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Abstract The extractive dividing-wall column (EDWC)
is one of the most efficient technologies for separation of
azeotropic or close boiling-point mixtures, but its design is
fairly challenging. In this paper we extend the hybrid
feasible path optimisation algorithm (Ma Y, McLaughlan
M, Zhang N, Li J. Computers & Chemical Engineering,
2020, 143: 107058) for such optimal design. The
tolerances-relaxation integration method is refined to
allow for long enough integration time that can ensure
the solution of the pseudo-transient continuation simula-
tion close to the steady state before the required tolerance is
used. To ensure the gradient and Jacobian information
available for optimisation, we allow a relaxed tolerance for
the simulation in the sensitivity analysis mode when the
simulation diverges under small tolerance. In addition,
valid lower bounds on purity of the recycled entrainer and
the vapour flow rate in column sections are imposed to
improve computational efficiency. The computational
results demonstrate that the extended hybrid algorithm
can achieve better design of the EDWC compared to those
in literature. The energy consumption can be reduced by
more than 20% compared with existing literature report. In
addition, the optimal design of the heat pump assisted
EDWC is achieved using the improved hybrid algorithm
for the first time.

Keywords design, extractive dividing-wall column,
equation-oriented optimisation, pseudo-transient continua-
tion model, hybrid algorithm

1 Introduction

Azeotropic or close boiling-point mixtures widely exist in

the chemical industries such as ethanol/water, acetone/
water and ethane/CO2. Due to the same or close volatilities
of the components in the mixtures, they are extremely
difficult to separate using the conventional distillation
column. The extractive distillation (ED) is one of the
widely used technologies for separation of azeotropic or
close boiling-point mixtures due to less energy consump-
tion and having more flexibility in the selection of solvents.
An entrainer (or solvent) is introduced to change the
relative volatility of the components through interacting
differently with the components of the mixture [1]. This
entrainer (or solvent) is generally non-volatile, has a high
boiling point and is miscible with the mixture, but does not
form an azeotropic mixture with the components. The
original component with less interaction with the entrainer
separates out as the top product of the extractive distillation
column (EDC). The bottom product of the EDC consists of
a mixture of the solvent and the other component, which
can again be separated easily with a conventional
distillation column (i.e., solvent recovery column, SRC)
because the entrainer (or solvent) does not form an
azeotrope with another component and the entrainer is
usually much heavier. A typical conventional ED process
for separation of a binary azeotropic mixture (A and B) is
illustrated in Fig. 1. The entrainer and raw material are fed
into the EDC with the component A drawn as the top
distillate. The component B and entrainer leave from the
EDC bottom and then are fed to the SRC. In the SRC, the
pure component B is obtained on the top and the solvent is
recovered at the bottom for recycle.
The conventional ED process is usually energy-

intensive coupled with high capital cost. The dividing
wall column (DWC), one of the most promising PI
technologies, can reduce energy cost by 35% and decrease
capital cost by 25% simultaneously [2]. Therefore, it has
been used for the conventional ED process, leading to the
development of the extractive dividing-wall column
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(EDWC). The applications of the EDWC for separation of
azeotropic or close boiling-point mixtures include but not
limited to ethanol/water separation in the bioethanol
purification process [3] and CO2/ethane separation in the
natural gas processing [4]. A significant reduction in
energy and capital cost by 51.6% and 41.2% respectively is
achieved compared to the conventional ED [4]. More
importantly, a commercial EDWC has been established for
separation of 2,6-lutidine/4-picoline [5].
Optimal design of the EDWC has received considerable

attention during the last decade [6–8]. Several approaches
have been proposed for the optimal design, including
sequential sensitivity analysis-based optimisation meth-
ods, sequential quadratic programming (SQP) algorithms
and genetic algorithms (GA). The sequential sensitivity
analysis-based method conducts a series of process
simulations using rigorous equilibrium stage models
through changing one or a few design variables at each
time while the other design variables are fixed [3,4,6,9].
This method can fail to converge in process simulation of
the EDWC due to the entrainer recycle, complex
configuration of the EDWC and strong nonideality of the
mixture system. Furthermore, this method cannot identify
an optimal design in most cases because the influence of
the correlated design variables is not investigated. It often
requires a large number of simulations to generate a best
design. Although some heuristics are introduced to
improve computational efficiency [6], they can identify a
feasible design solution without guaranty of the solution
optimality [10].
The SQP algorithm [11] built in a commercial process

simulator such as Aspen Plus [12] is used to generate an
optimal design of the EDWC [7,13,14]. The built-in SQP
algorithm often fails to determine an optimal solution if a
good initial point is not provided [15]. However,

identification of a good initial point is not trivial. In
addition, valid lower and upper bounds of the design
variables are also required before optimisation, which are
determined through a time-consuming sensitivity analysis
[14]. The GA generates values of the independent variables
and then passes them to a commercial process simulator
such as Aspen Plus [12]. After each simulation, the GA
evaluates the fitness function. Although this method is able
to execute automatically, it requires a large number of
fitness function evaluations (corresponding to process
simulations), leading to large computational effort required
[15]. This method can provide a good design solution
without solution optimality guaranty.
All the aforementioned methods for optimal design of

the EDWC conduct optimisation in the sequential modular
simulation environment, which is inefficient due to either
inaccurate derivative evaluation or not using derivative
information. It is demonstrated that the gradient-based
optimisation algorithm implemented in an equation-
oriented (EO) environment is much more efficient for
process optimisation compared to those in the sequential
modular environment due to accurate derivative informa-
tion used [16]. Although the gradient-based optimisation
algorithms have been used for optimal design of thermally
coupled ternary ED in the EO environment [17,18], they
fail to find a feasible design of the EDWC for separation of
azeotropic mixtures acetone/chloroform and ethanol/water.
Waltermann et al. [19] generated an optimal design of the
EDWC process using rigorous models in the EO
optimisation environment General Algebraic Modeling
System (GAMS). Although their solution method is shown
to be efficient, complicated initialisation procedures and
external functions are required to guarantee convergence
and efficiency, which may not be suitable for optimal
design of a complex EDWC such as the heat pump assisted
EDWC.
To the best of our knowledge, it is still an open field to

develop a systematic and efficient design method for
optimal design of the EDWC using rigorous models due to
high complexity of the EDWC configuration and strongly
non-convex nonlinear physical properties of the azeotropic
or close boiling-point mixture. Recently, Ma et al. [20]
proposed a hybrid steady-state and time-relaxation feasible
path optimisation algorithm where the original nonlinear
programming (NLP) problem is decomposed into two
levels. In the outer level, the SQP algorithm is used to
navigate a group of decision variables (usually less than
1000), while in the inner level, process simulation based on
the values of decision variables determined in the outer
level is performed to generate values of other variables in
the process. The pseudo-transient continuation (PTC)
modelling approach is employed to resolve the difficulty
in finding a feasible solution during process simulation in
the EO environment. The PTC simulation using the
tolerances-relaxation integration method [18] is performed

