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Abstract We present a one-step route for the preparation
of nickel phosphide/carbon nanotube (Ni2P@CNT) nano-
composites for supercapacitor applications using a facile,
ultrafast (90 s) microwave-based approach. Ni2P nanopar-
ticles could grow uniformly on the surface of CNTs under
the optimized reaction conditions, namely, a feeding ratio
of 30:50:25 for CNT, Ni(NO3)2$6H2O, and red phos-
phorus and a microwave power of 1000 W for 90 s. Our
study demonstrated that the single-step microwave synth-
esis process for creating metal phosphide nanoparticles
was faster and simpler than all the other existing methods.
Electrochemical results showed that the specific capaci-
tance of the optimal Ni2P@CNT-nanocomposite electrode
displayed a high specific capacitance of 854 F$g–1 at 1 A$g–1

and a superior capacitance retention of 84% after 5000
cycles at 10 A$g–1. Finally, an asymmetric supercapacitor
was assembled using the nanocomposite with activated
carbon as one electrode (Ni2P@CNT//AC), which showed
a remarkable energy density of 33.5 W$h$kg–1 and a power
density of 387.5 W$kg–1. This work will pave the way for
the microwave synthesis of other transition metal phos-
phide materials for use in energy storage systems.

Keywords Ni2P, CNT, supercapacitors, nanocomposites,
microwave

1 Introduction

The development of advanced energy storage technology
has become a major research focus because of the
limitations posed by fossil fuel resources [1‒5]. Recently,

supercapacitors have emerged as promising energy storage
devices and have drawn extensive interest because of their
strong cycle stability and high power density. Super-
capacitors can be divided into three categories based on the
energy storage mechanism they employ: electrochemical
double-layer capacitors, pseudo-capacitors, and hybrid
supercapacitors (HSCs). Among them, HSCs are the first
choice for high-power and high-energy electrochemical
energy storage devices [6‒9]. The electrochemical perfor-
mance of HSCs depends to a large extent on the
composition of electrode materials. Therefore, the selec-
tion of the efficient electrode materials is important for the
development of advanced supercapacitor devices [10‒13].
In recent years, transition metal phosphides have

emerged as novel electrode materials for high-performance
asymmetric supercapacitors (ASCs) [14,15]. As N-type
semiconductors, transition metal phosphides have superior
electrical conductivity and low polarization [16]. More-
over, transition metal phosphides form open frameworks
with large channels inside their structures, which makes
them kinetically favorable for fast ion/electron transfer
[17,18]. Among them, Ni2P is considered one of the most
promising electrode materials for supercapacitors because
of its high theoretical capacity (1951.2 C$g–1) [19,20].
Nonetheless, Ni2P has poor rate capability and cycling
performance [21,22]. One effective approach to overcome
this drawback is to hybridize Ni2P with highly conductive
materials, such as carbon-based materials [23]. This idea
has been explored in a large number of studies [19,24]. For
example, Liu et al. reported the synthesis of reduced
graphene oxide/nickel phosphide (rGO/Ni2P) composites
via an in-situ phosphorization process and found that the
rGO/Ni2P composite electrode has the highest specific
capacitance among the materials tested with a capacitance
of 890 F$g–1 at 1 A$g–1 [24]. Hou et al. synthesized carbon-
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incorporated Janus-type Ni2P/Ni hollow spheres (Ni2P/Ni/
C), which showed a very high specific capacitance of
1499 F$g–1 at 1 A$g–1 [20]. We were encouraged by these
promising findings; thus, we predicted that the electro-
chemical performance and stability of Ni2P@CNT nano-
composites will be remarkably improved over that of base
Ni2P.
Current studies on the synthesis of Ni2P/carbon

