CO₂ capture using membrane contactors: a systematic literature review Sanaa Hafeez^{1*}, Tayeba Safdar^{1*}, Elena Pallari², George Manos³, Elsa Aristodemou¹, Zhien Zhang⁴, S. M. Al-Salem⁵, Achilleas Constantinou (⋈)^{1,3,6} Division of Chemical and Energy Engineering, School of Engineering, London South Bank University, London SE1 0AA, UK Medical Research Council Clinical Trials Unit, University College London, London WC1V 6LJ, UK Department of Chemical Engineering, University College London, London WCIE 7JE, UK William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA Environment & Life Sciences Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait Department of Chemical Engineering Cyprus University of Technology, Limassol 3036, Cyprus © The Author(s) 2020. This article is published with open access at link.springer.com and journal.hep.com.cn Abstract With fossil fuel being the major source of energy, CO₂ emission levels need to be reduced to a minimal amount namely from anthropogenic sources. Energy consumption is expected to rise by 48% in the next 30 years, and global warming is becoming an alarming issue which needs to be addressed on a thorough technical basis. Nonetheless, exploring CO₂ capture using membrane contactor technology has shown great potential to be applied and utilised by industry to deal with post- and pre-combustion of CO₂. A systematic review of the literature has been conducted to analyse and assess CO₂ removal using membrane contactors for capturing technigues in industrial processes. The review began with a total of 2650 papers, which were obtained from three major databases, and then were excluded down to a final number of 525 papers following a defined set of criteria. The results showed that the use of hollow fibre membranes have demonstrated popularity, as well as the use of amine solvents for CO₂ removal. This current systematic review in CO₂ removal and capture is an important milestone in the synthesis of up to date research with the potential to serve as a benchmark databank for further research in similar areas of work. This study provides the first systematic enquiry in the evidence to research further sustainable methods to capture and separate CO₂. **Keywords** CO₂ capture, preferred reporting items for systematic reviews and meta-analyses, membrane contactor, absorbent Received April 15, 2020; accepted July 16, 2020 E-mail: constaa8@lsbu.ac.uk # 1 Introduction The global energy consumption has doubled since the year 1970 predominated by fossil-based fuels such as oil, natural gas and coal [1]. These conventional resources have accounted for more than 80% of the global primary energy consumption in 2015 [1]. The total energy consumption is expected to increase by up to one third by 2060, and electricity consumption is projected to double as well [1]. Energy from renewable sources and nuclear power are growing at a rapid rate of 2.6% and 2.3% per year, respectively. Nevertheless, the reliance on fossil fuels will not decline as it is forecasted that fossil fuels will represent 78% of the world's energy use by 2040 [2]. Fossil fueled power plants account for approximately 40% of the total CO₂ emissions, with coal fired power stations being the predominant contributor [3]. The combustion of these fossil fuels produces CO₂ at high rates which is recognised as the main greenhouse gas that contributes to climate change. The anthropogenic increase of atmospheric CO₂ concentration in the environment is projected to cause substantial fluctuations in the climate. It is estimated that approximately half of the existing CO₂ emissions are absorbed by the ocean and land ecosystems. However, sensitivity of climate and atmospheric CO₂ concentrations create the feedback carbon loop [4]. On the other hand, CO₂ has a growing potential for by-product end-use in both the industrial and energy production sectors. The utilisation of CO₂ as a by-product would reap economic benefits as well as simultaneously alleviate the concerns regarding global climate change [5]. There are currently three main technologies which have been developed and implemented to capture CO₂ from fossil fuel combustion plants. These are pre-, post- and ^{*}These authors contributed equally to the work. oxyfuel combustion [6]. The latter comprises of burning the fuel with almost pure O₂ as an alternative to air. In order to regulate the flame temperature, some part of the flue gas is recycled back into the furnace/boiler segment [6]. The key purpose of using this technology is to produce a flue gas with a high concentration of CO2 and water vapour; and consequently, remove the CO₂ from the flue gas by dehydration coupled with a low temperature purification process [6]. The pre-combustion technique is a mature technology and has been used in the chemical industry for over 90 years. Here, the primary fuel is processed with steam and air/oxygen to produce synthesis gas (mixture consisting mainly of H₂ and CO). Excess H₂ and CO₂ are produced by reacting steam and CO in a shift reactor. The CO₂ is then removed, typically by a physical or chemical absorption process, subsequently in a H₂-rich fuel which can be used in various applications, such as boilers, furnaces, gas turbines, engines and fuel cells [7,8]. Post-combustion is also often used to remove CO₂ which is produced from the flue gases generated by the combustion of the fuel in air. Normally a liquid solvent is used to obtain the small fraction of CO_2 (3%–15% by volume) which is present in the flue gas consisting mainly of N2. Current post-combustion systems will often use an organic solvent, such as monoethanolomine (MEA), in a modern pulverised coal or natural gas combined cycle power plant [8,9]. Membrane contactor technology refers to tubular reactors that possess both chemical reaction and product separation units. This type of technology is widely applied in industries due to its lower capital costs and facilitation of the reaction in reaching equilibrium for the desired reaction. These reactors are the most applied in dehydrogenation reactions. H₂ molecules can permeate through the membrane and increase conversion and make the process more economically efficient. Due to this application, membrane contactor technology has gained great popularity in recent years for application in CO₂ capture, which has been demonstrated by the studies discussed in this paper. There are two common types of membrane contactors, inert and catalytic. The former reacts as a barrier, whereas in the latter the membrane is coated or compiled from a catalyst material so that can facilitate the reaction [10]. On the other hand, membrane adsorption refers to the phenomena of species separation within the membrane contactor due to the presence of functional groups of the membrane, or the sorbent utilised for the system. These are often applied in spent metal recovery and water treatment methods [11]. Membrane contractors promote contact between two phases through hydrophobic membranes and are mostly applied for industrial degassing of liquids and can also be categorised in hollow fibre membrane (HFM) contractors due to their arrangement and functionality. Membrane-based systems for the removal of CO₂ have demonstrated great superiority over conventional ones, and it has become imperative that they overcome existing issues of CO₂ separation and removal in pre-combustion and post-combustion systems [12]. One of the noticeable advantages of a membrane contactor system is that the reaction and separation units of the process are combined to give a single unit. As a result, the need for additional separation units is eliminated, thus making the process greener and environmentally sustainable [13]. There are three main systems which are often used as membrane processes for CO₂ removal (Fig. 1). These are (a) nondispersive contact via a microporous membrane; (b) gas permeation (using dense membranes); (c) supported liquid membranes. Non-dispersive membranes are often applied in post-combustion capture systems [14]. This type of membrane configuration has a high degree of operational flexibility because of the independent control of the gas and liquid flow rates, as well as an interfacial area which can be controlled and makes it easier to predict the performance of the membrane contactor. In addition, the modularity of the membrane contactors allows linear scaleup, and the system is compact and energy efficient. Issues **Fig. 1** Schematic of systems for CO₂ removal: (a) non-dispersive contact via a microporous membrane; (b) gas permeation; (c) supported liquid membranes. Reprinted with permission of Elsevier from [12]. regarding the flooding, channelling and entrainment are also avoided since the two phases flow on opposite sides. Furthermore, the mass transfer of CO₂ from the gas to the liquid phase does not have a large impact on the gas flow due to the low concentration of CO₂ in the gas phase [14]. Other membrane separation systems such as distillation, extraction and electrophoresis can also be utilised. Stripping is another common separation process where single or multiple components are absorbed from a liquid stream by a vapour stream for the separation of dilute volatile organic compounds from an aqueous solution [15,16]. In this work, a systematic literature review was conducted to inform the reader about all the published studies performed in the area of CO₂ removal using various membrane-type contactors. Figure 2 depicts how the use of membrane contactors for CO₂ removal has increased throughout the years and is predicted to continue to do so. A detailed description of the methodology is provided to deliver an insight into how the review was performed, based on the guidelines for conducting systematic literature reviews [17]. Subsequently, the methodology section is followed by the results and discussion to assess and analyse the findings of the study. To our knowledge this is the first systematic review in the topic of CO₂ removal using membrane-type contactors. Fig. 2 Popularity of membrane contactors for CO_2 removal throughout the years. # 2 Methods A systematic enquiry was set by using a defined search strategy and run on the 8th January 2018 across three databases: Web of Science (WoS), Google Scholar and PubMed. This was done to gather peer-review articles, conference proceedings, editorial letters, books and grey literature with no language, time or geographical restrictions in our search. We imported all references to an EndNote library, removed duplicates and screened for relevance based on title and abstract. ## 2.1 Search strategy A search strategy was devised using only "CO2" and "membrane" in the title. Although a third keyword could have been added to refer to the process of isolating the CO₂, this was intentionally left out. This was done as many studies use for example a specific absorbent membrane type of membrane and hence, do not use words like capture, removal, separation or other synonyms as such to describe this. Similarly, instead of trying to gather a list of potential solvents used to absorb CO₂, we kept a few basic search terms and the search strategy simple. We then used the information from the collected studies to fill the knowledge gap around the type of membranes used so far by researchers in the area of CO₂ removal. Compared to systematic reviews performed in the field of healthcare where the titles can be longer and more descriptive, most engineering articles contain information in the title about the equipment and material(s) used. #### 2.2 Inclusion/exclusion criteria Only studies that concerned the absorption of CO₂ in membrane contactor systems were included. For example, studies focusing on membrane systems for medical and nature applications were excluded. We adopted the widely recognised preferred reporting items for systematic reviews and meta-analyses (PRISMA) flowchart to demonstrate the steps in the undertaken methodology and results. Figure 3 details the PRISMA flowchart for this work. #### 2.3 Outcome analysis Prior to conducting the review, we have considered the following items to be important variables in synthesising the research in this area: membrane material, contactor type, flow configuration, absorbent (molarity), wetting, average flux (mol·min⁻¹·cm⁻²), gas flowrate (mol·min⁻¹), liquid flowrate (mL·min⁻¹), CO₂ in inlet feed (%), CO₂ removal (%). The above information was extracted for each paper. Unless the average flux was provided by the authors, we have manually calculated it using the formula below: $$\overline{f} = \frac{\text{inlet molecular flow}\left(\frac{\text{mol}}{\text{time}}\right) \times \text{conversion}(\%)}{\text{membrane surface area}}, (1)$$ where the conversion (%) refers to the amount of CO₂ removed. # 3 Results We have identified 2650 studies through electronic Fig. 3 The PRISMA flowchart of the methodology. searches of WoS (n = 2038), Google Scholar (n = 478) and PubMed (n = 134). There were 341 removal of duplicated records. We have excluded 1773 through scanning titles and reading abstracts and retrieved a total of 877 full-text articles for further assessment. The 352 upon full-text did not meet the study criteria, and hence were subsequently removed. We included 525 studies in the final review. # 3.1 Excluded studies The excluded studies encompassed those that did not meet the criteria of using a membrane structured reactor. Of the total 877 studies, 122 of the papers had no text available or could not obtain access, leaving 755 studies. To keep the focus of this paper on published and established CO₂ membrane applications, non-peer-reviewed sources such as masters or doctoral degree theses were later excluded (17). Also, since patents do not provide scientific results, were also excluded (16). Lastly, as the aim of this paper was to compile data on CO2 membranes, biological membranes, such as plant or animal-based membranes for CO2 transfer were not included as they demonstrated applications in biological systems (17). CO₂ capture and separation has been of interest to many research possibilities, especially with novel membrane technologies. A further 181 studies discussed the potential application of new membranes into CO2 capture by either theoretical modelling or conducting preliminary experiments to study the permeances of the membrane. However, they did not provide enough parameters to be included in the review as these new innovations need further research before they can be used for industrial capture applications. #### 3.2 Included studies We have included 525 studies in this systematic review. There were 77 studies on computational modelling, where different programmes such as Aspen Plus, COMSOL, Aspen HYSYS and MATLAB were utilised to stimulate a preliminary application of CO_2 membrane capture. A total of 21 review papers that discussed existing membrane capture technologies, showcased a range of membrane from zeolites to polymeric to ionic liquid membranes (ILMs). Other studies (n = 427) varied between demonstrating an application of CO_2 membrane capture to small scale lab experiments to determine the potential of the proposed method. The remaining 427 studies were on. # 3.3 Summary of main results #### 3.3.1 Membrane material The porosity and pore size of the membrane are the most significant factors to take into consideration since the contact between the gas and liquid phases occur solely on the pores of the membrane. It is imperative to have a good chemical suitability between the membrane contactor and the solvent, as the absorption liquid determines the selectivity of the separation [12]. Figure 4 demonstrates the principle of CO₂ separation using a membrane. Here, the membrane determines the permeability and selectivity of the process and so the use of liquids is not required [18]. Gas permeation membrane technology is predominantly used in pre-combustion systems. However, such membranes are being developed for post-combustion systems as well. The use of supported liquid membranes for CO₂ removal have gained increasing attention due to ionic liquids being used as solvents. In this membrane configuration, the pores of the membrane are saturated with a liquid, or the liquid is supported on the surface of the membrane. Ionic liquids are mostly attractive in a membrane separation device due to their very low volatility which minimises solvent losses from the membrane [19]. Fig. 4 Principle of CO₂ absorption using membranes. Reprinted with permission of Elsevier from [20]. The most popular type of membrane (28%) was found to be the hollow fibre (n = 149) [20–168]. Figure 