Fig. 1 A typical conventional ED process for separation of a
binary azeotropic mixture A and B.
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only if the steady-state simulation fails to improve the
computational efficiency. The computational results
demonstrate the advantages of the hybrid optimisation
algorithm in solving complex design optimisation pro-
blems. In this paper, we extend the hybrid steady-state and
time-relaxation feasible path optimisation algorithm for
optimal design of the EDWC. The tolerances-relaxation
integration method [18] is further refined to ensure that the
steady state is reached even at the initial integration phase
with a large tolerance. The convergence of the hybrid
algorithm is improved through allowing a larger tolerance
for simulation in sensitivity analysis mode (algorithmic
differentiation) when it diverges under small tolerance. In
addition, valid lower bounds on the vapour flow rates at
some stages and on the purity of the recovered entrainer are
imposed to improve the computational efficiency when
applying it to the optimisation of EDWC. Three examples
from the literature [21–23] are used to illustrate the
capability of the extended hybrid feasible path optimisa-
tion algorithm. The computational results demonstrate that
the extended hybrid algorithm has good convergence
performance and can find an optimal design of the EDWC
within one hour in most cases. All the examples obtain
much more economic designs than the existing literature
reports. In addition, optimal design of the heat pump
assisted EDWC is achieved for the first time.

2 Problem statement

Figure 2 illustrates a typical EDWC, which is used to
separate an azeotropic or close boiling-point mixture A and
B using an entrainer S. A dividing wall lies at the top of the
column, leading to two condensers on the top of the
column. The A and B mixture and the entrainer S are fed
into the column from the left side of the dividing wall. The
product Awhich has less interaction with the entrainer than
B is drawn from the top left side of the column. The other
product B is obtained from the top right side of the column.
The entrainer S is obtained at the bottom of the column,
which is recycled back to the entrainer feed. With this, the
entire design problem can be stated as follows.
Given: an azeotropic or closing boiling-point mixture to

be separated, the identified entrainer and column config-
uration, feed conditions and specified separation require-
ments.
Determine: 1) the entrainer make-up flow rate (FE) and

its feed stage (NFE); 2) the feed stage of the raw material
(NFR); 3) total number of stages (NM) in the main column
and total number of stages (NS) in the side column;
4) reflux ratios of the main and side columns (RRM, RRS);
5) split fraction of the vapour stream to side column (SF)
and the column bottom flow rate (FB); 6) connection stage
between the main column and side column (NC).
Assumptions: 1) Vapor-liquid phase equilibrium is

reached at each stage in the distillation column, i.e., the

equilibrium stage model is used, which is usually accurate
enough to simulate distillation column; 2) The column
diameter is determined by the maximum diameter of the
stages in the bottom section of the EDWC as the bottom
section usually has larger vapour flow rate; 3) The heat
transfer through the dividing wall is neglected. This
assumption is usually given in literature. It should be
interesting to investigate the influence of heat transfer
through the dividing wall in the future; 4) The pressure
drop on each stage is neglected. The operating pressure of
the column is at atmospheric pressure. The pressure drop is
usually small and does not have a large influence on the
optimal design.
The objective is to minimize total annualised cost (TAC)

which is calculated as total annualised capital cost plus the
operating cost. The operating cost consists of energy and
entrainer costs.

3 Modelling of EDWC

The column section model proposed by Pattison & Baldea
[24] for modelling the normal DWC is extended to
modelling the EDWC as shown in Fig. 3. There are five
column sections in total. While the left side of the dividing
wall in the EDWC is composed of sections 1–3, the right
side of the dividing wall corresponds to the section 4. The
bottom section in the EDWC is section 5. The make-up
entrainer is mixed with the recycle entrainer before fed into
the column. The raw material mixture to be separated is fed
into the column through a different feed location, which is
below that of the entrainer. This column section model can

Fig. 2 A typical EDWC for separation of an azeotropic or close
boiling-point mixture A and B.
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be extended for modelling other EDWC configurations.
Using this column section model, the feed stage locations,
connection stage location and the total number of stages in
main and side columns can be determined easily from the
number of stages in each column section. Some efforts
[22,25] suggested that the number of stages on the left- and
right-hand sides of the dividing wall should be identical to
ensure the same pressure at the connection stages on both
sides of the wall when trayed columns are used. However,
such column may not be the most efficient. In the standard
EDWC as shown in Fig. 2, the entrainer is often much
heavier than other components, which is much easier to
separate from the system. As a result, a much smaller
number of stages is required on the right-hand side of the
dividing wall in the EDWC, leading to some discrepancy
in the number of stages on both sides. In this work, the
number of stages on both sides of the dividing wall is
allowed to be different in order to obtain better economic
profit [8]. The equal pressure on the connection stages can
be achieved easily through adjustment of the condenser
pressure in the side column.
Each column section can be mathematically modelled

using the bypass efficiency method [26], which is very
similar to that of a conventional distillation column. In the
bypass-efficiency method, the existence of a stage in a
column section is represented by a bypass efficiency εj,
which is treated as a continuous variable between 0 and 1
rather than a binary variable. This avoids the introduction
of binary variables. As a result, only an NLP optimisation
problem needs to be solved. The actual total number of
stages (denoted as Nt) in a column section is given below,

N t ¼
X

j
εj: (1)

Although the bypass efficiencies are treated as contin-
uous variables between 0 and 1, they tend to be 0 or 1 at the
globally optimal point because partial bypass (i.e., the
values between 0 and 1) is thermodynamically inefficient
[26]. However, some bypass efficiencies may be fractional
in our solution due to locally optimal solutions identified
using our hybrid algorithm. In addition, numerical errors
may also cause the bypass efficiencies to be fractional.
These fractional bypass efficiencies can be rounded to be 0
or 1 and a new optimal solution can be generated. It is
demonstrated that the optimal solution does not change
noticeably after the fractional bypass efficiencies round off
in case studies of this work and the existing efforts [17,18].
The optimisation problem for optimal design of the

EDWC (denoted as P0) can be represented in a general
form as follows:

ðP0Þ min f ðxÞ,
s:t: hðxÞ ¼ 0,

gðxÞ£0,

x 2 Rn,

(2)

where x are process model variables to be optimised, f is
the objective function representing TAC, h represents all
equations (equality constraints) including mass balance,
phase equilibrium, summation and heat balance (MESH)
equations, process stream connection equations and some
equations related with design requirements, and g refers to
all inequality constraints including design specifications
such as product purity and recovery requirements. The
MESH equations with the bypass efficiency are presented
in Appendix A (cf. Electronic Supplementary Material,
ESM). The economic evaluation model is provided in
Appendix B (cf. ESM). It should be noted that solving
problem (P0) directly is extremely challenging due to the
strongly non-convex nonlinear and coupled MESH
equations, and the rigorous enthalpy, density and phase
equilibrium models used.