composites are limited to traditional methods, such as
hydrothermal technology [25], in-situ processing [26],
thermal decomposition synthesis [27], and wet chemical-
based reduction [28]. These methods require a long
synthesis time and harsh synthesis conditions and waste
a lot of manpower and material resources. Compared with
traditional methods of temperature control, microwave
heating converts energy through dipole rotation and ion
conduction inside materials; thus, it has the advantages of
rapidity, selectivity, and uniformity [29]. Given these
advantages, a large number of different electrode materials
are prepared using microwave heating [30,32]. In addition,
the microwave synthesis process for nanocomposites does
not need gas protection, is simple to perform, and requires
no pretreatment, which are all necessary for the industrial
application of the synthesis technique.
Herein, we demonstrated the fabrication of Ni2P@CNT

nanocomposites for HSC applications by a one-step,
ultrafast microwave synthesis (Scheme 1). The uniform
growth of Ni2P nanospheres on the surface of the CNTs
was achieved by transient microwave radiation (e.g., 90 s).
The experimental parameters, including microwave power,

heating time, and precursor mass ratio were optimized, and
the surface chemistry, crystalline structure, and morphol-
ogy of the as-produced nanocomposites were characterized
by Fourier-transform infrared (FTIR) spectrometry, X-ray
diffraction (XRD), X-ray photoelectron spectroscopy
(XPS), energy-dispersive X-ray spectroscopy (EDS),
Brunner-Emmet-Teller measurements (BET), and scan-
ning electron microscopy (SEM) analyses. Moreover, the
electrochemical behaviors of the as-prepared nanocompo-
sites were examined by cyclic voltammetry (CV),
chronopotentiometry (CP), and electrochemical impe-
dance spectroscopy (EIS). An asymmetric supercapacitor
was assembled by employing the Ni2P@CNT nanocom-
posites as the positive electrode and activated carbon (AC)
as the negative electrode to investigate its electrochemical
performance and explore its practical application.

2 Experimental

2.1 Materials

Nickel nitrate hexahydrate (Ni(NO3)2$6H2O) was obtained
from Sinopharm Chemical Reagent Co., Ltd. CNTs were
purchased from Chengdu Organic Chemicals Co., Ltd. Red
phosphorus and acetylene black were obtained from
Aladdin Co. The rest of the raw materials came from
Tianjin Damao Co.

2.2 Synthesis of Ni2P@CNT nanocomposites

CNTs (30 mg), red phosphorus (25 mg), and Ni(NO3)2$6H2O
(50 mg) were mixed evenly to obtain a fine powder. The
resulting powder mixture was transferred to a microwave
oven (Panasonic NN-GF352M, 2450 MHz, 1000 W) for
irradiation. Reaction parameters in terms of the mass ratio
of CNT and precursors, radiation time, and microwave
power were designed to achieve optimal Ni2P@CNT
nanocomposites. All the relevant information is given in
Table 1.

2.3 Material characterization

The morphology of the as-prepared nanocomposites was
characterized by SEM (TSCAN Mira 3 LMH) and high-
resolution transmission electron microscopy (HRTEM,
JEM-2100F). The elementary composition of the nano-
composites was determined by EDS analysis using the
scanning electron microscope. These results were further
supported by FTIR (Bruker Tensor II). The crystalline
structure was characterized by XRD (Rigaku D/max-
2500). The specific surface area of the nanocomposites was
analyzed by BET (ASAP 2020). In addition, XPS (Thermo
Scientific Escalab250Xi) was used to determine the
elemental valence states of the obtained nanocomposite
samples.

Scheme 1 Schematic diagram of microwave initiated Ni2P
nanosphere growth on graphite CNT.

1022 Front. Chem. Sci. Eng. 2021, 15(4): 1021–1032



2.4 Electrochemical measurements

The electrochemical properties of the resultant Ni2P@CNT
nanocomposites were studied in an aqueous 6 mol$L–1

