].

3.1.5 Computation-driven framework/methods/techniques

Zhang et al. [62] applied physical descriptors-based
reconstruction method to determine the target properties.
Physical descriptors such as volume fraction, cluster area,
aspect ratio, and nearest center distance are extracted from
a 2-D image of the sample. As the volume fraction of filler
in the polymer matrix is low (0.5%–3%) and with uneven
distribution of aggregates within the design domain, a
decomposition and re-assembly strategy is applied to
preserve the structural information at local positions. The
image is first divided into multiple equal-sized sub-blocks.
The descriptor-based reconstruction method is applied in
each sub-block, which is then re-assembled to get the fully
reconstructed microstructure. Finite element simulations
are then performed to calculate the effective relative
permittivity and the dielectric loss factor. The computa-
tional results show that smaller cluster area and larger
volume fraction provide the desired dielectric perfor-
mance. The nearest center distance has minimal impact on
the target properties as clusters are sparsely distributed in
the matrix.

Table 6 Structure-processing-property relationship in CPC [79]

Product structure Processing routes Property and
resultant structure a)

Macro-structure Microstructural features Key processing techniques Equipment design Operating conditions

Segregated Volume fraction,
size and shape of
inclusion,
interconnectivity

Mechanical grinding,
Hot pressing

Dimensions of
mechanical grinder,
and its blade design

Time and speed of grinding,
time, temperature and

pressure for hot pressing

Thermal conductivity
= 0.37 W∙m–1∙K–1

Melt mixing
Hot pressing

Dimensions of
the mixer,

and its mixing
blade design

Time, temperature and
mechanical power of

mixing
time, temperature and
pressure for pressing

Thermal conductivity
= 0.30 W∙m–1∙K–1

a) Yellow dots represent the distribution of AlN in the polymer network.
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3.1.6 Manufacturing process design

The process used to manufacture the nanodielectrics is
depicted in Fig. 8, and the key process parameters for each
processing techniques are summarized in Table 7 [84,87].
The computational results showed that a smaller cluster
area is desired. Thus, silica nanoparticles are mixed with
ethanol and GPTMS in a sonication bath to modify the
surface of the nanoparticles and to form a stable dispersion
with minimal fillers aggregation. Epoxy resin is then added
to the dispersion, which is then dried to remove the
coupling agent and solvent. Curing agent is then added to
produce the composite, followed by vacuum degassing to
remove air bubbles. Finally, casting and curing are
conducted to obtain the final product.

3.2 Die attach adhesive

The PRISM framework is applied to design the DAA
depicted in Fig. 4(b).

3.2.1 Product performance and relevant physicochemical
phenomena

DAA is a polymer-based composite loaded with filler
particles. The primary purpose of a DAA is to conduct heat
from the LED chip to the heat sink. In addition, it should
provide sufficient adhesion and electrical resistance. To
simplify the simulation later on, only thermal conductivity
is considered as the target property with a minimal value of
3 W∙m–1∙K–1 [29,88].

3.2.2 Ingredients and physicochemical properties

Polymer matrix and the highly conductive filler particles
are the key ingredients, whereas solvent is the supporting
ingredient that assists the dispersion of the filler particles in
the matrix. Based on our experience and the previous
studies [29], silver micro-particles and nano-particles are
selected as the filler particles, whereas epoxy and ethanol

are chosen as the polymer matrix and the solvent,
respectively, in this example.

3.2.3 Product structure

The product form is a solid layer with a dispersed
macrostructure. The silver micro-particles and nano-
particles are distributed in the polymer matrix. The key
microstructural parameters include the loading, shape and
size of the filler particles, and its size distribution in the
polymer matrix.

3.2.4 Analytical models

The parallel and series models in Table 5 determine the
upper and lower bounds of the effective thermal
conductivity, respectively, which are set as the constraints
of the microstructure design optimization in the next step.