4 Solution approach

The feasible path optimisation algorithm has demonstrated
its capabilities for solving large-scale strongly non-convex
nonlinear optimisation problem [27]. It decomposes the
original problem P0 into two sub-problems including a
small-scale optimisation problem (denoted as P1) in the
outer level and a process simulation problem in the inner
level [28]. The problem P1 is generated through elimina-
tion of all dependent variables using the corresponding
equations in problem P0.

Fig. 3 Extended column section model of the EDWC.
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ðP1Þ min
xI

f ðx1Þ,
s:t: yðxIÞ ¼ 0,

zðxIÞ£0,

xI 2 RnI ,

(3)

where xI represents independent variables (or decision
variables) to be optimised, which are nI-dimensional, y and
z are the process variables related with design requirements
such as product purities and temperature difference in the
heat exchanger. Note that y and z are dependent variables
and determined by xI through an implicit function that is
defined by the process simulation in the inner level.
Similarly, the complex process model equations of the
EDWC are also included in the simulation problem. As a
result, the outer problem P1 is a small-scale optimisation
problem. More details can be referred to Ma et al. [20]. The
main challenge is how to solve the process simulation
problem efficiently and reliably.
The feasible path optimisation algorithm often fails to

provide a feasible solution when it is applied for optimal
design of the complex EDWC using rigorous MESH
distillation models. The main possible reason is due to the
non-convergence of the steady-state process simulation in
the EO environment [24]. The hybrid steady-state and
time-relaxation feasible path optimisation algorithm from
Ma et al. [20] is extended to solve the optimisation
problem (P0). This hybrid algorithm is an improvement to
the existing feasible path optimisation algorithm in which
the combination of steady-state simulation and PTC
simulation is used to improve the convergence of process
simulation.

4.1 PTC modelling approach

The PTC modelling approach reformulates algebraic
equations in the steady-state model into differential
algebraic equations (DAE) with an equivalent steady-
state solution of the original models [24]. The derived
DAE model is the so-called PTC model. It is reported that
process simulation using the PTC model can lead to better
convergence than steady-state simulation due to the
continuation on the pseudo time [24]. This is of great
importance for process optimisation using complex
rigorous unit operation models. The PTC distillation
model from Ma et al. [17] is used for simulation of the
EDWC, which is provided in Appendix C (cf. ESM).

4.2 Hybrid steady-state and time-relaxation optimisation
algorithm

The hybrid steady-state and time-relaxation feasible path
optimisation algorithm from Ma et al. [20] is depicted in
Fig. 4. In this hybrid algorithm, the PTC simulation is
performed only when the steady-state simulation fails as
the PTC simulation is much more time-consuming than the
steady-state simulation. The hybrid algorithm starts from
an initial point x0 which must lead to a converged process
simulation. At this converged point, the derivative
information is evaluated and passed to a gradient-based
optimiser such as the SQP optimiser. The optimiser checks
whether the Karush-Kuhn-Tucker (KKT) conditions are
satisfied at the current point. If it is satisfied, the
optimisation is completed successfully with an optimal
solution. Otherwise, new values of the decision variables
xk+1 are returned by the optimiser, and a new steady-state
simulation is performed. If the new simulation converges,

Fig. 4 The hybrid steady-state and time-relaxation feasible path optimisation algorithm.
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the next iteration (k+ 1) starts. Otherwise, a PTC
simulation is executed to generate a converged solution
instead before the next iteration (k+ 1) starts. The
iterations continue until the KKT conditions are satisfied,
indicating the successful identification of an optimal
solution, or the iterations may terminate prematurely
without finding the optimal solution. There are two main
reasons that may cause failure of an optimisation. One is
the maximum number of line searches is reached without
an acceptable step length found. The other one is that the
directional derivative along the derived descent direction is
positive. To guarantee the robustness of the algorithms,
existing SQP optimisers may use some tricks to alleviate
the above problems.
It should be noted that the tolerances-relaxation

integration method proposed by Ma et al. [18] is also
used in the hybrid algorithm to reduce computational effort
from the PTC simulation. This integration method imposes
a large integration tolerance in the beginning and adopts a
tight tolerance later to guarantee the accuracy of the final
steady-state solution. In addition, we found that the SQP
optimiser used in the current work may fail due to the
positive directional derivative obtained, which is usually
caused by an indefinite or negative semi-definite approx-
imate Hessian matrix. To improve the robustness of the
hybrid algorithm, a new optimisation with a cold start is
performed from the point where the last optimisation fails.
The cold start forces the Hessian matrix to a default well-
posed approximate Hessian matrix so that a descent
direction leading to negative directional derivative can be
obtained.

4.3 Improvements

Some improvements are made to improve computational
efficiency of the hybrid algorithm in this work. First, the
tolerances-relaxation integration method used in the PTC
simulation from Ma et al. [18] is refined. In the previous
efforts [18,20], the PTC simulation used a large integration
tolerance such as 1 � 10–3 in the beginning and performed
for a presumably long enough integration time T to ensure
the solution close to the steady-state solution before the
required tolerance was used. This is of great importance to
reduce computational time of the PTC simulation,
especially when a small tolerance such as 1 � 10–10 is
used. However, it is often difficult to ensure that the
integration time T provided is always long enough during
the optimisation of the EDWC possibly due to large ratio
(usually larger than 100) between the entrainer recycle
flow rate and the fresh entrainer flow rate. To avoid such
situation, the tolerances-relaxation integration method is
improved through increasing the integration time T by 10
times until the steady-state simulation with a large
tolerance is converged, as highlighted in Fig. 5. The
improved tolerances-relaxation integration method is
described below.