5 shows a schematic of how absorption occurs in a HFM. The second most common membrane (15%) was observed to be mixed matrix membranes (MMMs) (n = 78) [169–246]. The average flux for these ranges from 3.95×10^{-3} to 1.8×10^{-12} mol·cm⁻²·min⁻¹. HFM work to imitate the function of pulmonary capillary bed packing function where the oxygenation can be optimised by manipulating the gas delivered to the oxygenator. HFM combines chemical absorption with membrane separating technology, allowing for higher selectivity and smaller dimensions (compared to typical separation columns) to be achieved. The mass transfer mechanism resembles that of the shell-tube heat exchanger, thus causing the concentration gradient to be the driving force. Since HMFs are modular systems, the interfacial area can be significantly increased and scale-up operations can become relatively simple when compared to conventional separation systems [247]. Due to their better performance, HFMs were one of the first membrane systems to be investigated for gas separation systems. This is also supported by the high number of studies testing HFM with relatively higher flux values. However, the flux values sit within a huge range, with the majority being in the lower end. This could be the result of membrane wetting, as membranes can become partially wet by the absorption liquid and significantly reduce performance. Fig. 5 Schematic showing how absorption occurs in a HFM. Reprinted with permission of Elsevier from [25]. MMMs combine the inorganic fillers with polymeric properties thus giving rise to a huge potential for gas separation industry. These have exhibited versatile performance, with different kind of solvents, ranging from water, ethanol, hydrochloric acid to amine solvents. Since this utilises polymeric properties, the majority of MMMs (3%) are made from different types of polymer materials but face commercialisation issues on a large scale. Metal-organic frameworks (MOFs, n = 14, 3%) [211,248–260] are one of the recent inventive solutions for CO₂ separation, with 14 studies exploring the potential. The physical characteristics such as high porosity and surface area along with adjustable pore size and versatile structural arrangement makes it an ideal membrane. The studies above have shown better results than conventional zeolites and polymeric membranes, in conjunction with different kinds of solvents (from alcohol to amine solvents). Poor mechanical properties along with thermal and chemical stability are amongst one of the major limitations of MOFs. Intercrystalline voids or any internal damage within the layers significantly reduces the membrane selectivity. As MOFs are a relatively new membrane advancement than zeolites or polymers and coupled with their limitation makes them a less popular choice amongst other types. A total of 110 studies utilised polymeric membranes (21%) [46,48,52,62,77,102,117,134,152,227,229,250, [261-358] or zeolites (n = 27, 5%) [[359-385] and have been a major part of CO₂ separation. These membranes have been applied and used throughout industry for the last three decades and have shown great potential. The studies have shown enhanced performance of these membranes in hybrid and composite forms. The average flux ranged from 1.3×10^{-1} to 3.33×10^{-9} mol·cm⁻²·min⁻¹, thus displaying a great potential. Furthermore, these can be applied with organic and inorganic solvents, making them more versatile, with water solvent displaying the best results. However, polymeric membranes are subject to mechanical and structural change over time, as well as low surface area per unit of volume, and results in low selectivity and permeability values on a large scale. This is supported by the lower range of flux values, where the majority lie under 1 mol·cm⁻²·min⁻¹. The main current challenge is the plasticisation of suppression of polymer membranes along with the economic implication involved in increasing the membrane area to obtain higher flux values. To overcome this, many studies have experimented on hybrid polymer membranes by integrating them into other membrane structures. Peters et al. [302] studied acid gas sweetening using amine absorption and a two-polymer membrane structure and achieved a flux of 2.3 × 10⁻³ mol·cm⁻² ·min⁻¹. The value of flux refers to the performance of membrane and the effect it has on the molar flux of the membrane, considering the ratio of its permeability against the thickness. The membrane technology was reported to achieve a content of 2% CO₂ in the product gas as a final target, with a two-stage configuration for a purity of 90% CO₂ within the permeate stream of the second membrane stage. The flux of the membrane was also considered in the simulation environment exercises conducted. Though a good membrane performance was exhibited, the group also reported further work to evaluate the capital costs of the separation system and thus indicating the persistent challenge between price and performance. Zeolites have been extensively used as catalyst throughout the industry and have shown potential in membrane technology in the last twenty years but have not been as successful as novel MMMs or HFMs. These have exhibited average flux in the range of 1 \times 10 $^{-2}$ to 3.02 \times 10 $^{-6}$ mol \cdot cm $^{-2}$ \cdot min $^{-1}$ and have displayed poor mass transfer within the membrane. Zeolites are desired for numerous reasons, the main one being the durability and economic cost, as well as their ability to work with different kinds of solvent [386]. However, further research is required to study and establish better reaction conditions to achieve better mass transfer within the system. ILMs (n = 24, 4%) [112, 360, 387–408] are one of the recent advancements in membrane technology. They have a liquid component in the system which allows for the system to have a higher diffusivity, thus resulting better permeability as well allowing the system to be modified by adding on complexes to enhance the CO_2 solubility. Nevertheless, ILMs still need to be further developed to withstand high temperatures and demonstrate how their hydrodynamics work. This can explain why there only 23 (4%) studies on ILMs, with an average flux in the range of $1 \times 10^{-3} - 5.03 \times 10^{-9} \text{ mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$. Due to the great potential of ILMs, some studies have experimented on different ways forming ILMs. Karousos et al. [390] developed ILMs through physical inhibition of ionic liquid in ceramic tube, consisting of mesoporous separation layer. The group tested different types of ionic liquids but a flux of $8.1 \times 10^{-7} \text{ mol} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$ was only exhibited by one type ionic liquid as well as being limited to high temperatures and CO₂ mole fractions. ILMs are yet to be successfully applied in industry for long-term systems. Most studies are focused on investigating support membranes, viscosity of ionic liquids and preparation methods. The upcoming and major challenges for ILMs can be summarised in the following points, thus reflecting the piqued interest but low popularity, due to that: 1) Adsorption capacity of ionic liquids in membrane separations; 2) ionic liquids although they show great performance promise, are toxic; 3) overcoming selectivity, stability and recycling issues; 4) finding an economically feasible method of ILM development and membrane set- The flux range and the number of studies in this paper are higher than zeolite and MOFs, showing great promise and potential for CO_2 capture. There were 22% (n=117) of studies [89,409–524] which tested different materials and belong in the 'other' category due to the vast variation in materials, such as ceramics, caesium incorporated, biocatalytic membrane materials, and capillary membrane as well hybrid membrane forms of polymer and MMMs for example. The remaining 34 studies (6%) [525–546] have not conveyed any information relating to the membrane material. Figure 6 displays the percentage of studies utilising the various mentioned membranes. # 3.3.2 Contactor type There were three types of membrane contactors observed across the 525 studies: flat sheet (FS) (n = 79, 15%) [90, 93,98,117,127,137,180,181,187,193,199,212,218,222, 230,238-240,243-245,248,249,256,267,268,278,282, 284,287,289,302,305,312–315,317,321,323,324,326,329, 333,336,338,343–345,347,352,356,358,360,391,398,399, 404,408,422,426,438,449,450,453,465,467,476,481,500, 503,508,515,521,522,524,531,538,544], facilitated transport (FT) (n = 36, 6%) [21,32,50,86,135,136,188,272,276, 283,288,325,335,387-390,392-397,399-403,421, 423,431,468,482,510,517,518], and HFM (n = 176, 32%) [20,22-49,51-63,65-84,87-89,91,94-97,99-111,113-116,118-126,128-134,138-148,150-168,174,183-185,192,195–197,204,261,262,276,284,288,291– 293,307,311,322,331,364,387,390,392,412,426,429,430, 434,435,439,489,492,507,516,519,527,528,530,535,540, Fig. 6 Percentile of types of membranes utilised for CO₂ capture determined from this work. 541]. There were 175 (33%) studies that had other membrane contactor types (for example, water gas shift/ membrane hybrid, and poly(ethylene oxide) based block copolymers contactors), which do not fit into the above mentioned categories [64,85,170–173,175,176,178, 179,182,189,191,194,200-203,206-211,231-233, 241,242,246,247,253,260,263-266,271,273,274, 277,279,281,283,285,286,290,295–301,303,304, 306,308-310,316,318-320,327,328,332,334,337, 339,340,342,346,348,350,351,353–355,357,359,361, 363,366,367,370-372,374-378,380,381,385,386,405-407,410,411,413-418,420,424-428,432,433,436,440, 442-448,451,454-458,460-462,464,466,469,470,472-475,477-480,483-488,490,491,493,494,497-499, 501,502,505,509,512-514,520,523,532,533,536,537, 539,542,545]. The remainder 72 studies (14%) did not contain any information on the membrane contactor type [92,112,149,169,177,186,190,198,205,213–217,219–221, 223-229,234-237,250-252,254,255,257-259,269,270, 275,280,294,330,341,349,362,365,368,369,373,379, 382-384,409,419,437,441,452,459,463,471,495,496,504, 506,511,525,526,529,534,543,546]. FT is also known in the application of supported liquid membranes, referring to ILMs in this review. The FT mechanism refers to a form of passive transport where external species are used to aid the transport. The molecules move across the membrane with the help of membrane proteins and the membrane possesses the ability to transport larger molecules. This is usually affected by the temperature, which is supported by the fact that ILMs have better stability, and thus can withstand higher temperatures, resulting in higher flux values. Concentration is another influential factor that affects the transport mechanism [547]. FS membrane configurations (Fig. 7) are most known for their application in bioreactors [548]. Hollow fibre reactor configurations (Fig. 8) provide higher fluxes and this is supported by review data presented in the supplementary material. HFM provide better gas permeability across the membrane, evidently supported by the number of studies utilising HFM. They are also easy to maintain with minimal pre-screening and requiring mild cleaning to maintain the fibre exterior. FS membrane configurations do not allow for the membrane to back pulse, and so the risk of membrane fouling increases because the impurities cannot be frequently removed [548]. However, FS is a common choice from a maintenance perspective because of the application of gravity flow, saving the systems from using effluent pumps thus saving cost and energy in operation [549]. They have a longer lifetime but are not commonly manufactured across industry, making the initial investment costly. The arrangement of FT membranes (Fig. 9) enables high selectivity and high flux as well as better stability. Fixed carrier membranes, where the ionic liquids were adsorbed on the support, exhibited better stability in terms of higher reaction pressures and temperatures, when compared to the flat liquid sheet membrane configuration. Hence, they have higher potential for recyclability. The reason being simply that adsorbed ionic liquids are stronger anchor on the support than the freely standing ionic liquids. Table S1 (cf. Electronic Supplementary Material) shows that higher flux values are exhibited by HFM, followed by FT and then FS. # 3.3.3 Flow configuration Figure 9 shows different types of flow configuration that were used across the studies: co-current (n = 117, 22%) [21–24,26,32,34,36–38,41,46,52,53,58,61,63–65,67,73, **Fig. 7** (A) Flat membrane microstructured contactors: (a) picture of assembled device of the Polytetrafluoroethylene (PTFE) single channel contactor, (b) picture of the assembled device of the 8-channel PTFE contactor, (c) exploded schematic view of the single channel contactor. Reprinted with permission of ACS Publications from [321]; (B) schematic representation of absorption in hydrophobic FS membrane. Reprinted with permission of Elsevier from [422]; (C) FS pilot scale membrane module. Reprinted with permission of Elsevier from [282]; (D) schematic illustration of thin-film composite polaris membranes. Reprinted with permission of Elsevier from [323]. Fig. 8 (A) Configurations of membrane modules: (a) shell side feed, counter-current flow, (b) shell side feed, co-current flow, (c) shell side feed, counter-/co-current flow (permeate withdrawal from both ends of the fibre bores), (d) bore side feed, counter-current flow. Reprinted with permission of ACS Publications from [30]; (B) schematic representation of (a) polybenzimidazole (PBI) HFM module used for permeation at high temperature, (b) Individual HFM partially coated with polybenzimidazole-4,4'-(hexafluoroisopropylidene)bis (benzoic acid) (PBI-HFA) and lumen plugged with PBI sealant. Reprinted with permission of Elsevier from [63]; (C) hollow fibre modules for gas permeation experiments. Reprinted with permission of Elsevier from [56]; (D) schematic diagram of hollow fibre gas permeation test apparatus. Reprinted with permission of Elsevier from [61]; (E) schematic of the bench-scale HFM photo-bioreactor (HFMPB) system. Reprinted with permission of Wiley from [43]. **Fig. 9** (A) Schematic diagram of (a) the reaction between hyperbranched polyethylenimine (HPEI) and trimesoyl chloride (TMC), and (b) the fabrication process for the HPEI/graphene oxide-TMC composite membrane. Reprinted with permission of ACS Publications from [481]; (B) schematic of the preparation procedure for the MMM. Reprinted with permission of Elsevier from [449]; (C) schematic of gas permeation through a FT. Reprinted with permission of ACS Publications from [98]; (D) schematic of mesoporous silica sieve SBA-15/ carbon molecular sieve composite membrane. Reprinted with permission of Elsevier from [283]. 