KOH solution using a three-electrode system. Platinum foil
and mercury/mercury oxide (RO501) electrodes were used
as the counter electrode and reference electrode, respec-
tively. The working electrodes were prepared using the
traditional slurry coating process. First, the nanocompo-
sites were mixed with acetylene black and polyvinylidene
fluoride at a weight ratio of 8:1:1. Second, the mixed
material was coated onto a nickel foam surface (1 cm �
1 cm) while maintaining an active material loading mass of
approximately 1 mg. Finally, the nickel foam with slurry
coating was dried at 80 °C for 24 h to remove the solvent.
The electrochemical behaviors of the as-prepared nano-
composite electrodes were measured by CV, CP, and EIS.
The specific capacitance of the Ni2P@CNT nanocompo-
site was calculated from the following equation:

C ¼ ðI � ΔtÞ=ðΔV � mÞ, (1)

where C is the specific capacitance (F·g‒1), I is the current
(A), m is the mass of active material (mg), ΔV is the
potential range (V), and Δt is discharge time (s).
In addition, an ASC system (Ni2P@CNT//AC) was

assembled using the Ni2P@CNT nanocomposites as the
positive electrode and AC (The electrochemical perfor-
mance is shown in Fig. S7, cf. Electronic Supplementary
Material (ESM)) as the negative electrode. The energy and
power densities were calculated from the following
equations:

E ¼ CΔV 2=ð2� 3:6Þ, (2)

P ¼ 3600� E=Δt, (3)

where E is the energy density (W·h·kg‒1) and P is the
power density (kW$kg‒1). ASC was prepared using
6 mol$L–1 KOH as electrolyte and Ni2P@CNT and AC
as positive and negative electrode materials, respectively.
The optimum mass ratio of the positive and negative
electrodes was obtained by the following equation:

mþ=m – ¼ C –ΔV – =CþΔVþ: (4)

The mass ratio of the positive and negative materials was
maintained at 0.45.

3 Results and discussion

3.1 Chemical composition and surface elemental analysis

XRD, XPS, and FTIR characterizations were performed to
determine the chemical composition and elemental state of
the as-prepared Ni2P@CNT nanocomposites. As shown in
Fig. 1(a), compared with the XRD pattern of pure CNT, the
XRD pattern of the Ni2P@CNT nanocomposite has
additional sharp and well-defined diffraction peaks,
which could be assigned to the (111), (201), (210), (300),
and (211) planes of Ni2P (JCPDS No. 65-3544),
demonstrating the generation of Ni2P with a high-quality
crystalline structure. However, as shown in Fig. 1(b), the
diffraction peaks of Ni(NO3)2$6H2O (JCPDS No. 74-
0666) and red phosphorus (JCPDS No. 76-1957) were
still visible and indicate incomplete reactions when the
reaction time was shorter (sample a), the reaction power
was lower (sample d), or when the feeding amount of
Ni(NO3)2$6H2O was too high (sample e). Figures 1(c) and
1(d) show the elemental compositions and valence states of
the obtained Ni2P@CNT nanocomposites. The two major
peaks at 856.3 eV (satellite peak at 862.6 eV) and 874.9 eV
(satellite peak at 880.9 eV) agree well with Ni 2p3/2 and
2p1/2. For the P 2p spectrum, the peaks at 129.8 and
130.7 eV are assigned to the P 2p3/2 and P 2p1/2 states of
metal phosphides, and the peak at 133.8 eV corresponds to
P–O from surface oxidation [33,34]. All the above results
indicated that Ni2P was successfully synthesized using the
one-step microwave approach. As shown in Fig. S6 (cf.
ESM), the vibration spectra of the two samples are very
similar except for the main difference observed in the range
of 800–1500 cm–1. This difference in peaks is attributed to
the stretching vibration of the Ni–P bond, which confirms
the successful synthesis of the Ni2P@CNT nanocompo-
sites.