Step 1: Given initial values of the decision variables x, a
required convergence tolerance tol_req, an integration
period T and a list of tolerances tol in a descent order with
the last one being the required tolerance tol_req. The outer
and inner iteration indicators i and j are set as zero.
Step 2: The PTC simulation is integrated for 10j$T

(pseudo time) with the initial value of j = 0. If the PTC
simulation does not converge, the whole PTC simulation
fails and then goes to step 8.
Step 3: The current converged point D0 is recorded and

a steady-state simulation with toli is performed. If the
steady-state simulation converges, then go to step 6.
Otherwise go to the next step.
Step 4: If j> J_max, the entire PTC simulation fails and

goes to step 8. Otherwise go to step 5.
Step 5: The initial point used for the simulation is

reset to the point D0 and j is increased by 1, then return to
step 2.
Step 6: If the current tolerance toli is equal to tol_req,

then the simulation completes successfully and go to step
8. Otherwise, if toli> tol_req, the current steady-state
solution S0 is recorded and a steady-state simulation with
the tolerance of tol_req is performed, then go to the next
step.
Step 7: If the steady-state simulation converges, the

whole simulation completes and go to step 8. Otherwise,
the initial point used for process simulation is reset to the
point S0. The outer iteration indicator i is increased by 1
and return to step 2.
Step 8: Return.
Second, sensitivity analysis is performed after a

successful process simulation to generate accurate deriva-
tive information for the gradient-based optimiser. The
sensitivity analysis is also realized through process
simulation but with derivative information calculated
simultaneously together with process variables. We
observe that the steady-state simulation in the sensitivity
analysis mode can fail at some points where the steady-
state simulation without sensitivity analysis converges.
The possible reason is due to the contradiction between the
machine epsilon of the double precision floating-point
number adopted in the Aspen CustomModeler (ACM) and
the fairly small simulation tolerance used. For example,
when the simulation tolerance is set as 1 � 10–10, the order
of magnitude of the terms in the sensitivity equations
should not exceed 6 in order to guarantee convergence
under the machine epsilon of around 1.1 � 10–16 [29].
However, the order of magnitude of such terms may
exceed 6 in some cases, causing unreliable convergence
performance. The failure of simulation in the sensitivity
analysis mode leads to no derivative information available
for the gradient-based optimiser to generate a new search
direction. As a result, the optimisation terminates prema-
turely. To avoid such case, a relaxed tolerance which is
larger than the required tolerance is used for the steady-
state simulation in the sensitivity analysis mode. Although
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the relaxed tolerance may reduce the accuracy of
derivatives, it is used only in several optimisation steps
and it is often still small enough such as 1� 10–7, 1� 10–8,
and 1 � 10–9 based on our observation. It is worthwhile to
generate derivative information to enable the optimisation
to continue with sacrifice of some accuracy instead of
failure in the optimisation. The improved procedure is
illustrated in Fig. 6.
In Fig. 6, we first conduct the steady-state simulation

using the required tolerance (tols = tol_req) in the
sensitivity analysis mode. If the steady-state simulation
converges, the derivative information evaluation com-
pletes successfully. Otherwise, if the current tolerance is
smaller than the first tolerance tol0 in the list tol, the
tolerance is magnified to 10 times and then go to the next
iteration. If tols≥tol0, then the derivative information
evaluation terminates with failure because no derivative
information is available to generate new values of the
decision variables.

To further improve the computational performance of
the extended hybrid feasible path optimisation algorithm,
valid lower bounds of some decision variables are imposed
to remove infeasibility regions. First, a reasonable lower
bound on the recycled entrainer purity (e.g., 0.90) is
enforced to eliminate the optimisation region with highly
impure recycled entrainer. However, this lower bound
cannot be set too high (e.g., 0.95) because the optimal
solution may be eliminated. In this work, the lower bound
on the recycled entrainer purity is set to be 0.90 as the
optimal purity of the recovered entrainer is usually higher
than this value. Second, process simulation often becomes
slow or even stuck when a single-phase region is reached at
some stages in the distillation column since MESH
equations are not applicable for a single-phase fluid at
each stage. We also observe that the vapour flow rate may
become zero in sections 2 and 3 during optimisation
because the feed and the entrainer streams are usually at
sub-cooled liquid pahse. To avoid such infeasible case, we

Fig. 5 The improved tolerances-relaxed integration method.
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impose a lower bound on the vapour flow rates (e.g., 1 or
10 kmol∙h–1) in sections 2 and 3 without loss of the
optimal solution as the single-phase zone with no mass
transfer rarely appears on a stage in an efficient distillation
column.

5 Case studies

Three case studies are used to illustrate the capability of the
extended hybrid feasible path optimisation algorithm for
optimal design of the EDWC. The first case study separates
acetone/chloroform mixture using dimethylsulfoxide
(DMSO) as the entrainer. The second and the third case
studies separate ethanol/water mixture with ethylene
glycol (EG) as the entrainer. While the first two cases
use the EDWC, the third case uses the heat pump assisted
EDWC. The objective of all three case studies is to
minimize TAC including total annualised capital cost and
operating cost. Detailed correlations for TAC calculation
are provided in Appendix B. In order to identify the
globally optimal solution, six initial points are randomly
generated and used to initialise the extended hybrid
algorithm in all case studies. This allows to test the
convergence performance of the extended algorithm. In all
case studies, the simulation tolerance is set as 1 � 10–10

with optimisation tolerance of 1 � 10–5. The list of
tolerances used in the tolerances-relaxation integration
method is [1 � 10–3, 1 � 10–6, 1 � 10–10]. The initial
integration time T is 2000 h. The PTC model of the EDWC
is implemented in ACM [30]. The improved hybrid
feasible path optimisation algorithm is implemented in
Python [31] with the built-in solver slsqp [32] used as the
NLP solver. All case studies are solved on a desktop with
3.20 GHz intel core i7 processor and 16 GB RAM running
64-bit windows operating system.

5.1 Case study 1: acetone/chloroform separation

Acetone and chloroform can form a maximum boiling
point azeotrope. The azeotropic temperature is 67.51 °C
and the azeotropic molar composition is 33.91% acetone
and 66.09% chloroform. The feed rate is 100 kmol∙h–1

with molar compositions of acetone and chloroform being
around 0.5 and 0.5, respectively. While the purity of
acetone product has to reach at least 99.5% (mole), it
should be at least 99.55% for chloroform. Luyben [21]
designed a conventional ED process where DMSO was
used as the entrainer. High-pressure steam and cooling
water were used as hot and cold utilities, respectively. To
reduce energy and capital costs, the EDWC is employed in
this work. The entire optimisation problem involves 9399
equations, 16 inequality constraints, and 10570 variables
including 90 decision variables. The initial values, and
lower and upper bounds of decision variables are listed in
Table 1.