74,76,77,81,83,86,97,109–111,113,123,132,165–167, 171,177-179,182,195,217,226,236,238,241,242,244, 245,253,261,262,275,282,284,288,290,292,300,311,312, 314,319-322,327,336,338,344,346,347,356,357,359, 365-367,376,387,388,390,392,394,395,397,400,403, 407,408,410,412,419,422,424,434,446,447,462,468,472, 487,488,490,507,510,515,522,528,531,533,535,536,538, 546], counter current (n = 118, 22%) [20–22,24,25,27,30, 33,40,42,44,45,47–49,54,56–58,60,65,66,69,71,72,74,75, 80,82,85,87-89,91,98-102,104,105,108,113,115,117,119, 120,124,125,128,134,138,140-144,147,148,151,153,154, 156,157,160,161,163,168,186,187,196,197,249,263,278, 279,300,302,326,339,344,345,350,358,382,383,396,397, 411,413,418,421,428-430,433,439,453,458,461,465-467,470,477,489,505,509,514,516,520,521,526–528, 530,534,544], and cross flow (n = 41, 8%) [51,78,92,94– 96,103,114,130,131,139,146,150,152,155,194,196,225, 287,293,308,322,323,333,344,351,353,406,413,417,432, 451,454,456,486,491,494,495,502,523,526]. The rest 258 studies (49%) contained no information regarding the flow configuration used [28,31,35,43,50,55,59,62,84,90,93, 106,107,112,116,118,121,122,126,127,129,133,135–137, 145,149,158,159,162,164,169,170,172–176,180,181, 183-185,188-193,198-216,218-224,227-235,237,239, 240,243,246,248,250–252,254–260,264–274,276,277, 280,281,283,285,286,289,291,294–298,299,301,303– 307,309,310,313,315–318,324,325,328–332,334,335, 337,340–343,348,349,352,354,355,360–364,368–375, 377-381,384,385,389,391,393,398,399,401,402,404, 409,414,415,420,423,425-427,431,435-438,440-445, 448-450,452,455,457,459,460,463,464,469,471,473-476,478-485,492,493,496-501,503,504,506,508,511-513,517-519,524,525,529,532,537,539-543,545]. In many cases both co- and counter-current flow were studied to see the effect on mass transfer and membrane performance. Co-current and counter flow configurations are most utilised across various disciplines, due to the developed understanding of mass transfer phenomena. However, it is not possible to say whether one is better than the other. It can be summarised that these flow configurations provide better performance (with their respective membrane application) when compared to other types of flows. Studies that solely used co-current configuration displayed an average flux in the range of 1×10^{-1} – 1.72×10^{-17} mol·cm⁻²·min⁻¹ with the higher values corresponding to ILMs suggesting that co-current flow is better suited for ILMs. The study of counter current flow was mostly exhibited in HFMs and displayed larger mass transfer range, 5.5×10^{-1} – 8.7×10^{-11} mol·cm⁻²·min⁻¹. This indicated the better performance to be due to better concentration gradients being established at the gas liquid interfaces. However, the lower flux value suggest that this flow is subjective to situation and experimental conditions. A flux of 8.7×10^{-11} mol·cm⁻²·min⁻¹ was obtained at a lower gas flow rate and 0% N-Methyl-2-Pyrrolidone solvent. Counter current configuration seems to display better mass transfer rate with amine and salt solvent, with high and low inlet feed conditions. Some studies experiment with cross-flow, where the feed travels tangentially across the membrane. Theoretically, this provides better contact as there is more random contact between the membrane and the gas, but the results do not provide promising mass transfer. The flux range was between 2.94×10^{-4} and 1.2×10^{-12} mol·cm⁻²·min⁻¹. However, these were tested with butanol and amine solvents. Further testing with different types of solvents could potentially provide a different result. Fig. 10 Types of flows (by count) determined from the included studies. # 3.3.4 Solvent (with molarity) The solvent choice is an important factor in membrane separation, as it directly impacts the economic aspect of the process as well as aid to indentify the right low energy solution for CO₂ processing. Three distinctive types of solvents were found from the studies; amine solvents (n =104, 20%) [20,21,25,32–34,36,37,39,40,42,49,51–53, 57,59,60,67,68,70,72,79,85,87,91–96,98,100,103,105, 107,109,114,115,119,120,122,124,125,129–131,138,140, 141,143,144,146,151–155,157,166,168,171,206,213, 217,233,241,263,271,276,287,288,296,300,302,309,310, 317,324,327,331,339,357,396,402,404,408,411,412,422, 425,434,439,453,458,469,476,491,498,503,505,521,529, 538]. CO₂ capture using amine solvents has been practiced since the 1950s and therefore is a well understood and developed process. This is supported by the number of studies testing CO₂ separation using amines solvents. Typical membrane separation operates at 60 °C, which makes it extremely desirable to be an energy efficient option. The flux for amine solvents range from 1.1×10^{-1} $1.75 \times 10^{-16} \text{ mol} \cdot \text{cm}^{-2} \cdot \text{min}^{-1}$. For 1.1×10^{-1} mol·cm⁻²·min⁻¹ an MEA solvent was used in a polymer matrix [288]. For $1.75 \times 10^{-16} \,\mathrm{mol \cdot cm^{-2} \cdot min^{-1}}$ the group used same MEA solvent in FT membrane contactor with a feed inlet of 41% [21]. Large variation in flux ranges support the low absorption capacity of amine solvents as well as high reactivity, stability and thermal degradation There were 58 studies (11%) which utilised various kinds of inorganic solvents such as metal nitrates and silane [22,47,61,71,73,89,90,106,123,149,150,159,162, 170,172,173,192,195,200,207,208,229,237,239,240,245, 256,269,311,315,320,321,325,367,370,372,378,416,419, 420,424,427,444,448,450,452,456,460,473,478,492,501, 502,506,511,512,515,523, and amides (n = 44, 8%) [24, 26,63,82,99,101,133,139,176,184,187,197,198,209,216, 227,231,252,262,270,272,274,279,301,326,334,336,346, 347,349,351,352,379,385,395,400,401,407,465,467,474, 475,490,514]. Amide solvents are typically known for their use in pharmaceuticals and manufacturing materials such as Kevlar [550]. Their widespread application led to new and upcoming ideas for organic amide solvents for membrane operations. Particularly due to their relatively easy synthesis process as well introducing a huge variety of amide solvents possibilities that can be utilised. The flux values range from 9.66×10^{-5} – 9.55×10^{-14} mol·cm⁻²·min⁻¹. Though amides are known to have comparatively better permeability and selectivity, further research is required to find the optimum operating conditions to achieve stable values of flux. 41 studies (8%) used water and ethanol solvents [38,55, 108,112,135,164,175,178,181,201,204,214,215,222,223, 238,242,246,260,278,285,298,304,307,318,328,329,335, 350,361,369,375,382,388,403,451,480,481,486,500,518]. It was found that 93 studies (18%) showcased the use of general organic solvents such as alcohols, acids and salts [23,27,30,31,44,46,48,62,65,66,75–78,80,84,88,102,116, 118,132,161,163,169,180,182,186,191,193,194,196,203, 196,210-212,218,221,225,228,235,236,243,248,249,257, 261,264,266,268,273,280,286,289,295,297,316,319,332, 340,342,348,352,355,360,365,377,387,389,391,397,399, 405,406,410,414,415,423,428,433,435,438,454,459,464, 479,482,487,494,508,517,519,521,522]. The use of organic solvents is preferred due to economic opportunities that arise as well as being more environmentally friendly, hence a considerable interest in organic solvents. The flux range between 3×10^{-3} – 1.17×10^{-6} mol·cm⁻²·min⁻¹. As organic solvents do not provide high flux values, this might be linked to the membrane roughness and some structural changes a membrane can undergo when in contact with organic solvents [551]. The absorption efficiency of organic solvents is theoretically better than amine solvents. This is supported by a smaller flux range for studies that used organic solvents, indicating consistent behaviour. More recently, membrane contactors which utilise immobilised enzymes, such as carbonic anhydrase (CA), for effective CO₂ removal have been studied. For applications at low concentration CO_2 (<1%, v/v) and near atmospheric reaction conditions, CA is the most efficient catalyst for CO₂ hydration and dehydration, with a turnover number of 10⁶ mol_{CO₂}·mol⁻¹_{CA}·s⁻¹. The reaction rate catalysed by CA is much faster than the rate at which CO₂ complexes with other solvents such as MEA [552,553]. The remaining 185 studies (35%) had no information about solvent types [28,29,35,41,43,45,50,54,56,58,64, 69,81,83,86,97,104,110,111,113,117,121,126–128,134, 136,137,142,145,147,148,156,158,160,165,167,174,177, 179,183,185,188–190,199,202,205,219,220,224,226,230, 232,234,244,250,251,253–255,258,259,265,267,275,277, 281-284,290-294,299,303,305,306,308,312-314,322, 323,330,333,337,338,341,343-345,353,354,356,358,359, 362-364,366,368,371,373,374,376,380,381,384,390, 392-394,398,409,413,417,418,421,426,429-432,436, 437,440-443,445-447,449,455,457,461-463,466,468, 470-472,477,483-485,488,489,493,495-497,499,504, 507,509,510,513,516,520,524–528,530–537,539–546]. Figure 11 shows a visual representation of the different types of solvents and the number of studies that utilised them. Inorganic membranes provide better flux values because organic solvents can cause denaturing of membranes at high temperature operations. Fig. 11 Types of solvent used in the included studies. # 3.3.5 Wetting Wetting refers to the angle the solvent makes with the membrane, hence determining the solvent dispersion on the membrane surface. It was found that 8 studies (1.3%) used hydrophilic membranes [54,225,337,433,491,492, 515,522]. The majority of the studies (n = 341, 65%)exhibit a phobic behaviour between the solvent and the membrane [20,22–24,26,27,30,31,34–40,42,44,46–53,55, 56,58-69,71-78,80,82-86,88-91,94-109,111,114-118, 121–123,125,127,129,130–132,133,134,135,137,139, 141,143–146,151–157,159,161,163,164,166–171,174, 176–181,183–185,188–194,198–211,213,214,216–218, 222-224,226-228,230,233-36,238-240,242,244,246, 250,252, 253, 258, 261, 262, 264–270, 272–274, 276–283, 285,286,288-305,307-336,338-356,358-360,362,364, 365,368,376,377,380,383,384,393,394,400,405,408,410, 411,415,419,426-428,431,434,435,437,438,443,445, 447-451.453.454.456.458.459.463-467.472.473.475. 478-480,482,483,484-489,496,497,500-502,505, 506,508,513,514,516,517,519,521,523,524,528,533,538, 543]. One of the reasons for the low popularity of hydrophilic membranes is the low thermal and chemical stability of membranes, which in turn has an effect on the flux, demonstrated in Table S1, with the values ranging from $1.1 \times 10^{-3} - 1.2 \times 10^{-10} \text{ mol} \cdot \text{cm}^{-2} \cdot \text{s}^{-1}$. Hydrophobic membranes have better thermal stability and along with lower transport resistance these makes them more appropriate for gas separation applications and a popular option for gas separation studies [554]. The remainder 176 studies (34%) had no information about wetting [21,25,28, 29,32,33,41,43,45,57,70,79,81,87,92,93,110,112,113,119, 120,124,126,128,136,138,140,142,147–150,158,160,162, 165,172,173,175,182,186,187,195–197,212,215,219– 221,229,231,232,237,241,243,245,248,249,251,254–257, 259,260,263,271,275,284,287,306,357,361,363,366,367, 369-375,378,379,381,382,385,387-392,395-399,401-404,406,407,409,412-414,416-418,420-425,429, 430,432,436,439-442,444,446,452,455,457,460-462,468-471,474,476,477,481,490,493-495,498,499, 503,504,507,509-512,518,520,525-527,529-532,534-537,539-542,544-546]. # 3.3.6 Average flux Molar flux is known as the amount of substance passing across the membrane, per unit of area and is one of the key parameters to evaluate the performance of a membrane. A higher indication of flux represents effective utilisation of the membrane surface. The flux values ranged from 10^{-17} to 10^{-13} mol·cm⁻²·min⁻¹. In 10 studies (2%) the flux values were lower than 10^{-10} mol·cm⁻²·min⁻¹ [21,65, 96,143,194,292,343,379,411,524], and 33 studies (6%) were in the range $10^{-10} \le \text{flux} \le 10^{-7}$ [51,63,68,79,100– 102,112,149,155,163,215,224,235,267,295,314,326,380, 385,390,401,408,423,431,438,448,458,467,483,514,520, 522]. There were 257 studies (48%) which determined the average flux to be within $10^{-6} \le \text{flux} \le 10^{-4}$, [20,22–27,30, 31,33,34,36,40–42,44,46–49,55,60–62,66,67,69,72–78, 80-82,84,87-89,93,97,99,103-106,108,109,111,115,116, 118,123,127,129,131–134,137,139,145–148,150,152, 153,156,159,161,164,165,167,169,170,171–174,177– 179,182–187,191–193,195,197,199–201,204,205,209– 214,216–219,221–223,225,226,229–233,236,238–243, 246,248,256,261,262,265,266,270,271,273–275,278,279, 281,283,284,289-291,294,296-298,300-305,313,316-318,323–325,327,328,334,335,338–340,342,345–347, 349-355,357,359,361,365,367,370-372,375-378,381, 382,384,387–389,391,392,397,398,399,402,404–406, 410,414,416,417,419,420,422,425,427,428,432,433,439, 440,452,456,459,460,463,464,474–476,478–482,490– 492,496–503,510–513,518,519,526,534] and 87 studies (17%) had the flux range of $10^{-3} \le \text{flux} \le 10^{-1}$ [32,38,50, 53.56.57.70.83.86.90.94.98.110.119.135.140-142.175. 176,180,181,188,198,206-208,220,237,252,255,257,264, 268,277,288,299,307,312,315,319,321,329,332,336,337, 341,348,356,358,362–364,369,373,374,393,395,396,407, 415,421,426,435,441,447,449–451,453,454,457,465,466, 469,484,486,488,505,506,508,515–517,521,523]. The remainder 138 studies (26%) contained no information on the flux [28,29,35,37,39,43,45,52,54,58,59,64,71,85, 91,92,95,107,113,114,117,120–122,124–126,128,130, 136,138,144,151,154,157,158,160,162,166,168,189,190, 196,202,203,227,228,234,244,245,249–251,253,254,258, 259,263,269,272,276,280,282,285–287,293,306,308– 311,320,322,330,331,333,344,360,366,368,383,394,400, 403,409,412,413,418,424,429,430,434,436,437,442–446, 455,461,462,468,470-473,477,485,487,489,493-495, 504,507,509,525,527-533,535-546]. Figure 12 shows a visual representation of the flux ranges. Table S1 shows that the highest flux was exhibited by polymeric membranes $(7.6 \times 10^{-1} \text{ mol} \cdot \text{cm}^{-2} \cdot \text{min}^{-1})$. However, some ILM studies exhibited a relatively higher flux values when compared to conventional membranes such as polymeric membrane material. These are made up of microporous supports containing cation and anions. The arrangement and structure of these membrane allow for the vapour pressure to be neglected within the system, provide greater viscosity, reduce solubility and thus resulting in effective utilisation of the membrane. These recent studies on ILMs open a new research opportunity for gas separation processes. Some HFMs also displayed high flux in combination with amine solvents. The tubular and small capillary arrangement of these membranes allows the membrane to utilise the maximum surface area for CO₂ separation. However due to fouling and breaking issues, the best result is not always achieved. Fig. 12 Flux range percentages. ## 3.3.7 Gas and liquid flow rate It was found that 17 studies (3%) had the gas flow rate under 10 mL·min⁻¹ [21,44,54,63,88,118,127,157,186, 205,225,278,356,407,421,508,529], and 51 studies (10%) set the flow rate between 10 and 100 mL·min⁻¹ [32,51, 59,73,77–79,81,90,98,101,104,115,156,187,188,200,209, 217,239,246,272,279,283,294,298,314,325,336,350,357, 358,365,372,382,414,423,427,433,449,459,469,472,474, 475,492,517,518,520,524,529]. A further 43 studies (8%) set the gas flow rate in the range of 100 < flow < 1000 [25, 27,37,38,40,47,49,60,70,72,73,76,85,104–106,115, 122,128,131,134,150,152–154,161,162,167,195,285, 321,327,364,397,402,417,423,439,469,479,515,521,522]. Thirteen studies (2%) set the flow rate to $\leq 1000 \text{ mL} \cdot \text{min}^{-1}$ [87,94,96,139,143,146,151,166,168,266,302,428,467]. The remaining 406 studies (78%) contained no information on the flow rate [20,22–24,26,28–31,33–36,39,41–43,45, 46,48,50,52,53,55-58,61,62,64-69,71,74,75,80,82-84, 86,89,91–93,95,97,99,100,102,103,107–114,116,117,119, 120,121,123-126,129,130,132,133,135-138,140-142,144,145,147–149,155,158–160,163–165,169–185, 189-194,196-199,201-204,206-208,210-216,218-224, 226-238,240-245,248-265,267-271,273-277,280-282, 284,286-293,295-297,299-301,303-313,315-320,322-324,326,328-335,337-349,351-355,359-363,366-371.373-381.383-385.387-395.398-401.403-406.408-413,415,416,418-420,422,424-426,429-432,434-438, 440-448,450-458,460-466,468,470,471,473,476-478,480-491,493-507,509-514,516,519,523,525-528,530-546]. It was found that 25 studies (5%) had the liquid flow rate under 10 mL·min⁻¹ [21,29,31,41,47,54,59,82,88, 98,157,164,268,278,321,324–326,331,342,348,356,440, 467,515]. Forty-two studies (8%) had the flow rate between 10–100 mL·min⁻¹ [25,29,32,44,49,65,74,76,77, 79,85,87,96,101,106,110,118,128,131,146,151,153,154, 156,161,162,166,195,217,246,272,279,298,357,397,432, 433,440,447,467,474,520]. Thirty-eight studies (7%) had the flow rate in the range of $100 < \text{flow} \le 1000 \ [32,37,38,40,$ 44,46,48,51,57,70,75–78,84,85,94,101,102,104,106,122, 128,131,134,143,152,188,195,337,364,365,396,408,440, 472,521,522], and 5 studies (1%) had the flow rate greater than 1000 mL·min⁻¹ [145,147,168,496,516]. However, 429 studies (82%) did not provide enough data [20,22-24,26-28,30,33-36,39,42,43,45,50,52,53,55,56,58,60-64,66-69,71-73,80,81,83,86,89-93,95,97,99,100,103, 105,107–109,111–117,119,120,121,123–127,129,130, 132,133,135–142,144,148–150,155,158–160,163, 165,167,169–187,189–194,196–216,218–245,248–267, 269,270,271,273–277,280–297,299–320,322,323,327–330,332–336,338–341,343–347,349–355,358,359–363,366–385,387–395,398–407,409,410–431,434–439,441–446,448–466,468–471,473,475–495,497–514,517–519,523–546]. The average gas and liquid flow rates ranged between 100–800 mL·min⁻¹. A general correlation between flow rates and flux can be deduced. Lower flow rates result in lower flux. This was the expected result since higher flowrate results in more contact with the membrane leading to higher flux, at any given concentration. However, these relationships do not necessarily hold on smaller preliminary lab scale experiments. # 3.3.8 Feed CO₂ concentration About a fifth of the studies 18%, (n = 94 studies) had the inlet feed at less than and including 20% [22,37–39,49, 50,56,61,64,68–70,73,87,90,94,112,115,120,121,124,126, 127,137,139,140,142,143,145,147,148,151,158,160–163, 165,167,168,173,181,187,199,209,217,240,245,251,260, 267,270,275,277,290,303,311,312,315,316,319,320,322, 323,330,336,338,367,381,390,409,412,421,423,428-430, 436,437,453,455,480,488,489,493,497,507,516,520–522, 526,529,533]. There were 112 studies (21%) that set the inlet feed between 20%-50% [21,28,34,36,40,42,48,55, 57,60,67,71,72,88,90,95–97,99,103,110,117,126,129,131, 