3.2 Morphology and structure characterization

The surface morphologies of the resultant Ni2P@CNT

Table 1 Operation conditions for synthesizing Ni2P@CNT nanocomposites

Sample C:N:P C a)/mg N b)/mg P c)/mg Microwave power/W Heating time/s

a 30:50:25 30 50 25 1000 60

b 30:50:25 30 50 25 1000 90

c 30:50:25 30 50 25 1000 120

d 30:50:25 30 50 25 800 90

e 30:40:20 30 40 20 1000 90

f 30:60:30 30 60 30 1000 90

a): CNT; b): Ni(NO3)2$6H2O; c): red phosphorus.
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nanocomposites were studied by SEM. As shown in
Fig. 2(b), the Ni2P nanospheres are evenly distributed on
the CNT surface. This favorable morphology would be
conducive to electron transfer; thus, the obtained
Ni2P@CNT nanocomposites have potential as energy
storage materials. The morphology of the other samples
synthesized under different experimental conditions was
also examined by SEM, and the results will be discussed in
the following section. As shown in Fig. 2(g), the EDS
spectrum confirmed that the synthesized Ni2P@CNT
nanocomposite (sample b) was composed of C, Ni, and
P. A small oxygen peak is present in the EDS spectrum.
This peak was probably due to the fact that the surface of
the CNT and Ni2P nanoparticles became slightly oxidized
at high temperatures during synthesis [35,37]. The
percentage content of each element in the XPS and EDS
tests is shown in Table S1 (cf. ESM).
The low-magnification TEM image shown in Fig. S1(a)

(cf. ESM) shows that Ni2P grew on the surface of CNT.
This result was consistent with the SEM results. As shown
in the HRTEM image in Fig. S1(b), the planar spacing of

the well-defined lattice stripes was 0.22 nm, which is
consistent with the spacing of (111) crystals and
corresponds to a hexagonal Ni2P structure. The selected
area electron diffraction pattern is shown in the inset of
Fig. S1(b). The diffraction spots and diffraction rings
corresponded to the nanoparticles of Ni2P and CNTs,
respectively, which is consistent with the HRTEM results.
According to Fig. S2 (cf. ESM) and Table 2, the
synthesized electrode materials have a good specific
surface area, which can provide more active sites for
electrochemical reactions.

3.3 Electrochemical properties after different fabrication
conditions

As shown in Fig. 3 and Fig. S5 (cf. ESM), the
electrochemical properties of the prepared Ni2P@CNT
nanocomposite were optimized by adjusting the reaction
parameters in terms of reaction time, microwave power,
and the mass ratio of CNT to precursors. First, the effect of
reaction time was investigated (samples a–c in Table 1). As

Fig. 1 Chemical composition and surface elemental analysis of CNTs and Ni2P@CNT nanocomposites: (a) XRD patterns of pure CNT
and Ni2P@CNT (sample b); (b) XRD patterns of the samples under different experimental conditions; (c) XPS spectra of Ni (sample b);
(d) XPS spectra of P (sample b).
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Fig. 2 SEM images of the as-prepared Ni2P@CNT nanocomposites under different experimental conditions: (a) sample a; (b) sample b,
(c) sample c; (d) sample d; (e) sample e; (f) sample f; (g) EDS images of sample b.

Table 2 Pore structural parameters and compositions of the samples

Sample SBET/(m
2$g‒1) Smicro/(m

2$g‒1) Vtotal/(cm
3$g‒1) Vmicro/(cm

3$g‒1)

Ni2P@CNT 23.3832 1.1811 0.205434 0.000134
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shown in the SEM images, only a small quantity of Ni2P
nanoparticles was generated within the relatively short
reaction time of 60 s (Fig. 2(a)). Uniform Ni2P
nanoparticles were generated on the CNTs when the
heating time was prolonged to 90 s (Fig. 2(b)). However,
large agglomerates of Ni2P nanoparticles were formed
when the heating time was increased to 120 s as shown in
Fig. 2(d) [38,39]. Correspondingly, sample b showed the
highest specific capacitance, followed by samples c and a
(Fig. 3(a)). The initially increased specific capacitance
should be credited to the high theoretical specific
capacitance of Ni2P. Figure 3(d) clearly illustrates that
the pure CNT exhibited a much smaller specific capaci-
tance than the Ni2P@CNT nanocomposites. The reduced
specific capacitance for sample c was probably due to the
nanoparticle agglomeration, which can impede ion inser-
tion and transport, as well as reduce the surface area [32].
A slightly lower microwave power (800W) was also tested
in an attempt to synthesize the nanocomposite (sample d).
However, Fig. 2(e) reveals that only a small quantity of
Ni2P nanoparticles was generated using this lower