The computational performance of the extended hybrid
algorithm starting from six initial points are provided in
Table 2. The corresponding optimal solutions are provided
in Table 3. As seen from Table 2, the computational time
required is within 1 h in most cases except that starting
from εj = 0.3 which requires 2 h. The smallest computa-
tional time required is about 20 min using the initial point εj

= 0.1. From this initial point, the best locally optimal
solution of 6.081 � 105 $∙year–1 can be obtained, as
demonstrated in Table 3. A minor problem in this optimal
solution is that the number of stages in the column section
4 is fractional due to several bypass efficiencies in this
section being fractional values between 0 and 1. This is
possibly because only the tray cost is involved in this
column section and it is much smaller compared to the
TAC. As a result, the TAC is much less sensitive to the
values of bypass efficiencies in this section than those in
other sections. In addition, it is not difficult to recover the
entrainer in this column section 4 due to large relative

Fig. 6 The improved derivative information evaluation allowing
a larger tolerance.

Table 1 Initial values and lower and upper bounds of the decision
variables for case study 1

Decision variable Initial value Lower bound Upper bound

FE/(kmol∙h–1) 0.01 0.0001 10

RRM/(kmol∙kmol–1) 1.0 0.1 10

RRS/(kmol∙kmol–1) 1.0 0.01 10

SF/(kmol∙kmol–1) 0.5 0.1 0.99

FB/(kmol∙h–1) 100 10 500

N1 – 0 10

N2 – 0 20

N3 – 0 30

N4 – 0 15

N5 – 0 10

Yingjie Ma et al. Optimal design of extractive dividing-wall column 79



volatility between chloroform and DMSO. After rounding
off the fractional bypass efficiencies to be 0 or 1, the TAC
slightly increases to 6.082 � 105 $∙year–1 with satisfied
product purity requirements.
The best optimal design with TAC of 6.081 � 105

$∙year–1 is illustrated in Fig. 7. As can be seen from Fig. 7,
the dividing wall in the optimal design does not reach the
column top due to a smaller number of stages on the right
side of the dividing wall required, which is different from
the one illustrated in Fig. 2. However, these two
configurations were thermodynamically equivalent.
For a fair comparison, the optimal design of the

conventional ED is also generated using the extended
hybrid algorithm, which is illustrated in Fig. 8. The
economic comparison among the optimal design of the
conventional ED, the design of the conventional ED from
Luyben [21], and the optimal design of the EDWC is
provided in Table 4. It should be noted that the costs of the
conventional ED in Table 4 are different from those
reported in Luyben [21] due to the use of different formula
for column diameter calculation.
As can be seen from Table 4, the TAC in the optimal

design of the conventional ED is 6.289 � 105 $∙year–1,
which is reduced by 13.7% compared to the TAC (7.290�
105 $∙year–1) in the heuristic-based design from Luyben
[21] due to the significant reduction in energy cost, which
is about 21.4%. The capital cost is a bit higher (4.5%) than
that of Luyben [28] due to the total number of stages
increased from 34 to 49 although the diameters of both
columns in our design decreased evidently (1.37 vs. 1.50 m

and 1.02 vs. 1.14 m). It is also observed that the purity of
the recycle entrainer in the optimal design of the
conventional ED is 0.9986 which is different from that
of 0.9999 determined using heuristics in the work of
Luyben [28]. This result is consistent with the result from
Ma et al. [17] for separation of the benzene/cyclohexane/
toluene mixture, where the recycle entrainer purity was
only 0.85.
On the other hand, the TAC of the optimal EDWC is

6.082 � 105 $∙year–1, which is reduced by only 3.3%
compared to that of the optimal conventional ED. This is
because the diameter of EDWC is much larger than that of
the ED although one column is required in the EDWC,
leading to a slight reduction in the annualised capital cost.
The reboiler duty in the EDWC is 1970 kW which is
reduced by 4.5% compared to that of 2062 kW in the
optimal ED. Such small reduction in TAC indicates that the
EDWC may not be attractive for acetone/chloroform
separation as it is much more difficult to construct and
control compared to the ED.

5.2 Case study 2: bioethanol purification

Bioethanol is an attractive alternative to traditional fossil
fuels, and hence has received heated attention from both
industries and academics [3]. Usually, it is produced from
biomass fermentation and ethanol in the fermented broth is
dilute (e.g., 5–12 wt-%) [34]. As ethanol and water form an
azeotrope, the diluted bioethanol is separated through a
three-column process including the pre-concentration

Table 2 Computational performance of the extended hybrid algorithm for case study 1 from six different initial points

εj 0.1 0.3 0.5 0.7 0.9 1.0

Convergence Yes Yes Yes Yes Yes Yes

Iteration step 239 302 409 509 380 262

Simulation time/s 1259 7722 2263 3698 1650 1714

TAC/(105 $∙year–1) 6.081 6.116 6.106 6.124 6.137 6.097

Table 3 Optimal design of the EDWC for case study 1 from six different initial points

εj 0.1 0.3 0.5 0.7 0.9 1.0

FE/(kmol∙h–1) 0.0008 0.0003 0.0007 0.0016 0.0006 0.0009

RRM/(kmol∙kmol–1) 0.70 0.74 0.74 0.51 0.81 0.68

RRS/(kmol∙kmol–1) 0.12 0.11 0.11 0.12 0.11 0.11

SF/(kmol∙kmol–1) 0.31 0.31 0.31 0.31 0.30 0.31

FB/(kmol∙h–1) 115.37 110.69 110.33 136.69 106.89 114.11

N1 2.0 2.5 2.0 2.1 2.0 2.0

N2 10.0 10.0 10.0 11.0 9.1 11.0

N3 22.0 23.9 24.0 17.0 25.0 23.0

N4 5.9 11.0 7.8 5.4 8.5 8.4

N5 4.0 4.0 4.0 5.0 4.0 4.0

TAC/(105 $∙year–1) 6.081 6.116 6.106 6.124 6.137 6.097
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column followed by a double-column ED process (EDC+
SRC). As this process is energy-intensive, many research-
ers have attempted to reduce its high energy consumption
using the EDWC [3,7,13,23,35]. While most work
generated the EDWC through a simple combination of
the EDC column and the SRC column, Kiss and Ignat [22]
proposed an innovative EDWC that combined the three
columns together as illustrated in Fig. 9. The feed rate is
6516.03 kmol∙h–1 with the molar fraction of ethanol being
0.042. The target product purities are 99.9 wt-% ethanol
and 99.8 wt-% water. The required recoveries for ethanol
and water are 99.81% and 99.99% respectively. Medium-
pressure (MP) steam is used in the reboiler on the left-hand
side, while high-pressure (HP) steam is used in the reboiler
on the right-hand side (see Fig. 9). The operating pressure
is 1.013 � 105 Pa.
We use the extended hybrid algorithm to generate the