3.2.5 Computation-driven framework/methods/techniques

The microstructure design optimization was applied to
design the product microstructure with the desired
performance [28]. A 2-D RVE (length = width = 8 μm)
that discretized into 80 � 80 elements is used in the
simulation. The four corners in an RVE are occupied by the
silver micro-particles, equivalent to 42% volume loading if
they are homogenously distributed. The temperatures at
the top and bottom surfaces of the DAA are set at 403 K
and 402 K, respectively. The microstructure design
optimization is formulated as a mixed-integer nonlinear
programming (MINLP) problem for maximizing the heat
conductivity subject to various constraints including the
conservation equation and the constitution equation, as
well as constraints on the volume fraction of the filler
particles, the size and orientation of the filler particles, and
the minimum separation among filler particles. The design
variable of the optimization problem is whether or not the
filler is present at a specific element in the RVE. Readers
can refer to [28] for the detailed equations of the
optimization problem. As the MINLP problem involves a
large number of binary variables, the widely used SIMP
method is applied and a smooth penalty function is added
to help converging the optimization problem. The
optimization problem was solved using GAMS 24.7 with
the DICOPT solver.
Two simulations were conducted. Figure 9(a) shows the

distribution of the rod-shaped nanoparticles for achieving a
higher thermal conductivity (i.e., 3.65 W∙m–1∙K–1). The
rod-shaped nanoparticles are located closer to the center of
the RVE. If an additional constraint is added such that the
rod-shaped nanoparticles are homogeneously distributed
within the RVE, a lower thermal conductivity at
3.19 W∙m–1∙K–1 is obtained and the distribution of the
rod-shaped nanoparticles is illustrated in Fig. 9(b).

Fig. 8 Process flowsheet for the manufacture of nanodielectrics.
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3.2.6 Manufacturing process design

The process used to manufacture the DAA is depicted in
Fig. 10, and the key process parameters for each
processing techniques are summarized in Table 8 [29].
The silver microparticles and nanoparticles are first mixed
with ethanol and epoxy in a mechanical stirrer, followed by
homogenization and sonication to form a dispersion.
Solvent is then removed in a dryer. Finally, curing agent
is added and the final product is obtained after molding and
curing. Note that the alignment of the rod-shaped
nanoparticles can be achieved during processing by
modifying the surface of the nanoparticles with magnetic
compounds and mixing the nanoparticles and the polymer
matrix under magnetic field [89]. This also illustrates that
product design is an iterative process.

4 Conclusions

Product structure has a significant impact on the
performance of a chemical product. Limited research has
been conducted in the PSE community to systematically
design the product structure of a chemical product. This
review attempts to integrate various aspects related to
product structure and come up with the PRISM frame-
work. Computational methods that can be used to
synthesize the required product structure are discussed
and its limitations highlighted. The PRISM framework
developed in this review points to an important research
area of integrating ingredients selection, product structure,
and manufacturing process design to obtain a chemical
product with the desired performance.

Table 7 Processing techniques, equipment and process parameters for the manufacture of nanodielectrics

Processing techniques Equipment Functions Process parameters

Sonication Ultrasonicator Disperse nanoparticles, surface modification of nanoparticles to
prevent agglomeration

Sonic power, time

Mixing Shear mixer Disperse the silica nanoparticles in epoxy, control particle size Mechanical speed, time

Drying Vacuum oven Remove solvent and coupling agent Temperature, time

Mixing Shear mixer Mix the curing agent with the polymer mixture Mechanical speed, time

Degassing Vacuum desiccator Remove air bubbles and moisture Time

Casting and curing Pre-defined mold oven Form the solid composite Temperature, time

Fig. 9 Optimal DAA microstructure.
Fig. 10 Process flowsheet for the manufacturing of DAA.

Table 8 Processing techniques, equipment and process parameters for the manufacturing of DAA

Processing techniques Equipment Functions Process parameters

Mixing Mechanical stirrer Mix the particles with epoxy Mechanical speed, time

Homogenization Homogenizer Disperse fillers in the polymer matrix Mechanical speed, time

Sonication Ultrasonicator Disperse fillers in the polymer matrix Sonic power, time

Drying Oven Remove solvent Temperature, time

Mixing Mixer Mix the curing agent with the polymer mixture Mechanical speed, time

Molding and curing Pre-defined mold oven Form the solid composite Temperature, time
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