microwave power, because the CNTs could not absorb
enough heat to promote the generation of Ni2P nanopar-
ticles. Therefore, Fig. 3(b) shows a much smaller specific
capacitance for sample d than for sample b. Finally, we
kept the amount of CNTs constant and altered the quantity
of the precursors added (Ni(NO3)2$6H2O and red
phosphorus). The mass ratio of Ni(NO3)2$6H2O to red
phosphorus was kept at 2:1 for all the samples based on the
target product (Ni2P). As shown in Fig. 3(c), the specific
capacitance initially increased and then decreased as the
quantity of precursors increased. The initially increased
specific capacitance should be attributed to the increased
Ni2P content. Figure 2(f) shows that fewer Ni2P nano-
particles were generated in sample e than in sample b.
However, the water in Ni(NO3)2$6H2O also increased with
the increase of precursors for sample f and probably
competed with the CNTs to absorb the microwave energy.
This increase in water resulted in the incomplete
transformation of the precursors to Ni2P nanoparticles.
The small quantity of Ni2P nanoparticles in sample f (Fig.
2(f)) proved our speculation. Overall, the optimum

Fig. 3 Comparison of the specific capacitance values of the as-prepared Ni2P@CNT nanocomposite under different experimental
conditions: (a) reaction time; (b) reaction power; (c) feeding ratio of precursors to CNTs; (d) specific capacitance of sample b and pure
CNTs at different current densities.
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experimental conditions for the synthesis of Ni2P@CNT
nanocomposites were a feeding ratio of 30:50:25 for
CNTs, Ni(NO3)2$6H2O, and red phosphorus and a
microwave power of 1000 W for 90 s as manifested by
sample b.

3.4 Electrochemical properties in a three-electrode system

The CV curves of sample b were obtained at different scan
rates ranging from 5 to 100 mV$s–1 (Fig. 4(a)) in a three-
electrode configuration to further evaluate the electro-
chemical performance of the as-prepared Ni2P@CNT
nanocomposites. The cathodic and anodic current
responses of the Ni2P@CNT nanocomposite were detected
between 0 and 0.6 V. A distinct pair of redox peaks was
observed in the CV curves and corresponds to the
reversible faradaic reaction of Ni2+/Ni3+. The reversible
electrode reaction of the Ni2P@CNT nanocomposites in
strong alkaline electrolytes can be described below [20].

Figure 4(b) exhibits the galvanostatic charge-discharge
(GCD) curves measured between 0 and 0.5 V. According
to the curves, the specific capacitance was calculated to be
854, 815, 779, 744 and 688 F$g–1 at the current densities of
1, 2, 3, 5 and 10 A$g–1, respectively. Figures S5(a) and
S5(c) show that the CV curve area of sample b is the largest
and its GCD curve discharge time is the longest; hence, the
electrochemical performance of sample B is the best
among the samples [5,40]. We further carried out EIS
measurements at frequencies ranging from 100 kHz to
0.01 Hz. As shown in Fig. 4(c), the Nyquist plot of the
Ni2P@CNT nanocomposite is composed of a semicircle,
which decreases in the high-frequency region and forms a
straight line in the low-frequency region. The slope of the
curve in the low-frequency region is related to the
capacitive behavior of the supercapacitor [4,41]. In
Fig. S5(b), the curve slope of sample b in the low-
frequency region is larger, which indicates that sample b
has a more ideal capacitance behavior. The ohmic