optimal configuration of the EDWC proposed by Kiss and
Ignat [22] with the same feed conditions and design
requirements. The optimisation problem involves 14038
equations, 20 inequality constraints, 15805 variables
including 125 design variables. The initial values, and

lower and upper bounds of the decision variables are given
in Table 5. Here, VF is the reboiler vaporisation fraction of
the main column.
The computational performance of the extended algo-

rithm from six different initial points is provided in
Table 6. The corresponding optimal solutions are provided
in Table 7.
As seen from Table 6, the extended algorithm fails to

converge from the initial point εj = 0.9, whilst it
successfully identifies locally optimal solutions from the
other five initial points. Note that the optimisation starting
from the initial point εj = 0.9 terminates at a point close to
the optimal solution as its TAC is quite close to the optimal
value and the product purities and recoveries are also close
to the required. The number of iterations varies from 591
to 908 with the optimisation time ranging from 2121 to
3742 s. The smallest TAC of 5.382 M$∙year–1 is found
from the initial points εj = 0.1 and εj = 1.0. The best optimal
design is illustrated in Fig. 9. From Fig. 9, the total number
of stages is 76 with the reboiler duty of 19536 kW. Note
that we do consider the entrainer cost in the objective
function to reduce the loss of the entrainer, which was not

Table 4 Economic comparison between EDWC and conventional ED for case study 1

Item Conventional ED (Luyben [28]) Conventional ED (optimal) EDWC

Annualised capital cost/(105 $∙year–1) 2.226 2.326 2.320

Energy cost/(105 $∙year–1) 5.025 3.951 3.754

Entrainer cost/(105 $∙year–1) 0.039 0.012 0.008

TAC/(105 $∙year–1) 7.290 6.289 6.082

Fig. 7 Optimal design of the EDWC for case study 1.
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considered in the design of Kiss and Ignat [22]. As the
entrainer EG which is mainly lost in water product as
impurity is quite expensive, the optimal design tries to
reduce its consumption. This is the main reason why the
mass purity of water product in our design is 0.9987 that is

higher than the required one (0.9980). In other words, the
purity requirement constraint is inactive. This indicates
that it may exclude optimal deign to enforce product purity
or recovery requirements as equalities, which although
may alleviate solution difficulty.

Fig. 8 Optimal design of the conventional ED for case study 1.

Fig. 9 Optimal design of the EDWC for case study 2 with consideration of the entrainer cost (The mass purity is shown in the bracket.
This is similar in the latter figures).
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For a fair comparison with the design of Kiss and Ignat
[22], we use the extended hybrid algorithm to solve the
optimisation problem again but without considering the
entrainer cost in the objective function. The optimal TAC is
about 3.969 M$∙year–1. The optimal design is illustrated in
Fig. 10. From Fig. 10, our optimal design requires 49
column stages, which is similar to that (42) of Kiss and
Ignat [22]. The total reboiler duty is 19480 kW, which is
reduced by 24.4% than that (25775 kW) from Kiss and
Ignat [22] due to a much smaller reflux ratio (1.7 vs. 3.4)
required. The reduction in the reflex ratio indicates that a
smaller reflux rate (481 vs. 923 kmol∙h–1) and a smaller
vapour flow rate (753 vs. 1194 kmol∙h–1) are required in
the main column. As a result, the heat duty of the main

reboiler is 6478 kW in our optimal design, which is
reduced by 48.4% compared to that in the design of Kiss
and Ignat [22] (12563 kW). The reboiler duty in the side
column is similar in both designs (13002 vs. 13028 kW).
Furthermore, the entrainer feed rate is reduced from 335 to
153 kmol∙h–1 in our optimal design. While the number of
stages increases from 14 to 29 in the section 2 to enhance
the separation effectiveness of the ED section, it decreases
from 17 to 12 in both sections 3 and 4. To make up the
decrease in the number of stages in the section 3 (i.e., the
pre-concentration section), more vapour from the section 5
is fed into this section 3 with a larger split fraction (0.78 in
our design vs. 0.4 in the design of Kiss & Ignat [22]).
Finally, we compare the optimal design with and without

consideration of the entrainer cost, which are denoted as
the optimal designs A and B respectively for convenience.
The optimal design B requires much smaller number of
stages than that in the optimal design A (49 vs. 76) due to
much more entrainer (153 vs. 115 kmol∙h–1) fed to the
column in the optimal design B, making the ED easier.
Also, the design A requires a little more heat duty than the
design B (19536 vs. 19480 kW). Therefore, when only
capital cost and energy cost are considered, the TAC of
optimal design A is higher than that of optimal design B
(4.16 vs. 3.97 M$∙year–1). However, 3.25 kmol∙h–1 of the
entrainer make-up is required in the optimal design B,
which is 71.1% more than that (1.90 kmol∙h–1) required in
the optimal design A. As a result, the TAC increases to
6.07 M$∙year–1 when the entrainer make-up cost is also
added in the optimal design B, which is increased by

Table 5 Initial values and lower and upper bounds of the decision
variables for case study 2

Decision variable Initial value Lower bound Upper bound

FE/(kmol∙h–1) 0.01 0.0001 10

RRM/(kmol∙kmol–1) 1.0 0.1 100

VF/(kmol∙kmol–1) 0.5 0.1 0.5

SF/(kmol∙kmol–1) 0.5 0.1 0.99

FB/(kmol∙h–1) 300 10 3000

N1 – 0 10

N2 – 0 60

N3 – 0 20

N4 – 0 20

N5 – 0 10

Table 6 Computational performance of the extended hybrid algorithm for case study 2 from six different initial points

εj 0.1 0.3 0.5 0.7 0.9 1.0

Converged Yes Yes Yes Yes No Yes

Iteration 760 908 591 577 398 601

Simulation time/s 2121 3742 2309 2204 1501 3327

TAC/(M$∙year–1) 5.382 5.383 5.388 5.405 5.388 5.382

Table 7 Optimal solutions for case study 2 from six different initial points

εj 0.1 0.3 0.5 0.7 0.9 1.0

FE/(kmol∙h–1) 1.90 1.87 1.93 1.97 1.85 1.87

RRM/(kmol∙kmol–1) 1.89 1.87 1.90 1.93 1.87 1.88

VF/(kmol∙kmol–1) 0.16 0.16 0.16 0.16 0.16 0.16

SF/(kmol∙kmol–1) 0.25 0.24 0.26 0.27 0.24 0.25

FB/(kmol∙h–1) 112.95 110.65 115.89 119.67 109.16 111.07

N1 2.0 2.0 2.0 2.0 2.0 2.0

N2 54.0 59.0 49.0 44.0 63.0 58.0

N3 12.0 12.0 12.0 12.2 12.0 12.0

N4 12.0 12.0 12.0 12.2 12.0 12,0

N5 6.0 6.0 6.0 6.0 6.0 6.0

TAC/(M$∙year–1) 5.382 5.383 5.388 5.405 5.388 5.382
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12.8% compared to the TAC of 5.38 M$∙year–1 in the
optimal design A. The entrainer make-up cost accounts for
22.8% of the TAC in the optimal design A whilst it
accounts for 34.6% of the TAC in the optimal design B.
This indicates the significance of taking the entrainer cost
into account in the optimal design of the EDWC.

5.3 Case study 3: heat pump assisted EDWC

Luo et al. [23] proposed a heat pump assisted EDWC for
purification of bioethanol, as shown in Fig. 11. The vapour
stream from the top is compressed and then used to
vaporise the bottom stream from the side column in a heat
exchanger HX1 in order to decrease the reboiler duty of the
side column. The outlet hot stream is fully condensed.
Some of them return to the column as a reflux stream,
whilst the remaining are used as the top product. The
entrainer recovered from the column bottom is used to
preheat the feed in another heat exchanger HX2.
Besides all decision variables discussed in the EDWC,

three additional decision variables need to be determined
including outlet pressure of the compressor (P) and areas
of the two heat exchangers HX1 and HX2 (A1 and A2). In
order to avoid getting stuck in some worse locally optimal
solution, the outlet hot stream of the heat exchanger HX2
should be in a two-phase zone or liquid-phase zone
through imposing vapour fraction to be less than 1. This
allows the latent heat released from the condensation to be
used for heating the stream from the column bottom. As a
result, the reboiler duty required is reduced significantly.
At the same time, the cooling duty in the condenser that is
used to cool this outlet hot stream is also reduced.

The initial values and lower and upper bounds of the
decision variables are provided in Table 8. The isentropic
compression model is used for the compressor with the
isentropic efficiency of 0.72 and mechanical efficiency of
1.0.

The computational performance of the improved hybrid
algorithm using six initial points is provided in Table 9.
The optimal decision variables are provided in Table 10.
As can be seen from Table 9, the computational time for

optimal design of the heat pump assisted EDWC is almost
double or triple the time required for optimal design of a

Fig. 10 Optimal design of EDWC for case study 2 without consideration of the entrainer cost.

Table 8 Initial values and lower and upper bounds of decision
variables for case study 3

Decision variable Initial Lower Upper

FE/(kmol∙h–1) 0.01 0.0001 10

RRM/(kmol∙kmol–1) 1.0 0.1 100

VF/(kmol∙kmol–1) 0.5 0.1 0.5

SF/(kmol∙kmol–1) 0.5 0.1 0.99

FB/(kmol∙h–1) 300 10 3000

N1 – 0 10

N2 – 0 60

N3 – 0 20

N4 – 0 20

N5 – 0 10

P/(1.013 � 105 Pa) 3 1.001 10

A1/m
2 100 0 1 � 106

A2/m
2 10 0 1 � 106
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normal EDWC in case studies 1–2. For instance, the
computational time for optimal design of the EDWC
staring from εj = 0.1 is 2121 s (see Table 6), which is
increased to 6566 s for optimal design of the heat pump
assisted EDWC. This is because the heat integration
configuration makes the process more complex. The
extended hybrid algorithm fails to generate an optimal
solution using the initial point εj = 0.7. The best TAC of
4.829 M$∙year–1 is identified starting from the initial point
εj = 0.3. As seen From Table 10, the numbers of stages in
sections 3 and 4 are fractional, not integer due to fractional
values of some bypass efficiencies obtained. Specifically,
there is only one fractional bypass efficiency obtained in
the column section 3, whilst five bypass efficiencies are
fractional in the column section 4. After the fractional
bypass efficiencies are rounded to 0 or 1, the TAC becomes
4.828 M$∙year–1, which is almost the same as the original
TAC of 4.829 M$∙year–1. The slight decrease of TAC is
mainly because the outlet temperature difference of the
HX2 changes from 10.00000 °C to 9.99991 °C, which does
not exactly match the minimum temperature approach (10
°C). However, such violation is negligible and should be
acceptable. The optimal design with TAC of 4.828 M
$∙year–1 is illustrated in Fig. 11. Similar to the case study 2,
the mass purity of water is 0.9988 which is also higher than
the required specification (0.9980).

We compare the optimal design of the heat pump
assisted EDWC with that of the normal EDWC. The
comparative results are shown in Table 11. As can be seen
from Table 11, the capital cost of the optimal heat pump-
assisted EDWC is 4.064 M$, which is increased by 61.0%
compared to that of the optimal normal EDWC (2.524 M$)
due to a much higher capital cost of the compressor
and two heat exchangers used in the heat-pump assisted
EDWC. However, utility cost is significantly reduced from
3.316 to 1.757 M$∙year–1, which is reduced by 47.0%
benefited from heat integration. Although electricity cost is
increased from 0 to 0.614 M$∙year–1, the overall operating
cost still decreases from 4.541 to 3.473 M$∙year–1, which
is reduced by 23.5%. Finally, the overall TAC is reduced
by 10.3% as the reduction in operating cost outweighs the
increase in annualised capital cost.
For a fair comparison with the design of Luo et al. [23],

we use the same specifications as those in Luo et al. [23] to
generate another optimal design. The optimal design is
shown in Fig. 12. As seen from Fig. 12, the reflux ratio is
only 1.84 in our optimal design, whilst it is 4.20 in the
design of Luo et al. [23]. A higher reflux ratio is used in
Luo et al. [23] because they want to ensure that the heat
released from the condenser is enough for the side reboiler.
Intuitively, this seems to be reasonable. However, the large
reflux ratio also increases the heat duty of the reboiler in

Table 9 Computational performance of the improved hybrid algorithm for case study 3 starting from six initial points