Fig. 4 (a) CV curves of a Ni2P@CNT nanocomposite (sample b) at different scan rates from 5‒100 mV$s‒1; (b) GCD curves at current
densities of 1‒10 A$g‒1; (c) Nyquist plots of a Ni2P@CNT nanocomposite (sample b), inset shows x-axis range from 0 to 1.5 W; (d)
cycling stability of a Ni2P@CNT nanocomposite (sample b) and pure CNTs measured at 10 A$g‒1 using 6 mol$L‒1 KOH as the
electrolyte.
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resistance and charge transfer resistance values were 0.24
and 0.53 W, respectively. The cycling performance of the
Ni2P@CNT nanocomposites at 10 A$g–1 was further
investigated as shown in Figs. 4(d) and S4. The
Ni2P@CNT nanocomposites retained 84% of their initial
specific capacitance even after 5000 cycles; thus, they have
excellent cycling stability.
The rate performance of the Ni2P@CNT nanocomposite

electrode was further investigated as shown in Fig. 5(a).
The Ni2P@CNT nanocomposite had excellent electro-
chemical performance and maintained a high electroche-
mical of 90% even at a current of 10 A$g–1. The specific
capacitance was almost constant even after charge-
discharge. This result further indicates the great potential
of this material for various applications. The cathodic and
anodic current responses of the Ni2P@CNT nanocompo-
site were detected between 0 and 0.6 V. Obeying the power
law, i = anb [42,43], the b values of 0.8322 and 0.8473
were obtained for the cathodic and anodic current
responses, respectively (Fig. 5(b)). These results suggest
that the current was surface controlled and that the

dominant electrochemical reaction in the Ni2P@CNT
electrode was the capacitive effect. The total capacitance
of the electrode material consisted of the following two
components: 1) the capacitance behavior, which was
generated by ion adsorption/desorption and redox reac-
tions independent of the current density or scanning rate,
and 2) the diffusion process, which was caused by ion
insertion into both the electrode material and electrolyte.
As shown in Fig. 5(c), the capacitive contribution was
approximately 53.9% at the scan rate of 5 mV$s–1.
Intriguingly, as shown in Fig. 5(d), the specific
capacitance contribution displayed a gradual upward
trend from 53.9% to 83.2% when the scan rate increased
from 5 to 100 mV$s–1. The increased capacitive contribu-
tion would be beneficial for fast charge transfer.

3.5 Electrochemical characterization for the assembled
ASCs

Ni2P@CNT//AC devices were assembled by using the
optimal Ni2P@CNT nanocomposite as the positive

Fig. 5 (a) Cyclic test under continuous transformation conditions; (b) logarithmic plots of the peak current vs. the logarithm of the scan
rate; (c) comparison of the capacitive contribution and the redox-controlled contribution at a scan rate of 5 mV$s‒1; (d) capacitive and
redox-controlled contribution ratios at different scanning rates. All the tests were based on the optimal Ni2P@CNT nanocomposites
(sample b).
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electrode (sample b) and AC as the negative electrode
material to further evaluate the potential applications of the
resultant Ni2P@CNT nanocomposites in practice. As
shown in Fig. 6(a), the potential windows of the
Ni2P@CNT nanocomposite and AC ranged from 0 to
0.6 Vand -1 to 0 V, respectively, which led to the extended
window of 0‒1.6 V in the ASC. As displayed in Fig. 6(b),
the CV curves of the ASC were tested in the range of
10‒100 mV$s–1. The similar shapes of these curves
indicate that the assembled ASC has good rate perfor-
mance. Based on the GCD curves (Fig. 6(c)), the specific
capacitance of the ASC can be calculated as 100.3, 91.8,
80.1, 72.0 and 59.1 F$g–1 at the current densities of 0.5,
1.0, 2.0, 3.0 and 5.0 A$g–1, respectively. Moreover, the EIS

measurement results are shown in Fig. 6(d). We fitted the
equivalent circuit diagram through the analysis of the EIS
spectrum. The semicircle diameter in the high-frequency
region represents the charge transfer resistance (Rct =
0.013W) at the electrode material/electrolyte interface. The
bulk resistance of the system, including the solid
electrolyte and internal resistance of the electrode, was
calculated as 1.2 W. Figure 6(e) shows the Ragone plots of
the assembled Ni2P@CNT//AC device. The results show
that the energy density of Ni2P@CNT//AC could reach up
to 33.5 W$h$kg–1 with a power density of 387.5 W$kg–1,
which is higher than previously reported, as listed in
Table 3. Furthermore, the assembled ASCs had excellent
cycle performance with 99.5% capacitance retention after