εj 0.1 0.3 0.5 0.7 0.9 1.0

Converged Yes Yes Yes No Yes Yes

Iteration step 1519 2175 2234 332 2392 1235

Simulation time/s 6566 6146 7238 1146 7624 3916

TAC/(M$∙year–1) 4.879 4.829 4.851 5.715 4.834 4.847

Table 10 Optimal solutions for case study 3 from six initial points

εj 0.1 0.3 0.5 0.7 0.9 1.0

FE/(kmol∙h–1) 1.94 1.71 1.83 1.99 1.79 1.87

RRM/(kmol∙kmol–1) 2.02 2.18 2.16 3.56 2.23 2.02

VF/(kmol∙kmol–1) 0.15 0.15 0.15 0.15 0.15 0.15

SF/(kmol∙kmol–1) 0.27 0.32 0.31 0.64 0.33 0.27

FB/(kmol∙h–1) 118.65 113.50 120.35 294.78 120.87 114.61

N1 2.0 2.0 2.0 6.4 2.0 2.0

N2 46.0 56.0 45.0 25.6 45.0 52.0

N3 12.0 12.1 12.0 10.3 12.0 12.0

N4 12.0 12.1 12.0 9.9 12.0 12.0

N5 6.0 6.0 6.0 6.7 6.0 6.0

P/(1.013 � 105 Pa) 3.26 3.08 3.08 2.20 3.08 3.15

A1/m
2 854.10 1003.50 986.63 3904.22 1018.83 914.72

A2/m
2 37.04 35.48 37.68 5.04 37.84 35.75

TAC/(M$∙year–1) 4.879 4.829 4.851 5.715 4.834 4.847
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the main column and the burden of the compressor. Note
that the side reboiler only requires MP or even low

pressure steam as hot utility, while the main reboiler needs
more expensive HP steam. Electricity cost required by the
compressor is even more expensive than HP steam.
Therefore, in our optimal design, a small reflux ratio is
used and the condenser only provides a part of heat
required by the side reboiler in order to minimize TAC.
The specific energy consumption in our optimal design and
the design of Luo et al. [23] are listed in Table 12.
As can be seen from Table 12, the design of Luo et al.

[23] requires much more HP steam and electricity
compared to our optimal design, although their design
does not require any MP steam, whilst our design
consumes 3999 kW of MP steam. The equivalent energy
requirement which is defined as equivalent HP steam
consumption required for per kg ethanol production in Luo
et al. [23] is 1.24 kW∙kg–1 for the design of Luo et al. [23],
while it is 1.06 kW∙kg–1 ethanol in our optimal design,
reducing by 14.3%.
The capital cost of the two designs are calculated using

the economic evaluation correlations from Luo et al. [23].
The results are listed in Table 13. As seen from Table 13,
the total capital cost of our design is 3.069 M$, which is
31.4% smaller than that of Luo et al. [23] (4.477 M$). The
most significant reduction in the capital cost appears in the

Fig. 11 Optimal design of the heat pump-assisted EDWC for case study 3.

Table 11 Cost breakdown in the optimal design of the normal EDWC
in case study 2 and the optimal design of the heat pump assisted EDWC
in case study 3

Cost
Normal
EDWC

Heat pump-assisted
EDWC

Capital cost/M$

Column cost 1.707 1.746

Heat exchanger cost 0.818 1.185

Compressor cost 0 1.134

Operation cost/(M$∙year–1)

Utility cost 3.316 1.757

Electricity cost 0 0.614

Entrainer cost 1.225 1.102

Total cost

Total capital cost/M$ 2.524 4.064

Total operation cost/(M$∙year–1) 4.541 3.473

TAC/(M$∙year–1) 5.382 4.828
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total cost of heat exchangers (i.e., HX1 and HX2), which is
reduced by 0.706 M$ from 1.503 to 0.797 M$ due to much
smaller area ofHX1 in our design. Although one additional
side reboiler is required in our design, the area of this side
reboiler is much smaller compared to the decrease in the
area of HX1 due to a large temperature difference (around
75 °C) in the side reboiler. Therefore, the capital cost of
reboilers in our design increases only 0.123 M$.
The capital cost of the compressor in our design also

decreases significantly due to much lower compression
work (1041 vs. 1808 kW). Obvious reduction in the capital
cost of the distillation column can also be observed in
Table 13 because our column has a much smaller column
diameter benefitting from a smaller reflux ratio (1.84 vs.
4.20). Note that for the capital cost evaluation, the column
diameter (2.87 m) is calculated by the internals-sizing
procedure built in Aspen Plus to be comparable with
Luo et al. [23], while the diameter (3.33 m) shown in
Fig. 12 is got from the column diameter correlation used in
our optimisation model.

Table 12 Energy consumption in our optimal design and the design of
Luo et al. [23]

Item Luo et al. [23] Our design

MP/kW 0 3999

HP/kW 10043 6738

Electricity/kW 1808 1041

Equivalent energy
requirement/(kW∙kg–1)

1.24 1.06

Table 13 The capital cost breakdown of the design of Luo et al. [23]
and our design

Cost/M$ Luo et al. [23] Our design

Column 0.912 0.686

Condenser 0.071 0.069

Reboilers 0.356 0.479

Heat exchangers 1.503 0.797

Compressor 1.632 1.038

Total capital cost 4.477 3.069

Fig. 12 Optimal design of the heat pump assisted EDWC for case study 3 without consideration of the entrainer cost.
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6 Conclusions

In this work, we extended the hybrid steady-state and time-
relaxation feasible path optimisation algorithm developed
by Ma et al. [20] for optimal design of the EDWC that is
used for separation of azerotropic or close boiling-point
mixtures. The tolerances-relaxation integration method for
the PTC simulation from Ma et al. [20] was refined to
ensure that the steady state was reached even at the initial
integration phase using large tolerances. Allowing a larger
tolerance for the steady-state simulation in the sensitivity
analysis mode successfully enhanced the converge perfor-
mance of the hybrid algorithm. Although the accuracy of
Jacoain matrix and gradient informaion might be slightly
sacrificed during a few optimisation steps, it is more
important to enable the optimisation to continue instead of
failure. The additional valid lower bounds on the vapour
flow rates and purity of the recovered entrainer improved
the computational efficiency as they eliminated some
infeasible region.
Three case studies from the literature [21–23] have

demonstrated good convergence performance of the
extended hybrid algorithm, and most optimal solutions
can be generated within one hour for the optimisation of
EDWC, indicating the efficiency of the algorithm. For all
the examples, the optimal designs obtained in current work
can lead to a decrease in TAC by more than 10% compared
to those reported in the literature. The importance of
considering the entrainer cost in the objective function has
been demonstrated in the case study 2, which obtained a
design with much less entrainer make-up and achieved a
significant reduction in TAC by around 12.8% compared to
that without consideration of the entrainer cost. It is also
found that product purity constraint was inactive in the
optimal solution, indicating that fixing product purity and/
or recovery to their lower bounds may eliminate the
optimal design. Finally, the optimal design of the heat
pump assisted EDWC was achieved for the first time by
using the extended hybrid algorithm.
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