Fig. 6 Electrochemical performance of the assembled ASC based on Ni2P@CNT//AC: (a) CV curves of Ni2P@CNTs and AC
electrodes at 50 mV$s‒1; (b) CV curves of Ni2P@CNT//AC (sample b); (c) GCD curves at different current densities; (d) Nyquist plots of
the Ni2P@CNT//AC ASC; (e) Ragone plot of the Ni2P@CNT//AC ASC. The inset is a picture of an LED light powered by two connected
ASC devices; (f) Self-discharge characteristics of the assembled ASC device over 36000 s.

Table 3 Energy densities and powder densities of different transition metal phosphides in recent studies

Material Method Energy density/(W$h$kg‒1) Power density/(W$kg‒1) Ref.

Co2P nanoflowers//graphene Thermal decomposition 24 300 [51]

Ni2P NS/NF//AC Thermal decomposition 26 337 [52]

Ni2P/Ni/C//AC Thermal decomposition 32.02 700 [20]

NiCoP@NF//AC Thermal decomposition 27 647 [53]

Fe2O3//Ni2P Thermal decomposition 29.8 400 [54]

MnO2-CNT//AC Hydrothermal 25 500 [55]

Ni2P@CNT//AC Microwave radiation 33.5 387.5 This work
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3000 cycles (Fig. S3, cf. ESM). Additionally, the
Ni2P@CNT//AC device could successfully light three
light emitting diode (LED) lights for 6 min and thus has
excellent energy storage performance. Finally, the self-
discharge characteristics of the Ni2P@CNT//AC were
studied at room temperature. As shown in Fig. 6(f), the
maximum charging voltage of the ASC device was 1.5 V.
Although the voltage sharply dropped at the beginning
probably because of the decomposition of water [44,45],
the potential could still stay at 0.6 V over a 10-h self-
discharge period.
The superior electrochemical performance of the optimal

Ni2P@CNT nanocomposite (sample b) can be explained as
follows. 1) The specific surface area and porosity of the
samples were further studied by nitrogen adsorption/
desorption test as shown in Fig. S2. The porous structure is
beneficial to the transport and diffusion of electrolyte ions
[46]. 2) The CNT provided an effective reaction site; thus,
the electrolyte and materials had a large contact area. The
large contact area reduced the loss in the energy transfer
process and provided good cyclic performance [47]. 3) The
metal phosphates had low redox potential and high specific
capacitance. Hence, the Ni2P@CNT nanocomposites had
excellent power density and energy density [48,49]. 4) The
optimal sample (sample b) had desirable morphology,
which enabled the Ni2P to uniformly grow on the surface
of the CNTs. The synergistic effects of the CNTs with the
Ni2P nanoparticles improved the electrochemical property
of the electrode [50].

4 Conclusions

In summary, Ni2P@CNT nanocomposites with excellent
energy storage performance were successfully obtained by
an energy-efficient and ultrafast microwave synthesis
method. The obtained Ni2P@CNT nanocomposites exhib-
ited a remarkable specific capacitance of 854 F$g–1 at
1 A$g–1 and showed high cycling stability with specific
capacitance retention of 84% even after 5000 charge–
discharge cycles at a current density of 10 A$g–1.
Furthermore, a Ni2P@CNT//AC asymmetric supercapaci-
tor device was assembled, which exhibited a high energy
density of 33.5 W$h$kg–1 with a power density of
387.5 W$kg–1. We anticipated that our study of this
microwave approach for the ultrafast nano-manufacturing
of transition metal phosphides will open exciting oppor-
tunities for the creation of a wide range of electrode
nanomaterials for supercapacitor applications.
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