137,139,155–157,164,172,183,184,187,188,200,205,209, 218,221,237,240,248,251,261,265,277,279,281,292,298-300,313,320,321,323,325,327,329,341,344,352,356–359, 362,365,370,371,373,375,379,381,382,385,388–390,392, 393,398,407,410,414,416,419,425,427,435,439,440,444, 446,455,457,470,491,507,510,513–515,519,523,529,531, 532,534,536]. For 63 studies (12%) the inlet feed composition was set between 50%-90% [27,30,40,55, 71,79,88,90,92,95,97,99,126,132,139,146,172,183,184, 200,213,218,221,237,248,251,281,291,298,314,320,341, 359,362,371,373,375,379,381,382,388-390,392,393,398, 407,410,414,416,425,427,435,440,457,507,510,513,514, 523,524,528,529]. Four studies (1%) had inlet compositions up and including 100% and this was done to study the permeability and solubility of the membrane [54,79,92, 266]. Figure 13 shows a visual representation of inlet CO₂ Fig. 13 The inlet feed of CO₂ concentration for the included studies. ranges and the number of studies. The inlet feed CO₂ ranged from 1.8% to 100%, with many of the studies (142) keeping the inlet feed at the standard feed composition of industrial feed (between 14%-50%). As a lot of studies were lab scale experiments along with simulated models, 14%–50% provides a better representation of CO₂ capture feed. The remaining 322 studies (62%) had no information on the CO₂ feed [20,23-26,29,31-33,35,41,43-47,51-53,58,59,62,63,65,66,74–78,80–86,89,91,93,98,100–102, 104–109,111,113,114,116,118,119,122,123,125,128,130, 133-136,138,141,144,149,150,152-154,159,166,169-171, 174 - 180, 182, 185, 186, 189 - 198, 201 - 204, 206 -208,210-212,214-216,219,220,222-236,238,239,241-244,246,249,250,252,253–259,262–264,268,269,271– 274,276,278,280,282-289,293-297,301,302,304-310,317,318,324,326,328,331–335,337,339,340,342, 343,345–351, 353–355, 360, 361, 363, 364, 366, 368, 369, 372,374,376–378,380,383,384,387,391,394–397,399– 405,406,408,411,413,415,417,418,420,422,424,426,431-434,438,441-443,445,447-452,454,456,458-462,463-469,471-479,481-487,490,492,494-496,498-506,508, 509,511,512,517,518,525,527,530,535,537–546]. # 4 Quality of the evidence and bias assessment Although we did not perform a quality assessment on the included studies, we could not identify a validated tool that can be used in the engineering field, in a similar way that various ones are being widely used for the appraisal of healthcare interventions. For the purposes of our study, we considered adequate that the conducted studies have undergone peer-review to publication. Potentially, it would be useful to perform future studies on the construction and validation of such quality assessment tools specifically for experimental and theoretical studies in membrane contactor systems. We did not assess conflicts of interests, such as industrial collaboration or funding, on any of these studies, but we consider these to be important aspects in checking for biases in the reported methods and results. Our review process was systematic in that we defined a search strategy, run it across three key databases where engineering work is published, with no language, time or geographical restrictions. At every stage at least two authors were independently screening and extracting data, reducing the potential for error. However, this impacted the duration of the overall process from the initial design, search, data extraction and reporting of the primary studies which took almost three years. # 5 Implications for research and practice The review highlights for the first time, the research evidence on the capture of CO₂ using various membrane systems. Although patents, books and conference proceedings were excluded from this review, the included peerreviewed studies have indicated that HFMs are the most common practice of gas separation methods in industry, along with the use of inorganic solvents in these separation methods providing best results. From the 525 published research studies on the CO₂ capture using different membranes there are three types of membrane contactors identified: FS (15%), FT (6%), and hollow fibre (33%). The flow configuration was co-current in 22% of the studies and counter-current in 22%. Although three main solvent types were used: amines, amides, and water and ethanol solvents, there were inorganics such as metal nitrates and silane, general organic solvents such as alcohols, acids and salts (18%) also explored. The majority of studies (65%) favour a phobic behaviour between the solvent and the membrane and future studies should avoid hydrophilic membranes. The inclusion of more information around the membrane material, membrane contactor type, flow configuration and other identified parameters can lead to the design of better studies on optimally capturing higher concentrations. Future studies should try to address the issue of efficient CO₂ capture by using membranes tested under ILMs and facilitated membrane transport. ILMs and FT have advantages from a chemical and economical perspective. However, further research should focus on how to overcome the issue of thermal stability and lack of reliability on hydrodynamic application in industry. # 6 Conclusions This study started from 2650 papers down to 525 final included studies (shown in Fig. 2). This displays that membrane technology for CO₂ capture has attracted a lot of research attention from research in the past three decades. An efficient method for CO₂ post and preprocessing is yet to be established. Membrane carbon capture and storage, if established, can be operated in a continuous system as opposed to current adsorption and absorption of CO₂ in batch systems. Different kinds of membranes have been investigated to study how membrane systems can be applied and optimised on an industrial scale. Polymeric membranes have low operating costs and zeolite membranes have high durability and recyclability making them both an attractive common starting place for investigations. Zeolites were initially preferred due to their durability of high temperatures and sorption-diffusion mechanism in separating CO₂. However, they cannot be widely applied due to high manufacturing costs, which may explain why they have only been tested in 5% of the studies. Some have proposed the solution of modifying the zeolite structures by integrating polymers and MMMs but that is yet to be researched further. Polymeric membranes were found to be very popular due to the range of structural possibilities they hold, as well as being economically feasible. ILMs were one of the least popular choices amongst the studies. Although recent advancements established them with better performance at low concentrations when compared to other membranes, ILMs are not widely applied because the membranes cannot withstand high temperatures, and the hydrodynamics of the membranes is yet to be properly understood. The application of polymer membranes has transitioned into the use of MMMs where organic polymers are imbedded into inorganic casings. This structural arrangement provides higher flux and better separation performances than simple conventional polymer membranes. In 15% of the studies experiments were conducted with MMMs and found great potential. However, issues of incorrect solvent application and inconsistency in the flux values require further investigation. HFMs were found to be the most popular choice due to their versatility and wide range of applications. These are known for gas separation applications which may justify their use in 28% of the studies which experimented with different kinds of HFMs. The HFMs can have various configuration possibilities with different combinations of polymers and have gained a lot of interest as they display good performances. However, further research is required to overcome fouling issues and developing a more economical manufacturing and operating processes. Different kinds of amine solvents were found to be the most popular choice for the membrane studies (20%). Amine solvents have a high CO₂ capacity, low solvent degradation during the absorption and regeneration process, as well as exhibiting better tolerance for regeneration at high pressures. Countercurrent flow was the most popular choice of flow configurations over concurrent flow as it provides a better thermodynamic environment and along with larger concentration gradients promotes gas separation. The main limitation of CO₂ membrane capture can be evaluated by a compromise between flux, membrane stability and economic implications. The systematic review of all of the studies in the CO₂ removal and capture is an important milestone in the synthesis of the most relevant and up to date research work. It also provides the additional value of serving as a rich databank for further research and benchmarking and in identifying areas of further research priority. This study did not focus on papers that involved biological membrane for CO₂ transfer. This was done to keep the focus on CO₂ separation in the energy sector. Studies that modelled membrane systems using different computational programmes, the effect of programmes was not discussed, rather the flux and other parameters were included in the table (supplementary material). Future research should be focused around CO₂ capture using ILMs and facilitated membranes tested under organic and inorganic solvents to form a well-rounded evaluation of these membrane applications in industry, from a chemical and economical prospective. Stability issues of HFM should be investigated to better understand their potential to widely commercialised. Some research could be focused around optimising polymeric and zeolite CO₂ membrane separations systems or upgrading the existing systems into MMMs systems. **Electronic Supplementary Material** Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-020-1992-z and is accessible for authorized users. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. ### References - Schiffer H W, Kober T, Panos E. World energy council's global energy scenarios to 2060. Magazine for Energy Industry, 2018, 42 (2): 91–102 - Johansson T B, Patwardhan A P, Nakićenović N, Gomez Echeverri L. Global Energy Assessment: Toward A Sustainable Future. Cambridge UK and New York, Laxenburg, Austria: Cambridge University Press, and the International Institute for Applied Systems Analysis, 2012, 99–1257 - Carapellucci R, Milazzo A. Membrane systems for CO₂ capture and their integration with gas turbine plants. Proceedings of the Institution of Mechanical Engineers. Part A, Journal of Power and Energy, 2003, 217(5): 505–517 - Cox P M, Betts R A, Jones C D, Spall S A, Totterdell I J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408(6809): 184–187 - Koytsoumpa E I, Bergins C, Kakaras E. The CO₂ economy: review of CO₂ capture and reuse technologies. Journal of Supercritical Fluids, 2018, 132: 3–16 - Stanger R, Wall T, Spörl R, Paneru M, Grathwohl S, Weidmann M, Scheffknecht G, McDonald D, Myöhänen K, Ritvanen J, Rahiala S, Hyppänen T, Mletzko J, Kather A, Santos S. Oxyfuel combustion for CO₂ capture in power plants. International Journal of Greenhouse Gas Control, 2015, 40: 55–125 - Jansen D, Gazzani M, Manzolini G, Van Dijk E, Carbo M. Precombustion CO₂ capture. International Journal of Greenhouse Gas Control, 2015, 40: 167–187 - Working Group III of the Intergovernmental Panel on Climate Change. IPCC Special Report on Carbon Dioxide Capture and Storage. Metz B, Davidson O, De Coninck H, eds. New York: Cambridge University Press, 2005, 431 - Wang Y, Zhao L, Otto A, Robinius M, Stolten D. A review of postcombustion CO₂ capture technologies from coal-fired power - plants. Energy Procedia, 2017, 114: 650-665 - Nagy E. Basic Equations of Mass Transport Through A Membrane Layer. Amsterdam: Elsevier, 2018, 11–87 - Khulbe K, Matsuura T. Removal of heavy metals and pollutants by membrane adsorption techniques. Applied Water Science, 2018, 8 (1): 19 - Luis P, van Gerven T, van der Bruggen B. Recent developments in membrane-based technologies for CO₂ capture. Progress in Energy and Combustion Science, 2012, 38(3): 419–448 - Hafeez S, Al-Salem S, Constantinou A. Membrane reactors for renewable fuel production and their environmental benefits, in membranes for environmental applications. Vol. 42. Switzerland: Springer, 2020, 383–411 - Li J L, Chen B H. Review of CO₂ absorption using chemical solvents in hollow fiber membrane contactors. Separation and Purification Technology, 2005, 41(2): 109–122 - Sun X, Constantinou A, Gavriilidis A. Stripping of acetone from isopropanol solution with membrane and mesh gasliquid contactors. Chemical Engineering and Processing: Process Intensification, 2011, 50(10): 991–997 - Constantinou A, Ghiotto F, Lam K F, Gavriilidis A. Stripping of acetone from water with microfabricated and membrane gasliquid contactors. Analyst (London), 2014, 139(1): 266–272 - Ilyas M, Ahmad W, Khan H, Yousaf S, Khan K, Nazir S. Plastic waste as a significant threat to environment—a systematic literature review. Reviews on Environmental Health, 2018, 33 (4): 383–406 - Favre E. Carbon dioxide recovery from post-combustion processes: can gas permeation membranes compete with absorption? Journal of Membrane Science, 2007, 294(1-2): 50–59 - Baltus R E, Counce R M, Culbertson B H, Luo H, DePaoli D W, Dai S, Duckworth D C. Examination of the potential of ionic liquids for gas separations. Separation Science and Technology, 2005, 40(1-3): 525–541 - Yan S P, Fang M X, Zhang W F, Wang S Y, Xu Z K, Luo Z Y, Cen K F. Experimental study on the separation of CO₂ from flue gas using hollow fiber membrane contactors without wetting. Fuel Processing Technology, 2007, 88(5): 501–511 - Langevin D, Pinoche M, Se E, Me M, Roux R. CO₂ facilitated transport through functionalized cation-exchange membranes. Journal of Membrane Science, 1993, 82(1-2): 51–63 - Li K, Teo W K. Use of permeation and absorption methods for CO₂ removal in hollow fibre membrane modules. Separation and Purification Technology, 1998, 13(1): 79–88 - 23. Suzuki H, Tanaka K, Kita H, Okamoto K, Hoshino H, Yoshinaga T, Kusuki Y. Preparation of composite hollow fiber membranes of poly(ethylene oxide)-containing polyimide and their CO₂/N₂ separation properties. Journal of Membrane Science, 1998, 146 (1): 31–37 - Tokuda Y, Fujisawa E, Okabayashi N, Matsumiya N, Takagi K, Mano H, Haraya K, Sato M. Development of hollow fiber membranes for CO₂ separation. Energy Conversion and Management, 1997, 38: S111–S116 - 25. Gong Y, Wang Z, Wang S. Experiments and simulation of $\rm CO_2$ removal by mixed amines in a hollow fiber membrane module. Chemical Engineering and Processing: Process Intensification, - 2006, 45(8): 652-660 - 26. Ismail A F, Yaacob N. Performance of treated and untreated asymmetric polysulfone hollow fiber membrane in series and cascade module configurations for CO₂/CH₄ gas separation system. Journal of Membrane Science, 2006, 275(1-2): 151–165 - Kapantaidakis G, Koops G, Wessling M, Kaldis S, Sakellaropoulos G. CO₂ plasticization of polyethersulfone/polyimide gas-separation membranes. AIChE Journal. American Institute of Chemical Engineers, 2003, 49(7): 1702–1711 - Dae-Hwan L, Hyung-Taek K. Simulation study of CO₂ separation process by using hollow fiber membrane. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 2004, 49(2): 829–830 - Lee Y, Noble R D, Yeom B Y, Park Y I, Lee K H. Analysis of CO₂ removal by hollow fiber membrane contactors. Journal of Membrane Science, 2001, 194(1): 57–67 - Liu L, Chakma A, Feng X. CO₂/N₂ separation by poly(ether block amide) thin film hollow fiber composite membranes. Industrial & Engineering Chemistry Research, 2005, 44(17): 6874–6882 - Qin J J, Chung T S, Cao C, Vora R. Effect of temperature on intrinsic permeation properties of 6FDA-Durene/1,3-phenylenediamine (mPDA) copolyimide and fabrication of its hollow fiber membranes for CO₂/CH₄ separation. Journal of Membrane Science, 2005, 250(1-2): 95–103 - Teramoto M, Kitada S, Ohnishi N, Matsuyama H, Matsumiya N. Separation and concentration of CO₂ by capillary-type facilitated transport membrane module with permeation of carrier solution. Journal of Membrane Science, 2004, 234(1-2): 83–94 - Wang R, Li D, Liang D. Modeling of CO₂ capture by three typical amine solutions in hollow fiber membrane contactors. Chemical Engineering and Processing: Process Intensification, 2004, 43(7): 849–856 - Wang R, Zhang H, Feron P, Liang D. Influence of membrane wetting on CO₂ capture in microporous hollow fiber membrane contactors. Separation and Purification Technology, 2005, 46(1-2): 33–40 - Shim H M, Lee J S, Wang H Y, Choi S H, Kim J H, Kim H T. Modeling and economic analysis of CO₂ separation process with hollow fiber membrane modules. Korean Journal of Chemical Engineering, 2007, 24(3): 537–541 - 36. Zhang H Y, Wang R, Liang D T, Tay J H. Modeling and experimental study of CO₂ absorption in a hollow fiber membrane contactor. Journal of Membrane Science, 2006, 279(1-2): 301–310 - Al Marzouqi M, El Naas M H, Marzouk S A, Abdullatif N. Modeling of chemical absorption of CO₂ in membrane contactors. Separation and Purification Technology, 2008, 62(3): 499–506 - Al Marzouqi M H, El Naas M H, Marzouk S A, Al Zarooni M A, Abdullatif N, Faiz R. Modeling of CO₂ absorption in membrane contactors. Separation and Purification Technology, 2008, 59(3): 286–293 - El Naas M H, Al Marzouqi M, Marzouk S A, Abdullatif N. Evaluation of the removal of CO₂ using membrane contactors: membrane wettability. Journal of Membrane Science, 2010, 350(1-2): 410–416 - 40. Faiz R, Al Marzouqi M. Mathematical modeling for the simultaneous absorption of CO_2 and H_2S using MEA in hollow - fiber membrane contactors. Journal of Membrane Science, 2009, 342(1-2): 269–278 - 41. Ji P, Cao Y, Zhao H, Kang G, Jie X, Liu D, Liu J, Yuan Q. Preparation of hollow fiber poly (N,N-dimethylaminoethyl methacrylate)-poly(ethylene glycol methyl ether methyl acrylate)/polysulfone composite membranes for CO₂/N₂ separation. Journal of Membrane Science, 2009, 342(1-2): 190–197 - Keshavarz P, Fathikalajahi J, Ayatollahi S. Analysis of CO₂ separation and simulation of a partially wetted hollow fiber membrane contactor. Journal of Hazardous Materials, 2008, 152 (3): 1237–1247 - 43. Kumar A, Yuan X, Sahu A K, Dewulf J, Ergas S J, Van Langenhove H. A hollow fiber membrane photo-bioreactor for CO₂ sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2010, 85 (3): 387–394 - Lu J G, Ji Y, Zhang H, Chen M D. CO₂ capture using activated amino acid salt solutions in a membrane contactor. Separation Science and Technology, 2010, 45(9): 1240–1251 - Lu J G, Zheng Y F, Cheng M D. Membrane contactor for CO₂ absorption applying amino-acid salt solutions. Desalination, 2009, 249(2): 498–502 - 46. Mansourizadeh A, Ismail A F. Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO₂ absorption. Chemical Engineering Journal, 2010, 165(3): 980–988 - Mansourizadeh A, Ismail A F, Abdullah M, Ng B. Preparation of polyvinylidene fluoride hollow fiber membranes for CO₂ absorption using phase-inversion promoter additives. Journal of Membrane Science, 2010, 355(1-2): 200–207 - Mansourizadeh A, Ismail A F, Matsuura T. Effect of operating conditions on the physical and chemical CO₂ absorption through the PVDF hollow fiber membrane contactor. Journal of Membrane Science, 2010, 353(1-2): 192–200 - 49. Marzouk S A, Al-Marzouqi M H, El-Naas M H, Abdullatif N, Ismail Z M. Removal of carbon dioxide from pressurized CO₂CH₄ gas mixture using hollow fiber membrane contactors. Journal of Membrane Science, 2010, 351(1-2): 21–27 - Sandru M, Kim T J, Hägg M B. High molecular fixed-site-carrier PVAm membrane for CO₂ capture. Desalination, 2009, 240(1-3): 298–300 - Simons K, Nijmeijer K, Wessling M. Gasliquid membrane contactors for CO₂ removal. Journal of Membrane Science, 2009, 340(1-2): 214–220 - 52. Yan S, Fang M, Zhang W, Zhong W, Luo Z, Cen K. Comparative analysis of CO₂ separation from flue gas by membrane gas absorption technology and chemical absorption technology in China. Energy Conversion and Management, 2008, 49(11): 3188– 3197 - 53. Zhang H Y, Wang R, Liang D T, Tay J H. Theoretical and experimental studies of membrane wetting in the membrane gasliquid contacting process for CO₂ absorption. Journal of Membrane Science, 2008, 308(1-2): 162–170 - 54. Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R. Effect of membrane module arrangement of gas-liquid membrane - contacting process on CO₂ absorption performance: a modeling study. Journal of Membrane Science, 2011, 372(1-2): 75–86 - Chen C C, Qiu W, Miller S J, Koros W J. Plasticization-resistant hollow fiber membranes for CO₂/CH₄ separation based on a thermally crosslinkable polyimide. Journal of Membrane Science, 2011, 382(1-2): 212–221 - Sandru M, Haukebø S H, Hägg M B. Composite hollow fiber membranes for CO₂ capture. Journal of Membrane Science, 2010, 346(1): 172–186 - 57. Simons K, Nijmeijer K, Mengers H, Brilman W, Wessling M. Highly selective amino acid salt solutions as absorption liquid for CO₂ capture in gas-liquid membrane contactors. ChemSusChem, 2010, 3(8): 939–947 - 58. Jin H G, Han S H, Lee Y M, Yeo Y K. Modeling and control of CO₂ separation process with hollow fiber membrane modules. Korean Journal of Chemical Engineering, 2011, 28(1): 41–48 - Khaisri S, deMontigny D, Tontiwachwuthikul P, Jiraratananon R. CO₂ stripping from monoethanolamine using a membrane contactor. Journal of Membrane Science, 2011, 376(1-2): 110–118 - Boributh S, Rongwong W, Assabumrungrat S, Laosiripojana N, Jiraratananon R. Mathematical modeling and cascade design of hollow fiber membrane contactor for CO₂ absorption by monoethanolamine. Journal of Membrane Science, 2012, 401: 175–189 - 61. Ghasem N, Al-Marzouqi M, Zhu L. Preparation and properties of polyethersulfone hollow fiber membranes with O-xylene as an additive used in membrane contactors for CO₂ absorption. Separation and Purification Technology, 2012, 92: 1–10 - Kim D H, Baek I H, Hong S U, Lee H K. Study on immobilized liquid membrane using ionic liquid and PVDF hollow fiber as a support for CO₂/N₂ separation. Journal of Membrane Science, 2011, 372(1-2): 346–354 - Kumbharkar S, Liu Y, Li K. High performance polybenzimidazole based asymmetric hollow fibre membranes for H₂/CO₂ separation. Journal of Membrane Science, 2011, 375(1-2): 231–240 - 64. Lee S H, Kim J N, Eom W H, Ko Y D, Hong S U, Back I H. Development of water gas shift/membrane hybrid system for precombustion CO₂ capture in a coal gasification process. Energy Procedia, 2011, 4: 1139–1146 - Mansourizadeh A, Ismail A F. CO₂ stripping from water through porous PVDF hollow fiber membrane contactor. Desalination, 2011, 273(2-3): 386–390 - 66. Mansourizadeh A, Ismail A F. Preparation and characterization of porous PVDF hollow fiber membranes for CO₂ absorption: effect of different non-solvent additives in the polymer dope. International Journal of Greenhouse Gas Control, 2011, 5(4): 640–648 - 67. Nguyen P, Lasseuguette E, Medina Gonzalez Y, Remigy J, Roizard D, Favre E. A dense membrane contactor for intensified CO₂ gas/liquid absorption in post-combustion capture. Journal of Membrane Science, 2011, 377(1-2): 261–272 - Sohrabi M R, Marjani A, Moradi S, Davallo M, Shirazian S. Mathematical modeling and numerical simulation of CO₂ transport through hollow-fiber membranes. Applied Mathematical Modelling, 2011, 35(1): 174–188 - Ghasem N, Al Marzouqi M, Rahim N A. Modeling of CO₂ absorption in a membrane contactor considering solvent evaporation. Separation and Purification Technology, 2013, 110: 1–10 - Hassanlouei R N, Pelalak R, Daraei A. Wettability study in CO₂ capture from flue gas using nano porous membrane contactors. International Journal of Greenhouse Gas Control, 2013, 16: 233–240 - Hwang H Y, Nam S Y, Koh H C, Ha S Y, Barbieri G, Drioli E. The effect of operating conditions on the performance of hollow fiber membrane modules for CO₂/N₂ separation. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 205–211 - 72. Lively R P, Dose M E, Xu L, Vaughn J T, Johnson J, Thompson J A, Zhang K, Lydon M E, Lee J S, Liu L, Hu Z, Karvan O, Realff M J, Koros W J. A high-flux polyimide hollow fiber membrane to minimize footprint and energy penalty for CO₂ recovery from flue gas. Journal of Membrane Science, 2012, 423: 302–313 - Marzouk S A, Al-Marzouqi M H, Teramoto M, Abdullatif N, Ismail Z M. Simultaneous removal of CO₂ and H₂S from pressurized CO₂-H₂S-CH₄ gas mixture using hollow fiber membrane contactors. Separation and Purification Technology, 2012, 86: 88–97 - Naim R, Ismail A F, Mansourizadeh A. Effect of non-solvent additives on the structure and performance of PVDF hollow fiber membrane contactor for CO₂ stripping. Journal of Membrane Science, 2012, 423: 503–513 - Naim R, Ismail A F, Mansourizadeh A. Preparation of microporous PVDF hollow fiber membrane contactors for CO₂ stripping from diethanolamine solution. Journal of Membrane Science, 2012, 392: 29–37 - Rahbari Sisakht M, Ismail A F, Matsuura T. Effect of bore fluid composition on structure and performance of asymmetric polysulfone hollow fiber membrane contactor for CO₂ absorption. Separation and Purification Technology, 2012, 88: 99–106 - Rahbari Sisakht M, Ismail A F, Rana D, Matsuura T. A novel surface modified polyvinylidene fluoride hollow fiber membrane contactor for CO₂ absorption. Journal of Membrane Science, 2012, 415: 221–228 - Rahbari Sisakht M, Ismail A F, Rana D, Matsuura T. Effect of novel surface modifying macromolecules on morphology and performance of polysulfone hollow fiber membrane contactor for CO₂ absorption. Separation and Purification Technology, 2012, 99: 61–68 - Shirazian S, Marjani A, Rezakazemi M. Separation of CO₂ by single and mixed aqueous amine solvents in membrane contactors: fluid flow and mass transfer modeling. Engineering with Computers, 2012, 28(2): 189–198 - Kim K, Ingole P G, Kim J, Lee H. Separation performance of PEBAX/PEI hollow fiber composite membrane for SO₂/CO₂/N₂ mixed gas. Chemical Engineering Journal, 2013, 233: 242–250 - Mehdipour M, Karami M, Keshavarz P, Ayatollahi S. Analysis of CO₂ separation with aqueous potassium carbonate solution in a hollow fiber membrane contactor. Energy & Fuels, 2013, 27(4): 2185–2102 - Naim R, Ismail A F. Effect of fiber packing density on physical CO₂ absorption performance in gas-liquid membrane contactor. Separation and Purification Technology, 2013, 115: 152–157 - 83. Qiao Z, Wang Z, Zhang C, Yuan S, Zhu Y, Wang J, Wang S. PVAm-PIP/PS composite membrane with high performance for CO₂/N₂ separation. AIChE Journal. American Institute of - Chemical Engineers, 2013, 59(1): 215-228 - 84. Rahbari Sisakht M, Ismail A F, Rana D, Matsuura T, Emadzadeh D. Effect of SMM concentration on morphology and performance of surface modified PVDF hollow fiber membrane contactor for CO₂ absorption. Separation and Purification Technology, 2013, 116: 67–72 - 85. Razavi S M R, Razavi S M J, Miri T, Shirazian S. CFD simulation of CO₂ capture from gas mixtures in nanoporous membranes by solution of 2-amino-2-methyl-1-propanol and piperazine. International Journal of Greenhouse Gas Control, 2013, 15: 142–149 - 86. Shen J N, Yu C C, Zeng G N, Van der Bruggen B. Preparation of a facilitated transport membrane composed of carboxymethyl chitosan and polyethylenimine for CO₂/N₂ separation. International Journal of Molecular Sciences, 2013, 14(2): 3621–3638 - 87. Amrei S M H H, Memardoost S, Dehkordi A M. Comprehensive modeling and CFD simulation of absorption of CO₂ and H₂S by MEA solution in hollow fiber membrane reactors. AIChE Journal. American Institute of Chemical Engineers, 2014, 60(2): 657–672 - Chen H Z, Thong Z, Li P, Chung T S. High performance composite hollow fiber membranes for CO₂/H₂ and CO₂/N₂ separation. International Journal of Hydrogen Energy, 2014, 39(10): 5043– 5053 - Ghasem N, Al Marsouqi M, Rahim N A. Modeling and simulation of membrane contactor employed to strip CO₂ from rich solvents via COMSOL Multiphysics®. In: Proceedings of the COMSOL Conference. Zurich: COMSL, 2014, 1–5 - He X, Kim T J, Hägg M B. Hybrid fixed-site-carrier membranes for CO₂ removal from high pressure natural gas: membrane optimization and process condition investigation. Journal of Membrane Science, 2014, 470: 266–274 - 91. Kimball E, Al Azki A, Gomez A, Goetheer E, Booth N, Adams D, Ferre D. Hollow fiber membrane contactors for CO₂ capture: modeling and up-scaling to CO₂ capture for an 800 MWe coal power station. Oil & Gas Science and Technology-Revue d'IFP Energies Nouvelles, 2014, 69(6): 1047–1058 - Kundu P K, Chakma A, Feng X. Effectiveness of membranes and hybrid membrane processes in comparison with absorption using amines for post-combustion CO₂ capture. International Journal of Greenhouse Gas Control, 2014, 28: 248–256 - 93. Li S, Wang Z, He W, Zhang C, Wu H, Wang J, Wang S. Effects of minor SO₂ on the transport properties of fixed carrier membranes for CO₂ capture. Industrial & Engineering Chemistry Research, 2014, 53(18): 7758–7767 - 94. Wang L, Zhang Z, Zhao B, Zhang H, Lu X, Yang Q. Effect of long-term operation on the performance of polypropylene and polyvinylidene fluoride membrane contactors for CO₂ absorption. Separation and Purification Technology, 2013, 116: 300–306 - Wang Z, Fang M, Pan Y, Yan S, Luo Z. Amine-based absorbents selection for CO₂ membrane vacuum regeneration technology by combined absorption-desorption analysis. Chemical Engineering Science, 2013, 93: 238–249 - 96. Wang Z, Fang M, Yu H, Wei C C, Luo Z. Experimental and modeling study of trace CO₂ removal in a hollow-fiber membrane contactor, using CO₂-loaded monoethanolamine. Industrial & Engineering Chemistry Research, 2013, 52(50): 18059–18070 - 97. Yoshimune M, Haraya K. CO₂/CH₄ mixed gas separation using - carbon hollow fiber membranes. Energy Procedia, 2013, 37: 1109–1116 - Zhao Y, Ho W W. CO₂-selective membranes containing sterically hindered amines for CO₂/H₂ separation. Industrial & Engineering Chemistry Research, 2012, 52(26): 8774–8782 - Ma C, Koros W J. Effects of hydrocarbon and water impurities on CO₂/CH₄ separation performance of ester-crosslinked hollow fiber membranes. Journal of Membrane Science, 2014, 451: 1–9 - 100. Makhloufi C, Lasseuguette E, Remigy J C, Belaissaoui B, Roizard D, Favre E. Ammonia based CO₂ capture process using hollow fiber membrane contactors. Journal of Membrane Science, 2014, 455: 236–246 - 101. Mansourizadeh A, Aslmahdavi Z, Ismail A F, Matsuura T. Blend polyvinylidene fluoride/surface modifying macromolecule hollow fiber membrane contactors for CO₂ absorption. International Journal of Greenhouse Gas Control, 2014, 26: 83–92 - 102. Mansourizadeh A, Pouranfard A R. Microporous polyvinylidene fluoride hollow fiber membrane contactors for CO₂ stripping: effect of PEG-400 in spinning dope. Chemical Engineering Research & Design, 2014, 92(1): 181–190 - 103. Masoumi S, Keshavarz P, Rastgoo Z. Theoretical investigation on CO₂ absorption into DEAB solution using hollow fiber membrane contactors. Journal of Natural Gas Science and Engineering, 2014, 18: 23–30 - 104. Rahbari Sisakht M, Rana D, Matsuura T, Emadzadeh D, Padaki M, Ismail A F. Study on CO₂ stripping from water through novel surface modified PVDF hollow fiber membrane contactor. Chemical Engineering Journal, 2014, 246: 306–310 - 105. Rahim N A, Ghasem N, Al Marzouqi M. Stripping of CO₂ from different aqueous solvents using PVDF hollow fiber membrane contacting process. Journal of Natural Gas Science and Engineering, 2014, 21: 886–893 - 106. Rezaei M A, Ismail A F, Hashemifard S A, Bakeri G, Matsuura T. Experimental study on the performance and long-term stability of PVDF/montmorillonite hollow fiber mixed matrix membranes for CO₂ separation process. International Journal of Greenhouse Gas Control, 2014, 26: 147–157 - Carapellucci R, Giordano L, Vaccarelli M. Study of a natural gas combined cycle with multi-stage membrane systems for CO₂ postcombustion capture. Energy Procedia, 2015, 81: 412–421 - 108. Farjami M, Moghadassi A, Vatanpour V. Modeling and simulation of CO₂ removal in a polyvinylidene fluoride hollow fiber membrane contactor with computational fluid dynamics. Chemical Engineering and Processing: Process Intensification, 2015, 98: 41– 51 - 109. Goyal N, Suman S, Gupta S. Mathematical modeling of $\rm CO_2$ separation from gaseous-mixture using a hollow-fiber membrane module: physical mechanism and influence of partial-wetting. Journal of Membrane Science, 2015, 474: 64–82 - 110. Lee H J, Magnone E, Park J H. Preparation, characterization and laboratory-scale application of modified hydrophobic aluminum oxide hollow fiber membrane for CO₂ capture using H₂O as lowcost absorbent. Journal of Membrane Science, 2015, 494: 143–153 - 111. Lee S, Choi J W, Lee S H. Separation of greenhouse gases (SF₆, CF₄ and CO₂) in an industrial flue gas using pilot-scale membrane. Separation and Purification Technology, 2015, 148: 15–24 - 112. Li Y, Li X, Wu H, Xin Q, Wang S, Liu Y, Tian Z, Zhou T, Jiang Z, Tian H, Cao X, Wang B. Anionic surfactant-doped Pebax membrane with optimal free volume characteristics for efficient CO₂ separation. Journal of Membrane Science, 2015, 493: 460–469 - 113. Lock S S M, Lau K K, Ahmad F, Shariff A. Modeling, simulation and economic analysis of CO₂ capture from natural gas using cocurrent, countercurrent and radial crossflow hollow fiber membrane. International Journal of Greenhouse Gas Control, 2015, 36: 114–134 - 114. Mulukutla T, Chau J, Singh D, Obuskovic G, Sirkar K K. Novel membrane contactor for CO₂ removal from flue gas by temperature swing absorption. Journal of Membrane Science, 2015, 493: 321– 328 - 115. Rahim N A, Ghasem N, Al Marzouqi M. Absorption of CO₂ from natural gas using different amino acid salt solutions and regeneration using hollow fiber membrane contactors. Journal of Natural Gas Science and Engineering, 2015, 26: 108–117 - 116. Sadoogh M, Mansourizadeh A, Mohammadinik H. An experimental study on the stability of PVDF hollow fiber membrane contactors for CO₂ absorption with alkanolamine solutions. Royal Society of Chemistry Advances, 2015, 5(105): 86031–86040 - Vakharia V, Ramasubramanian K, Ho W W. An experimental and modeling study of CO₂-selective membranes for IGCC syngas purification. Journal of Membrane Science, 2015, 488: 56–66 - 118. Wickramanayake S, Hopkinson D, Myers C, Hong L, Feng J, Seol Y, Plasynski D, Zeh M, Luebke D. Mechanically robust hollow fiber supported ionic liquid membranes for CO₂ separation applications. Journal of Membrane Science, 2014, 470: 52–59 - 119. Yan S, He Q, Zhao S, Wang Y, Ai P. Biogas upgrading by CO₂ removal with a highly selective natural amino acid salt in gas-liquid membrane contactor. Chemical Engineering and Processing: Process Intensification, 2014, 85: 125–135 - 120. Zaidiza D A, Billaud J, Belaissaoui B, Rode S, Roizard D, Favre E. Modeling of CO₂ post-combustion capture using membrane contactors, comparison between one- and two-dimensional approaches. Journal of Membrane Science, 2014, 455: 64–74 - 121. Zhang L, Qu Z Y, Yan Y F, Ju S X, Zhang Z E. Numerical investigation of the effects of polypropylene hollow fibre membrane structure on the performance of CO₂ removal from flue gas. Royal Society of Chemistry Advances, 2015, 5(1): 424–433 - 122. Zhang X, Seames W S, Tande B M. Recovery of CO₂ from monoethanolamine using a membrane contactor. Separation Science and Technology, 2014, 49(1): 1–11 - 123. Zhang Y, Wang R. Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for CO₂ absorption in a gas-liquid membrane contactor. Journal of Membrane Science, 2014, 452: 379–389 - 124. Zhang Z, Yan Y, Zhang L, Chen Y, Ju S. CFD investigation of CO₂ capture by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membranes: Part B. Effect of membrane properties. Journal of Natural Gas Science and Engineering, 2014, 19: 311–316 - 125. Zhang Z, Yan Y, Zhang L, Ju S. Numerical simulation and analysis of CO₂ removal in a polypropylene hollow fiber membrane - contactor. International Journal of Chemical Engineering, 2014, 2014: 1-7 - 126. Baghban A, Azar A A. ANFIS modeling of CO₂ separation from natural gas using hollow fiber polymeric membrane. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2018, 40(2): 193–199 - 127. Dong G, Hou J, Wang J, Zhang Y, Chen V, Liu J. Enhanced CO₂/ N₂ separation by porous reduced graphene oxide/Pebax mixed matrix membranes. Journal of Membrane Science, 2016, 520: 860– 868 - 128. Ghadiri M, Marjani A, Shirazian S. Development of a mechanistic model for prediction of CO₂ capture from gas mixtures by amine solutions in porous membranes. Environmental Science and Pollution Research International, 2017, 24(16): 14508–14515 - 129. Gilassi S, Rahmanian N. CFD modelling of a hollow fibre membrane for CO₂ removal by aqueous amine solutions of MEA, DEA and MDEA. International Journal of Chemical Reactor Engineering, 2016, 14(1): 53–61 - 130. Hosseini S, Mansourizadeh A. Preparation of porous hydrophobic poly(vinylidene fluoride-co-hexafluoropropylene) hollow fiber membrane contactors for CO₂ stripping. Journal of the Taiwan Institute of Chemical Engineers, 2017, 76: 156–166 - 131. Jin P, Huang C, Shen Y, Zhan X, Hu X, Wang L, Wang L. Simultaneous separation of H₂S and CO₂ from biogas by gasliquid membrane contactor using single and mixed absorbents. Energy & Fuels, 2017, 31(10): 11117–11126 - 132. Jo E S, An X, Ingole P G, Choi W K, Park Y S, Lee H K. CO₂/CH₄ separation using inside coated thin film composite hollow fiber membranes prepared by interfacial polymerization. Chinese Journal of Chemical Engineering, 2017, 25(3): 278–287 - 133. Jomekian A, Behbahani R M, Mohammadi T, Kargari A. CO₂/CH₄ separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane. Journal of Natural Gas Science and Engineering, 2016, 31: 562–574 - 134. Kim S J, Park A, Nam S E, Park Y I, Lee P S. Practical designs of membrane contactors and their performances in CO₂/CH₄ separation. Chemical Engineering Science, 2016, 155: 239–247 - 135. Liao J, Wang Z, Wang M, Gao C, Zhao S, Wang J, Wang S. Adjusting carrier microenvironment in CO₂ separation fixed carrier membrane. Journal of Membrane Science, 2016, 511: 9–19 - 136. Otani A, Zhang Y, Matsuki T, Kamio E, Matsuyama H, Maginn E J. Molecular design of high CO₂ reactivity and low viscosity ionic liquids for CO₂ separative facilitated transport membranes. Industrial & Engineering Chemistry Research, 2016, 55(10): 2821–2830 - 137. Rafiq S, Deng L, Hägg M B. Role of facilitated transport membranes and composite membranes for efficient CO₂ capture: a review. ChemBioEng Reviews, 2016, 3(2): 68–85 - 138. Razavi S M R, Shirazian S, Nazemian M. Numerical simulation of CO₂ separation from gas mixtures in membrane modules: effect of chemical absorbent. Arabian Journal of Chemistry, 2016, 9(1): 62– 71 - 139. Woo K T, Dong G, Lee J, Kim J S, Do Y S, Lee W H, Lee H S, Lee Y M. Ternary mixed-gas separation for flue gas CO₂ capture using high performance thermally rearranged (TR) hollow fiber membranes. Journal of Membrane Science, 2016, 510: 472–480 - 140. Yan Y, Zhang Z, Zhang L, Wang J, Li J, Ju S. Modeling of $\rm CO_2$ separation from flue gas by methyldiethanolamine and 2-(1-piperazinyl)-ethylamine in membrane contactors: effect of gas and liquid parameters. Journal of Energy Engineering, 2014, 141(4): 04014034 - 141. Zaidiza D A, Belaissaoui B, Rode S, Neveux T, Makhloufi C, Castel C, Roizard D, Favre E. Adiabatic modelling of CO₂ capture by amine solvents using membrane contactors. Journal of Membrane Science, 2015, 493: 106–119 - 142. Zaidiza D A, Wilson S G, Belaissaoui B, Rode S, Castel C, Roizard D, Favre E. Rigorous modelling of adiabatic multicomponent CO₂ post-combustion capture using hollow fibre membrane contactors. Chemical Engineering Science, 2016, 145: 45–58 - 143. Zhang L, Li J, Zhou L, Liu R, Wang X, Yang L. Fouling of impurities in desulfurized flue gas on hollow fiber membrane absorption for CO₂ capture. Industrial & Engineering Chemistry Research, 2016, 55(29): 8002–8010 - 144. Zhang L, Qu R, Sha Y, Wang X, Yang L. Membrane gas absorption for CO₂ capture from flue gas containing fine particles and gaseous contaminants. International Journal of Greenhouse Gas Control, 2015, 33: 10–17 - 145. Zhang L, Wang X, Yu R, Li J, Hu B, Yang L. Hollow fiber membrane separation process in the presence of gaseous and particle impurities for post-combustion CO₂ capture. International Journal of Green Energy, 2017, 14(1): 15–23 - 146. Kang G, Chan Z P, Saleh S B M, Cao Y. Removal of high concentration CO₂ from natural gas using high pressure membrane contactors. International Journal of Greenhouse Gas Control, 2017, 60: 1–9 - 147. Kim S H, Kim J K, Yeo J G, Yeo Y K. Comparative feasibility study of CO₂ capture in hollowfiber membrane processes based on process models and heat exchanger analysis. Chemical Engineering Research & Design, 2017, 117: 659–669 - 148. Lee S, Binns M, Lee J H, Moon J H, Yeo J G, Yeo Y K, Lee Y M, Kim J K. Membrane separation process for CO₂ capture from mixed gases using TR and XTR hollow fiber membranes: process modeling and experiments. Journal of Membrane Science, 2017, 541: 224–234 - 149. Li H, Ding X, Zhang Y, Liu J. Porous graphene nanosheets functionalized thin film nanocomposite membrane prepared by interfacial polymerization for CO₂/N₂ separation. Journal of Membrane Science, 2017, 543: 58–68 - 150. Liu B, Zhou R, Bu N, Wang Q, Zhong S, Wang B, Hidetoshi K. Room-temperature ionic liquids modified zeolite SSZ-13 membranes for $\rm CO_2/CH_4$ separation. Journal of Membrane Science, 2017, 524: 12–19 - 151. Mirfendereski M, Mohammadi T. Investigation of H₂S and CO₂ removal from gas streams using hollow fiber membrane gas-liquid contactors. Chemical and Biochemical Engineering Quarterly, 2017, 31(2): 139–144 - 152. Rahmawati Y, Nurkhamidah S. Susianto, Listiyana N I, Putricahyani W. Application of dual membrane contactor for simultaneous CO₂ removal using continues diethanolamine (DEA). In: AIP Conference Proceedings. AIP Publishing, 2017, 100009 - Rudaini I A, Naim R, Abdullah S, Mokhtar N M, Jaafar J. PVDFcloisite hollow fiber membrane for CO₂ absorption via membrane - contactor. Jurnal Teknologi, 2017, 79(1-2): 17-23 - 154. Saidi M. Kinetic study and process model development of CO₂ absorption using hollow fiber membrane contactor with promoted hot potassium carbonate. Journal of Environmental Chemical Engineering, 2017, 5(5): 4415–4430 - 155. Saidi M. Mathematical modeling of CO₂ absorption into novel reactive DEAB solution in hollow fiber membrane contactors; kinetic and mass transfer investigation. Journal of Membrane Science, 2017, 524: 186–196 - 156. Usman M, Dai Z, Hillestad M, Deng L. Mathematical modeling and validation of CO₂ mass transfer in a membrane contactor using ionic liquids for pre-combustion CO₂ capture. Chemical Engineering Research & Design, 2017, 123: 377–387 - 157. Wang F, Kang G, Liu D, Li M, Cao Y. Enhancing CO₂ absorption efficiency using a novel PTFE hollow fiber membrane contactor at elevated pressure. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(6): 2135–2145 - 158. Zhou F, Tien H N, Xu W L, Chen J T, Liu Q, Hicks E, Fathizadeh M, Li S, Yu M. Ultrathin graphene oxide-based hollow fiber membranes with brush-like CO₂-philic agent for highly efficient CO₂ capture. Nature Communications, 2017, 8(1): 2107 - 159. Hu L, Cheng J, Li Y, Liu J, Zhou J, Cen K. *In-situ* grafting to improve polarity of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes for CO₂ separation. Journal of Colloid and Interface Science, 2018, 510: 12–19 - 160. Ko D. Development of a dynamic simulation model of a hollow fiber membrane module to sequester CO₂ from coalbed methane. Journal of Membrane Science, 2018, 546: 258–269 - 161. Pang H, Gong H, Du M, Shen Q, Chen Z. Effect of non-solvent additive concentration on CO₂ absorption performance of polyvinylidenefluoride hollow fiber membrane contactor. Separation and Purification Technology, 2018, 191: 38–47 - 162. Fazaeli R, Razavi S M R, Najafabadi M S, Torkaman R, Hemmati A. Computational simulation of CO₂ removal from gas mixtures by chemical absorbents in porous membranes. Royal Society of Chemistry Advances, 2015, 5(46): 36787–36797 - 163. Eslami S, Mousavi S M, Danesh S, Banazadeh H. Modeling and simulation of CO₂ removal from power plant flue gas by PG solution in a hollow fiber membrane contactor. Advances in Engineering Software, 2011, 42(8): 612–620 - 164. Marti A M, Wickramanayake W, Dahe G, Sekizkardes A, Bank T L, Hopkinson D P, Venna S R. Continuous flow processing of ZIF-8 membranes on polymeric porous hollow fiber supports for CO₂ capture. ACS Applied Materials & Interfaces, 2017, 9(7): 5678–5682 - 165. Vu D Q, Koros W J, Miller S J. High pressure CO₂/CH₄ separation using carbon molecular sieve hollow fiber membranes. Industrial & Engineering Chemistry Research, 2002, 41(3): 367–380 - 166. Wang Z, Fang M, Yu H, Ma Q, Luo Z. Modeling of CO₂ stripping in a hollow fiber membrane contactor for CO₂ capture. Energy & Fuels, 2013, 27(11): 6887–6898 - 167. Lee J H, Lee J, Jo H J, Seong J G, Kim J S, Lee W H, Moon J, Lee D, Oh W J, Yeo J G, Lee Y M. Wet CO₂/N₂ permeation through a crosslinked thermally rearranged poly(benzoxazole-co-imide) (XTR-PBOI) hollow fiber membrane module for CO₂ capture. Journal of Membrane Science, 2017, 539: 412–420 - 168. Li S, Pyrzynski T J, Klinghoffer N B, Tamale T, Zhong Y, Aderhold J L, Zhou S J, Meyer H S, Ding Y, Bikson B. Scale-up of PEEK hollow fiber membrane contactor for post-combustion CO₂ capture. Journal of Membrane Science, 2017, 527: 92–101 - 169. Hwang S, Chi W S, Lee S J, Im S H, Kim J H, Kim J. Hollow ZIF-8 nanoparticles improve the permeability of mixed matrix membranes for CO₂/CH₄ gas separation. Journal of Membrane Science, 2015, 480: 11–19 - 170. Khan A L, Klaysom C, Gahlaut A, Li X, Vankelecom I F. SPEEK and functionalized mesoporous MCM-41 mixed matrix membranes for $\rm CO_2$ separations. Journal of Materials Chemistry, 2012, 22(37): 20057–20064 - 171. Khan A L, Klaysom C, Gahlaut A, Vankelecom I F. Polysulfone acrylate membranes containing functionalized mesoporous MCM-41 for CO₂ separation. Journal of Membrane Science, 2013, 436: 145–153 - 172. Li S, Fan C Q. High-flux SAPO-34 membrane for CO₂/N₂ separation. Industrial & Engineering Chemistry Research, 2010, 49 (9): 4399–4404 - 173. Li X, Cheng Y, Zhang H, Wang S, Jiang Z, Guo R, Wu H. Efficient CO₂ capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Applied Materials & Interfaces, 2015, 7(9): 5528–5537 - 174. Li X, Jiang Z, Wu Y, Zhang H, Cheng Y, Guo R, Wu H. Highperformance composite membranes incorporated with carboxylic acid nanogels for CO₂ separation. Journal of Membrane Science, 2015, 495: 72–80 - 175. Li X, Ma L, Zhang H, Wang S, Jiang Z, Guo R, Wu H, Cao X, Yang J, Wang B. Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO₂ separation. Journal of Membrane Science, 2015, 479: 1–10 - 176. Lin R, Ge L, Liu S, Rudolph V, Zhu Z. Mixed-matrix membranes with metal-organic framework-decorated CNT fillers for efficient CO₂ separation. ACS Applied Materials & Interfaces, 2015, 7(27): 14750–14757 - 177. Loloei M, Omidkhah M, Moghadassi A, Amooghin A E. Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO₂ separation. International Journal of Greenhouse Gas Control, 2015, 39: 225–235 - 178. Mahmoudi A, Asghari M, Zargar V. CO₂/CH₄ separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane. Journal of Industrial and Engineering Chemistry, 2015, 23: 238–242 - 179. Moghadassi A, Rajabi Z, Hosseini S, Mohammadi M. Preparation and characterization of polycarbonate-blend-raw/functionalized multi-walled carbon nano tubes mixed matrix membrane for CO₂ separation. Separation Science and Technology, 2013, 48(8): 1261–1271 - 180. Mohshim D F, Mukhtar H, Man Z. The effect of incorporating ionic liquid into polyethersulfone-SAPO-34 based mixed matrix membrane on CO₂ gas separation performance. Separation and Purification Technology, 2014, 135: 252–258 - Nafisi V, Hägg M B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO₂ capture. Journal of Membrane Science, 2014, 459: 244–255 - 182. Peydayesh M, Asarehpour S, Mohammadi T, Bakhtiari O. Preparation and characterization of SAPO-34-Matrimid® 5218 mixed matrix membranes for CO₂/CH₄ separation. Chemical Engineering Research & Design, 2013, 91(7): 1335–1342 - 183. Rodenas T, Van Dalen M, García Pérez E, Serra Crespo P, Zornoza B, Kapteijn F, Gascon J. Visualizing MOF mixed matrix membranes at the nanoscale: towards structure-performance relationships in CO₂/CH₄ separation over NH₂-MIL-53 (Al)@ PI. Advanced Functional Materials, 2014, 24(2): 249–256 - 184. Rodenas T, Van Dalen M, Serra Crespo P, Kapteijn F, Gascon J. Mixed matrix membranes based on NH₂-functionalized MIL-type MOFs: influence of structural and operational parameters on the CO₂/CH₄ separation performance. Microporous and Mesoporous Materials, 2014, 192: 35–42 - 185. Roh D K, Kim S J, Chi W S, Kim J K, Kim J H. Dual-functionalized mesoporous TiO₂ hollow nanospheres for improved CO₂ separation membranes. Chemical Communications, 2014, 50 (43): 5717–5720 - 186. Thompson J A, Vaughn J T, Brunelli N A, Koros W J, Jones C W, Nair S. Mixed-linker zeolitic imidazolate framework mixed-matrix membranes for aggressive CO₂ separation from natural gas. Microporous and Mesoporous Materials, 2014, 192: 43–51 - 187. Xin Q, Wu H, Jiang Z, Li Y, Wang S, Li Q, Li X, Lu X, Cao X, Yang J. SPEEK/amine-functionalized TiO₂ submicrospheres mixed matrix membranes for CO₂ separation. Journal of Membrane Science, 2014, 467: 23–35 - 188. Xing R, Ho W W. Crosslinked polyvinylalcohol-polysiloxane/ fumed silica mixed matrix membranes containing amines for CO₂/ H₂ separation. Journal of Membrane Science, 2011, 367(1-2): 91– 102 - 189. Yilmaz G, Keskin S. Predicting the performance of zeolite imidazolate framework/polymer mixed matrix membranes for CO₂, CH₄ and H₂ separations using molecular simulations. Industrial & Engineering Chemistry Research, 2012, 51(43): 14218–14228 - Zhang L, Hu Z, Jiang J. Metal-organic framework/polymer mixed-matrix membranes for H₂/CO₂ separation: a fully atomistic simulation study. Journal of Physical Chemistry C, 2012, 116 (36): 19268–19277 - 191. Zhao D, Ren J, Li H, Hua K, Deng M. Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO₂ separation. Journal of Energy Chemistry, 2014, 23(2): 227–234 - 192. Zhao H Y, Cao Y M, Ding X L, Zhou M Q, Liu J H, Yuan Q. Poly (ethylene oxide) induced cross-linking modification of matrimid membranes for selective separation of CO₂. Journal of Membrane Science, 2008, 320(1-2): 179–184 - 193. Nasir R, Mukhtar H, Man Z, Shaharun M S, Bakar M A. Development and performance prediction of polyethersulfonecarbon molecular sieve mixed matrix membrane for CO₂/CH₄ separation. Chemical Engineering Transactions, 2015, 45: 1417– 1422 - 194. Rabiee H, Alsadat S M, Soltanieh M, Mousavi S A, Ghadimi A. Gas permeation and sorption properties of poly(amide-12-*b*-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO₂/CH₄ and CO₂/N₂ separation. Journal of Industrial and Engineering Chemistry, 2015, 27: 223–239 - 195. Rezaei M, Ismail A F, Bakeri G, Hashemifard S, Matsuura T. Effect of general montmorillonite and cloisite 15A on structural parameters and performance of mixed matrix membranes contactor for CO₂ absorption. Chemical Engineering Journal, 2015, 260: 875–885 - 196. Seoane B, Coronas J, Gascon I, Benavides M E, Karvan O, Caro J, Kapteijn F, Gascon J. Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO₂ capture? Chemical Society Reviews, 2015, 44(8): 2421–2454 - 197. Sorribas S, Comesaña Gándara B, Lozano A E, Zornoza B, Téllez C, Coronas J. Insight into ETS-10 synthesis for the preparation of mixed matrix membranes for CO₂/CH₄ gas separation. Royal Society of Chemistry Advances, 2015, 5(124): 102392–102398 - 198. Alavi S A, Kargari A, Sanaeepur H, Karimi M. Preparation and characterization of PDMS/zeolite 4A/PAN mixed matrix thin film composite membrane for CO₂/N₂ and CO₂/CH₄ separations. Research on Chemical Intermediates, 2017, 43(5): 2959–2984 - 199. Amooghin A E, Omidkhah M, Sanaeepur H, Kargari A. Preparation and characterization of Ag⁺ ion-exchanged zeolite-Matrimid® 5218 mixed matrix membrane for CO₂/CH₄ separation. Journal of Energy Chemistry, 2016, 25(3): 450–462 - 200. Dong X, Liu Q, Huang A. Highly permselective MIL-68 (Al)/matrimid mixed matrix membranes for CO₂/CH₄ separation. Journal of Applied Polymer Science, 2016, 133(22): 43485 - 201. Hosseinzadeh Beiragh H, Omidkhah M, Abedini R, Khosravi T, Pakseresht S. Synthesis and characterization of poly(ether-block-amide) mixed matrix membranes incorporated by nanoporous ZSM-5 particles for CO₂/CH₄ separation. Asia-Pacific Journal of Chemical Engineering, 2016, 11(4): 522–532 - 202. Kang Z, Peng Y, Qian Y, Yuan D, Addicoat M A, Heine T, Hu Z, Tee L, Guo Z, Zhao D. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO₂ separation. Chemistry of Materials, 2016, 28(5): 1277–1285 - 203. Kertik A, Khan A L, Vankelecom I F. Mixed matrix membranes prepared from non-dried MOFs for CO₂/CH₄ separations. Royal Society of Chemistry Advances, 2016, 6(115): 114505–114512 - 204. Kim J, Choi J, Soo Kang Y, Won J. Matrix effect of mixed-matrix membrane containing CO₂-selective MOFs. Journal of Applied Polymer Science, 2016, 133(1): n/a - Kim J, Fu Q, Scofield J M, Kentish S E, Qiao G G. Ultra-thin film composite mixed matrix membranes incorporating iron (III)dopamine nanoparticles for CO₂ separation. Nanoscale, 2016, 8 (15): 8312–8323 - 206. Kim J, Fu Q, Xie K, Scofield J M, Kentish S E, Qiao G G. CO₂ separation using surface-functionalized SiO₂ nanoparticles incorporated ultra-thin film composite mixed matrix membranes for post-combustion carbon capture. Journal of Membrane Science, 2016, 515: 54–62 - 207. Kim S J, Chi W S, Jeon H, Kim J H, Patel R. Spontaneously self-assembled dual-layer mixed matrix membranes containing mass-produced mesoporous TiO₂ for CO₂ capture. Journal of Membrane Science, 2016, 508: 62–72 - 208. Koolivand H, Sharif A, Chehrazi E, Kashani M R, Paran S M R. Mixed-matrix membranes comprising graphene-oxide nanosheets for CO₂/CH₄ separation: a comparison between glassy and rubbery - polymer matrices. Polymer Science, Series A, 2016, 58(5): 801-809 - 209. Xin Q, Li Z, Li C, Wang S, Jiang Z, Wu H, Zhang Y, Yang J, Cao X. Enhancing the CO₂ separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(12): 6629–6641 - 210. Brunetti A, Cersosimo M, Kim J S, Dong G, Fontananova E, Lee Y M, Drioli E, Barbieri G. Thermally rearranged mixed matrix membranes for CO₂ separation: an aging study. International Journal of Greenhouse Gas Control, 2017, 61: 16–26 - 211. Cheng Y, Wang X, Jia C, Wang Y, Zhai L, Wang Q, Zhao D. Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO₂/CH₄ separation. Journal of Membrane Science, 2017, 539: 213–223 - 212. Galaleldin S, Mannan H, Mukhtar H. Development and characterization of polyethersulfone/TiO₂ mixed matrix membranes for CO₂/CH₄ separation. In: AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 130017 - 213. Jusoh N, Yeong Y F, Lau K K, Shariff A M. Transport properties of mixed matrix membranes encompassing zeolitic imidazolate framework 8 (ZIF-8) nanofiller and 6FDA-durene polymer: optimization of process variables for the separation of CO₂ from CH₄. Journal of Cleaner Production, 2017, 149: 80–95 - 214. Khalilinejad I, Kargari A, Sanaeepur H. Preparation and characterization of (Pebax 1657 + silica nanoparticle)/PVC mixed matrix composite membrane for CO₂/N₂ separation. Chemical Papers, 2017, 71(4): 803–818 - 215. Khosravi T, Omidkhah M, Kaliaguine S, Rodrigue D. Amine-functionalized CuBTC/poly (ether-b-amide-6)(Pebax® MH 1657) mixed matrix membranes for CO₂/CH₄ separation. Canadian Journal of Chemical Engineering, 2017, 95(10): 2024–2033 - 216. Krea M, Roizard D, Favre E. Copoly (alkyl ether imide) membranes as promising candidates for CO₂ capture applications. Separation and Purification Technology, 2016, 161: 53–60 - 217. Liu Y, Li X, Qin Y, Guo R, Zhang J. Pebax-polydopamine microsphere mixed-matrix membranes for efficient CO₂ separation. Journal of Applied Polymer Science, 2017, 134(10): 44564 - 218. Martin Gil V, López A, Hrabanek P, Mallada R, Vankelecom I, Fila V. Study of different titanosilicate (TS-1 and ETS-10) as fillers for mixed matrix membranes for CO₂/CH₄ gas separation applications. Journal of Membrane Science, 2017, 523: 24–35 - 219. Nematollahi M H, Dehaghani A H S, Abedini R. CO₂/CH₄ separation with poly(4-methyl-1-pentyne) (TPX) based mixed matrix membrane filled with Al₂O₃ nanoparticles. Korean Journal of Chemical Engineering, 2016, 33(2): 657–665 - 220. Nematollahi M H, Dehaghani A H S, Pirouzfar V, Akhondi E. Mixed matrix membranes comprising PMP polymer with dispersed alumina nanoparticle fillers to separate CO₂/N₂. Macromolecular Research, 2016, 24(9): 782–792 - 221. Nguyen T H, Gong H, Lee S S, Bae T H. Amine-appended hierarchical Ca—a zeolite for enhancing CO₂/CH₄ selectivity of mixed-matrix membranes. ChemPhysChem, 2016, 17(20): 3165–3169 - 222. Nordin N A H M, Ismail A F, Misdan N, Nazri N A M. Modified ZIF-8 mixed matrix membrane for CO₂/CH₄ separation. in AIP - Conference Proceedings. Melville, NY: AIP Publishing, 2017, 020091 - 223. Park C H, Lee J H, Jang E, Lee K B, Kim J H. MgCO₃-crystal-containing mixed matrix membranes with enhanced CO₂ perms-electivity. Chemical Engineering Journal, 2017, 307: 503–512 - 224. Quan S, Li S W, Xiao Y C, Shao L. CO₂-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO₂ capture. International Journal of Greenhouse Gas Control, 2017, 56: 22–29 - 225. Rahmani M, Kazemi A, Talebnia F. Matrimid mixed matrix membranes for enhanced CO₂/CH₄ separation. Journal of Polymer Engineering, 2016, 36(5): 499–511 - 226. Sanaeepur H, Kargari A, Nasernejad B, Amooghin A E, Omidkhah M. A novel Co²⁺ exchanged zeolite Y/cellulose acetate mixed matrix membrane for CO₂/N₂ separation. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60: 403–413 - 227. Sánchez Laínez J, Zornoza B, Friebe S, Caro J, Cao S, Sabetghadam A, Seoane B, Gascon J, Kapteijn F, Le Guillouzer C, Clet G, Daturi M, Téllez C, Coronas J. Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO₂ capture and its validation through interlaboratory test. Journal of Membrane Science, 2016, 515: 45–53 - 228. Sánchez Laínez J, Zornoza B, Téllez C, Coronas J. On the chemical filler-polymer interaction of nano-and micro-sized ZIF-11 in PBI mixed matrix membranes and their application for H₂/CO₂ separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(37): 14334–14341 - 229. Shamsabadi A A, Seidi F, Salehi E, Nozari M, Rahimpour A, Soroush M. Efficient CO₂-removal using novel mixed-matrix membranes with modified TiO₂ nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(8): 4011–4025 - 230. Shen J, Liu G, Huang K, Li Q, Guan K, Li Y, Jin W. UiO-66-polyether block amide mixed matrix membranes for CO₂ separation. Journal of Membrane Science, 2016, 513: 155–165 - 231. Shen J, Zhang M, Liu G, Guan K, Jin W. Size effects of graphene oxide on mixed matrix membranes for CO₂ separation. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(8): 2843–2852 - 232. Shen Y, Wang H, Zhang X, Zhang Y. MoS₂ nanosheets functionalized composite mixed matrix membrane for enhanced CO₂ capture via surface drop-coating method. ACS Applied Materials & Interfaces, 2016, 8(35): 23371–23378 - 233. Shin H, Chi W S, Bae S, Kim J H, Kim J. High-performance thin PVC-POEM/ZIF-8 mixed matrix membranes on alumina supports for CO₂/CH₄ separation. Journal of Industrial and Engineering Chemistry, 2017, 53: 127–133 - 234. Sumer Z, Keskin S. Computational screening of MOF-based mixed matrix membranes for $\rm CO_2/N_2$ Separations. Journal of Nanomaterials, 2016, 2016: 1–12 - 235. Tseng H H, Chuang H W, Zhuang G L, Lai W H, Wey M Y. Structure-controlled mesoporous SBA-15-derived mixed matrix membranes for H₂ purification and CO₂ capture. International Journal of Hydrogen Energy, 2017, 42(16): 11379–11391 - 236. Waheed N, Mushtaq A, Tabassum S, Gilani M A, Ilyas A, Ashraf - F, Jamal Y, Bilad M R, Khan A U, Khan A L. Mixed matrix membranes based on polysulfone and rice husk extracted silica for CO₂ separation. Separation and Purification Technology, 2016, 170: 122–129 - 237. Wang Z, Ren H, Zhang S, Zhang F, Jin J. Polymers of intrinsic microporosity/metal-organic framework hybrid membranes with improved interfacial interaction for high-performance CO₂ separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(22): 10968–10977 - 238. Xiang L, Pan Y, Zeng G, Jiang J, Chen J, Wang C. Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO₂/N₂ separation. Journal of Membrane Science, 2016, 500: 66– 75 - 239. Xin Q, Zhang Y, Huo T, Ye H, Ding X, Lin L, Zhang Y, Wu H, Jiang Z. Mixed matrix membranes fabricated by a facile in situ biomimetic mineralization approach for efficient CO₂ separation. Journal of Membrane Science, 2016, 508: 84–93 - 240. Xin Q, Zhang Y, Shi Y, Ye H, Lin L, Ding X, Zhang Y, Wu H, Jiang Z. Tuning the performance of CO₂ separation membranes by incorporating multifunctional modified silica microspheres into polymer matrix. Journal of Membrane Science, 2016, 514: 73–85 - 241. Zhang H, Guo R, Hou J, Wei Z, Li X. Mixed-matrix membranes containing carbon nanotubes composite with hydrogel for efficient CO₂ separation. ACS Applied Materials & Interfaces, 2016, 8(42): 29044–29051 - 242. Zhao D, Ren J, Wang Y, Qiu Y, Li H, Hua K, Li X, Ji J, Deng M. High CO₂ separation performance of Pebax®/CNTs/GTA mixed matrix membranes. Journal of Membrane Science, 2017, 521: 104– 113 - 243. Li Y, Chung T S. Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO₂ removal. International Journal of Hydrogen Energy, 2010, 35(19): 10560–10568 - 244. Ebrahimi S, Mollaiy Berneti S, Asadi H, Peydayesh M, Akhlaghian F, Mohammadi T. PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO₂/CH₄ separation: experimental and modeling. Chemical Engineering Research & Design, 2016, 109: 647–656 - 245. Xiong L, Gu S, Jensen K O, Yan Y S. Facilitated transport in hydroxide-exchange membranes for post-combustion CO₂ separation. ChemSusChem, 2014, 7(1): 114–116 - 246. Zhou T, Luo L, Hu S, Wang S, Zhang R, Wu H, Jiang Z, Wang B, Yang J. Janus composite nanoparticle-incorporated mixed matrix membranes for CO₂ separation. Journal of Membrane Science, 2015, 489: 1–10 - 247. Cui Z, DeMontigny D. Part 7: a review of CO₂ capture using hollow fiber membrane contactors. Carbon Management, 2013, 4 - 248. Ahmad M Z, Navarro M, Lhotka M, Zornoza B, Téllez C, Fila V, Coronas J. Enhancement of CO₂/CH₄ separation performances of 6FDA-based co-polyimides mixed matrix membranes embedded with UiO-66 nanoparticles. Separation and Purification Technology, 2018, 192: 465–474 - 249. Cao L, Tao K, Huang A, Kong C, Chen L. A highly permeable mixed matrix membrane containing CAU-1-NH₂ for H₂ and CO₂ separation. Chemical Communications, 2013, 49(76): 851–8515 - 250. Dong L, Sun Y, Zhang C, Han D, Bai Y, Chen M. Efficient CO₂ capture by metallo-supramolecular polymers as fillers to fabricate a polymeric blend membrane. Royal Society of Chemistry Advances, 2015, 5(83): 67658–67661 - Erucar I, Keskin S. Screening metal-organic framework-based mixed-matrix membranes for CO₂/CH₄ separations. Industrial & Engineering Chemistry Research, 2011, 50(22): 12606–12616 - 252. Huang A, Chen Y, Liu Q, Wang N, Jiang J, Caro J. Synthesis of highly hydrophobic and permselective metal-organic framework Zn (BDC)(TED) 0.5 membranes for H₂/CO₂ separation. Journal of Membrane Science, 2014, 454: 126–132 - 253. Li W, Zheng X, Dong Z, Li C, Wang W, Yan Y, Zhang J. Molecular dynamics simulations of CO₂/N₂ separation through two-dimensional graphene oxide membranes. Journal of Physical Chemistry C, 2016, 120(45): 2606–26066 - 254. Monteiro B, Nabais A R, Almeida Paz F A, Cabrita L, Branco L C, Marrucho I M, Neves L A, Pereira C C. Membranes with a low loading of metal–organic framework-supported ionic liquids for CO₂/N₂ separation in CO₂ capture. Energy Technology (Weinheim), 2017, 5(12): 2158–2162 - 255. Morris C G, Jacques N M, Godfrey H G, Mitra T, Fritsch D, Lu Z, Murray C A, Potter J, Cobb T M, Yuan F, Tang C C, Yang S, Schröder M. Stepwise observation and quantification and mixed matrix membrane separation of CO₂ within a hydroxy-decorated porous host. Chemical Science (Cambridge), 2017, 8(4): 3239–3248 - 256. Nordin N A H M, Racha S M, Matsuura T, Misdan N, Sani N A A, Ismail A F, Mustafa A. Facile modification of ZIF-8 mixed matrix membrane for CO₂/CH₄ separation: synthesis and preparation. RSC Advances, 2015, 5(54): 43110–43120 - 257. Rui Z, James J B, Kasik A, Lin Y. Metal-organic framework membrane process for high purity CO₂ production. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(11): 3836– 3841 - 258. Watanabe T, Keskin S, Nair S, Sholl D S. Computational identification of a metal organic framework for high selectivity membrane-based CO₂/CH₄ separations: Cu (hfipbb)(H₂ hfipbb) 0.5. Physical Chemistry Chemical Physics, 2009, 11(48): 11389–11394 - 259. Wu D, Maurin G, Yang Q, Serre C, Jobic H, Zhong C. Computational exploration of a Zr-carboxylate based metalorganic framework as a membrane material for CO₂ capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(6): 1657–1661 - 260. Yin H, Wang J, Xie Z, Yang J, Bai J, Lu J, Zhang Y, Yin D, Lin J Y. A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO₂-N₂ separation. Chemical Communications, 2014, 50(28): 3699–3701 - Kelman S, Lin H, Sanders E S, Freeman B D. CO₂/C₂H₆ separation using solubility selective membranes. Journal of Membrane Science, 2007, 305(1-2): 57–68 - 262. Low B T, Xiao Y, Chung T S, Liu Y. Simultaneous occurrence of chemical grafting, cross-linking, and etching on the surface of polyimide membranes and their impact on H₂/CO₂ separation. Macromolecules, 2008, 41(4): 1297–1309 - 263. Modigell M, Schumacher M, Teplyakov V V, Zenkevich V B. A - membrane contactor for efficient CO₂ removal in biohydrogen production. Desalination, 2008, 224(1-3): 186–190 - 264. Yave W, Car A, Wind J, Peinemann K V. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO₂ capture. Nanotechnology, 2010, 21(39): 395301 - 265. Zhang Y, Wang Z, Wang S. Synthesis and characteristics of novel fixed carrier membrane for CO₂ separation. Chemistry Letters, 2002, 31(4): 430–431 - 266. Khan A L, Li X, Vankelecom I F. Mixed-gas CO₂/CH₄ and CO₂/N₂ separation with sulfonated PEEK membranes. Journal of Membrane Science, 2011, 372(1-2): 87–96 - 267. Kim T J, Uddin M W, Sandru M, Hägg M B. The effect of contaminants on the composite membranes for CO₂ separation and challenges in up-scaling of the membranes. Energy Procedia, 2011, 4: 737–744 - 268. Zhang L, Xiao Y, Chung T S, Jiang J. Mechanistic understanding of CO₂-induced plasticization of a polyimide membrane: a combination of experiment and simulation study. Polymer, 2010, 51(19): 4439–4447 - 269. Chang J, Kang S W. CO₂ separation through poly(vinylidene fluoride-co-hexafluoropropylene) membrane by selective ion channel formed by tetrafluoroboric acid. Chemical Engineering Journal, 2016, 306: 1189–1192 - 270. Fu X, Li X, Guo R, Zhang J, Cao X. Block copolymer membranes based on polyetheramine and methyl-containing polyisophthalamides designed for efficient CO₂ separation. High Performance Polymers, 2018, 30(9): 1064–1074 - 271. Ghadiri M, Marjani A, Shirazian S. Mathematical modeling and simulation of CO₂ stripping from monoethanolamine solution using nano porous membrane contactors. International Journal of Greenhouse Gas Control, 2013, 13: 1–8 - 272. Kanehashi S, Kishida M, Kidesaki T, Shindo R, Sato S, Miyakoshi T, Nagai K. CO₂ separation properties of a glassy aromatic polyimide composite membranes containing high-content 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ionic liquid. Journal of Membrane Science, 2013, 430: 211–222 - 273. Kwisnek L, Heinz S, Wiggins J S, Nazarenko S. Multifunctional thiols as additives in UV-cured PEG-diacrylate membranes for CO₂ separation. Journal of Membrane Science, 2011, 369(1-2): 429–436 - 274. Lee J H, Jung J P, Jang E, Lee K B, Hwang Y J, Min B K, Kim J H. PEDOT-PSS embedded comb copolymer membranes with improved CO₂ capture. Journal of Membrane Science, 2016, 518: 21–30 - 275. Li Y, Xin Q, Wang S, Tian Z, Wu H, Liu Y, Jiang Z. Trapping bound water within a polymer electrolyte membrane of calcium phosphotungstate for efficient CO₂ capture. Chemical Communications, 2015, 51(10): 1901–1904 - 276. Lindqvist K, Roussanaly S, Anantharaman R. Multi-stage membrane processes for CO₂ capture from cement industry. Energy Procedia, 2014, 63: 6476–6483 - 277. Ma Z, Qiao Z, Wang Z, Cao X, He Y, Wang J, Wang S. CO₂ separation enhancement of the membrane by modifying the polymer with a small molecule containing amine and ester groups. Royal Society of Chemistry Advances, 2014, 4(41): 21313–21317 - 278. Mondal A, Barooah M, Mandal B. Effect of single and blended - amine carriers on CO₂ separation from CO₂/N₂ mixtures using crosslinked thin-film poly(vinyl alcohol) composite membrane. International Journal of Greenhouse Gas Control, 2015, 39: 27–28 - 279. Mondal A, Mandal B. Synthesis and characterization of cross-linked poly(vinyl alcohol)/poly(allylamine)/2-amino-2-hydroxymethyl-1,3-propanediol/polysulfone composite membrane for $\rm CO_2/N_2$ separation. Journal of Membrane Science, 2013, 446: 383–394 - 280. Ricci E, Minelli M, De Angelis M G. A multiscale approach to predict the mixed gas separation performance of glassy polymeric membranes for CO₂ capture: the case of CO₂/CH₄ mixture in Matrimid®. Journal of Membrane Science, 2017, 539: 88–100 - 281. Liu S, Liu G, Wei W, Xiangli F, Jin W. Ceramic supported PDMS and PEGDA composite membranes for CO₂ separation. Chinese Journal of Chemical Engineering, 2013, 21(4): 348–356 - 282. Sandru M, Kim T J, Capala W, Huijbers M, Hägg M B. Pilot scale testing of polymeric membranes for CO₂ capture from coal fired power plants. Energy Procedia, 2013, 37: 6473–6480 - 283. Tseng H H, Itta A K, Weng T H, Li Y L. SBA-15/CMS composite membrane for H₂ purification and CO₂ capture: effect of pore size, pore volume, and loading weight on separation performance. Microporous and Mesoporous Materials, 2013, 180: 270–279 - 284. Wang S, Li X, Wu H, Tian Z, Xin Q, He G, Peng D, Chen S, Yin Y, Jiang Z, Guiver M D. Advances in high permeability polymerbased membrane materials for CO₂ separations. Energy & Environmental Science, 2016, 9(6): 1863–1890 - 285. Zainab G, Iqbal N, Babar A A, Huang C, Wang X, Yu J, Ding B. Free-standing, spider-web-like polyamide/carbon nanotube composite nanofibrous membrane impregnated with polyethyleneimine for CO₂ capture. Composites Communications, 2017, 6: 41–47 - 286. Kim K J, Park S H, So W W, Ahn D J, Moon S J. CO₂ separation performances of composite membranes of 6FDA-based polyimides with a polar group. Journal of Membrane Science, 2003, 211(1): 41–49 - 287. Okabe K, Nakamura M, Mano H, Teramoto M, Yamada K. Separation and recovery of CO₂ by membrane/absorption hybrid method. In: Proceedings of the Eighth Intenational Conference on Greenhouse Gas Control Technologies. Amsterdam: Elsevier, 2006, 409–412 - 288. Francisco G J, Chakma A, Feng X. Membranes comprising of alkanolamines incorporated into poly(vinyl alcohol) matrix for CO₂/N₂ separation. Journal of Membrane Science, 2007, 303(1-2): 54–63 - 289. Sridhar S, Suryamurali R, Smitha B, Aminabhavi T. Development of crosslinked poly(ether-block-amide) membrane for CO₂/CH₄ separation. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2007, 297(1-3): 267–274 - 290. Kai T, Kouketsu T, Duan S, Kazama S, Yamada K. Development of commercial-sized dendrimer composite membrane modules for CO₂ removal from flue gas. Separation and Purification Technology, 2008, 63(3): 524–530 - 291. Kosuri M R, Koros W J. Defect-free asymmetric hollow fiber membranes from Torlon®, a polyamide-imide polymer, for high-pressure CO₂ separations. Journal of Membrane Science, 2008, 320(1-2): 65–72 - 292. Kosuri M R, Koros W J. Asymmetric hollow fiber membranes for - separation of CO_2 from hydrocarbons and fluorocarbons at high-pressure conditions relevant to C_2F_4 polymerization. Industrial & Engineering Chemistry Research, 2009, 48(23): 10577–10583 - 293. Safari M, Ghanizadeh A, Montazer Rahmati M M. Optimization of membrane-based CO₂-removal from natural gas using simple models considering both pressure and temperature effects. International Journal of Greenhouse Gas Control, 2009, 3(1): 3–10 - 294. Xing R, Ho W W. Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO₂/ CH₄ separation. Journal of the Taiwan Institute of Chemical Engineers, 2009, 40(6): 654–662 - 295. Yave W, Car A, Funari S S, Nunes S P, Peinemann K V. CO₂-philic polymer membrane with extremely high separation performance. Macromolecules, 2009, 43(1): 326–333 - 296. Cong H, Yu B. Aminosilane cross-linked PEG/PEPG/PPEG membranes for CO₂/N₂ and CO₂/H₂ separation. Industrial & Engineering Chemistry Research, 2010, 49(19): 9363–9369 - 297. Park H B, Han S H, Jung C H, Lee Y M, Hill A J. Thermally rearranged (TR) polymer membranes for CO₂ separation. Journal of Membrane Science, 2010, 359(1-2): 11–24 - 298. Reijerkerk S R, Knoef M H, Nijmeijer K, Wessling M. Poly (ethylene glycol) and poly(dimethyl siloxane): combining their advantages into efficient CO₂ gas separation membranes. Journal of Membrane Science, 2010, 352(1-2): 126–135 - 299. Yave W, Szymczyk A, Yave N, Roslaniec Z. Design, synthesis, characterization and optimization of PTT-b-PEO copolymers: a new membrane material for CO₂ separation. Journal of Membrane Science, 2010, 362(1-2): 407–416 - 300. Yu X, Wang Z, Wei Z, Yuan S, Zhao J, Wang J, Wang S. Novel tertiary amino containing thin film composite membranes prepared by interfacial polymerization for CO₂ capture. Journal of Membrane Science, 2010, 362(1-2): 265–278 - Khan A L, Li X, Vankelecom I F. SPEEK/Matrimid blend membranes for CO₂ separation. Journal of Membrane Science, 2011, 380(1-2): 55–62 - 302. Peters L, Hussain A, Follmann M, Melin T, Hägg M B. CO₂ removal from natural gas by employing amine absorption and membrane technology—a technical and economical analysis. Chemical Engineering Journal, 2011, 172(2-3): 952–960 - 303. Reijerkerk S R, Jordana R, Nijmeijer K, Wessling M. Highly hydrophilic, rubbery membranes for CO₂ capture and dehydration of flue gas. International Journal of Greenhouse Gas Control, 2011, 5(1): 26–36 - 304. Reijerkerk S R, Wessling M, Nijmeijer K. Pushing the limits of block copolymer membranes for CO₂ separation. Journal of Membrane Science, 2011, 378(1-2): 479–484 - 305. Sanaeepur H, Amooghin A E, Moghadassi A, Kargari A. Preparation and characterization of acrylonitrile-butadiene-styrene/poly(vinyl acetate) membrane for CO₂ removal. Separation and Purification Technology, 2011, 80(3): 499–508 - 306. Spadaccini C M, Mukerjee E V, Letts S A, Maiti A, O'Brien K C. Ultrathin polymer membranes for high throughput CO₂ capture. Energy Procedia, 2011, 4: 731–736 - 307. Xia J, Liu S, Chung T S. Effect of end groups and grafting on the CO₂ separation performance of poly(ethylene glycol) based membranes. Macromolecules, 2011, 44(19): 7727–7736 - 308. Ahmad F, Lau K K, Shariff A M, Murshid G. Process simulation and optimal design of membrane separation system for CO₂ capture from natural gas. Computers & Chemical Engineering, 2012, 36: 119–128 - 309. Bengtson G, Neumann S, Filiz V. Optimization of PIM-membranes for separation of CO₂. Procedia Engineering, 2012, 44: 796–798 - 310. Han S H, Kwon H J, Kim K Y, Seong J G, Park C H, Kim S, Doherty C M, Thornton A W, Hill A J, Lozano A E, Berchtold K A, Lee Y M. Tuning microcavities in thermally rearranged polymer membranes for CO₂ capture. Physical Chemistry Chemical Physics, 2012, 14(13): 4365–4373 - 311. Kim S, Lee Y M. Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO₂ separation, in nanotechnology for sustainable development. New York: Springer, 2012, 265–275 - 312. Uddin M W, Hägg M B. Natural gas sweetening—the effect on CO₂-CH₄ separation after exposing a facilitated transport membrane to hydrogen sulfide and higher hydrocarbons. Journal of Membrane Science, 2012, 423: 143–149 - 313. Hu T, Dong G, Li H, Chen V. Improved CO₂ separation performance with additives of PEG and PEG-PDMS copolymer in poly(2,6-dimethyl-1,4-phenylene oxide) membranes. Journal of Membrane Science, 2013, 432: 13–24 - 314. Kai T, Taniguchi I, Duan S, Chowdhury F A, Saito T, Yamazaki K, Ikeda K, Ohara T, Asano S, Kazama S. Molecular gate membrane: poly(amidoamine) dendrimer/polymer hybrid membrane modules for CO₂ capture. Energy Procedia, 2013, 37: 961–968 - 315. Kim T J, Vrålstad H, Sandru M, Hägg M B. Separation performance of PVAm composite membrane for CO₂ capture at various pH levels. Journal of Membrane Science, 2013, 428: 218–224 - 316. Li S, Wang Z, Zhang C, Wang M, Yuan F, Wang J, Wang S. Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO₂ separation. Journal of Membrane Science, 2013, 436: 121–131 - 317. Nasir R, Mukhtar H, Man Z, Mohshim D F. Synthesis, characterization and performance study of newly developed amine polymeric membrane (APM) for carbon dioxide (CO₂) removal. World Academy of Science, Engineering and Technology, International Journal of Chemical, Molecular, Nuclear. Materials and Metallurgical Engineering, 2013, 7(9): 670–673 - 318. Rahman M M, Filiz V, Shishatskiy S, Abetz C, Neumann S, Bolmer S, Khan M M, Abetz V. PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO₂ separation. Journal of Membrane Science, 2013, 437: 286–297 - 319. Wang M, Wang Z, Li S, Zhang C, Wang J, Wang S. A high performance antioxidative and acid resistant membrane prepared by interfacial polymerization for CO₂ separation from flue gas. Energy & Environmental Science, 2013, 6(2): 539–551 - 320. Ahmadpour E, Shamsabadi A A, Behbahani R M, Aghajani M, Kargari A. Study of CO₂ separation with PVC/Pebax composite membrane. Journal of Natural Gas Science and Engineering, 2014, 21: 518–523 - 321. Constantinou A, Barrass S, Gavriilidis A. CO₂ absorption in polytetrafluoroethylene membrane microstructured contactor using - aqueous solutions of amines. Industrial & Engineering Chemistry Research, 2014, 53(22): 9236–9242 - 322. Hussain A, Nasir H, Ahsan M. Process design analyses of CO₂ capture from natural gas by polymer membrane. Journal of the Chemical Society of Pakistan, 2014, 36(3): 411–421 - 323. Lin H, He Z, Sun Z, Vu J, Ng A, Mohammed M, Kniep J, Merkel T C, Wu T, Lambrecht R C. CO₂-selective membranes for hydrogen production and CO₂ capture-Part I: Membrane development. Journal of Membrane Science, 2014, 457: 149–161 - 324. Mondal A, Mandal B. Novel CO₂-selective cross-linked poly(vinyl alcohol)/polyvinylpyrrolidone blend membrane containing amine carrier for CO₂-N₂ separation: synthesis, characterization, and gas permeation study. Industrial & Engineering Chemistry Research, 2014, 53(51): 19736–19746 - 325. Mondal A, Mandal B. CO₂ separation using thermally stable crosslinked poly(vinyl alcohol) membrane blended with polyvinylpyrrolidone/polyethyleneimine/tetraethylenepentamine. Journal of Membrane Science, 2014, 460: 126–138 - 326. Nabian N, Ghoreyshi A, Rahimpour A, Shakeri M. Effect of polymer concentration on the structure and performance of polysulfone flat membrane for CO₂ absorption in membrane contactor. Iranian Journal of Chemical Engineering, 2014, 11(2): - 327. Salih A A, Yi C, Peng H, Yang B, Yin L, Wang W. Interfacially polymerized polyetheramine thin film composite membranes with PDMS inter-layer for CO₂ separation. Journal of Membrane Science, 2014, 472: 110–118 - 328. Wang L, Li Y, Li S, Ji P, Jiang C. Preparation of composite poly (ether block amide) membrane for CO₂ capture. Journal of Energy Chemistry, 2014, 23(6): 717–725 - 329. Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z, Jiang Z. Pebax-PEG-MWCNT hybrid membranes with enhanced CO₂ capture properties. Journal of Membrane Science, 2014, 460: 62–70 - 330. Scholes C A, Ribeiro C P, Kentish S E, Freeman B D. Thermal rearranged poly(benzoxazole)/polyimide blended membranes for CO₂ separation. Separation and Purification Technology, 2014, 124: 134–140 - 331. Wang Z, Fang M, Ma Q, Zhao Z, Wang T, Luo Z. Membrane stripping technology for CO₂ desorption from CO₂-rich absorbents with low energy consumption. Energy Procedia, 2014, 63: 765– 772 - 332. Zhou J, Tran M M, Haldeman A T, Jin J, Wagener E H, Husson S M. Perfluorocyclobutyl polymer thin-film composite membranes for CO₂ separations. Journal of Membrane Science, 2014, 450: 478–486 - 333. Gilassi S, Rahmanian N. Mathematical modelling and numerical simulation of $\rm CO_2/CH_4$ separation in a polymeric membrane. Applied Mathematical Modelling, 2015, 39(21): 6599–6611 - 334. Khalilinejad I, Sanaeepur H, Kargari A. Preparation of poly (ether-6-block amide)/PVC thin film composite membrane for CO₂ separation: effect of top layer thickness and operating parameters. Journal of Membrane Science and Research, 2015, 1(3): 124–129 - 335. Kim S J, Jeon H, Kim D J, Kim J H. High-performance polymer membranes with multi-functional amphiphilic micelles for CO₂ capture. ChemSusChem, 2015, 8(22): 3783–3792 - 336. Li P, Wang Z, Liu Y, Zhao S, Wang J, Wang S. A synergistic - strategy via the combination of multiple functional groups into membranes towards superior CO₂ separation performances. Journal of Membrane Science, 2015, 476: 243–255 - 337. Li P, Wang Z, Li W, Liu Y, Wang J, Wang S. High-performance multilayer composite membranes with mussel-inspired polydopamine as a versatile molecular bridge for CO₂ separation. ACS Applied Materials & Interfaces, 2015, 7(28): 15481–15493 - 338. Liao J, Wang Z, Gao C, Wang M, Yan K, Xie X, Zhao S, Wang J, Wang S. A high performance PVAm-HT membrane containing high-speed facilitated transport channels for CO₂ separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(32): 16746–16761 - 339. Nasir R, Mukhtar H, Man Z, Shaharun M S, Bakar M Z A. Effect of fixed carbon molecular sieve (CMS) loading and various diethanolamine (DEA) concentrations on the performance of a mixed matrix membrane for CO₂/CH₄ separation. Royal Society of Chemistry Advances, 2015, 5(75): 60814–60822 - 340. Park C H, Lee J H, Jung J P, Jung B, Kim J H. A highly selective PEGBEM-g-POEM comb copolymer membrane for CO₂/N₂ separation. Journal of Membrane Science, 2015, 492: 452–460 - 341. Park S, Lee A S, Do Y S, Hwang S S, Lee Y M, Lee J H, Lee J S. Rational molecular design of PEOlated ladder-structured polysilsesquioxane membranes for high performance CO₂ removal. Chemical Communications, 2015, 51(83): 15308–15311 - 342. Scofield J M, Gurr P A, Kim J, Fu Q, Halim A, Kentish S E, Qiao G G. High-performance thin film composite membranes with well-defined poly(dimethylsiloxane)–poly(ethylene glycol) copolymer additives for CO₂ separation. Journal of Polymer Science. Part A, Polymer Chemistry, 2015, 53(12): 1500–1511 - 343. Taniguchi I, Kai T, Duan S, Kazama S, Jinnai H. A compatible crosslinker for enhancement of CO₂ capture of poly(amidoamine) dendrimer-containing polymeric membranes. Journal of Membrane Science, 2015, 475: 175–183 - 344. Adewole J K, Ahmad A L. Process modeling and optimization studies of high pressure membrane separation of CO₂ from natural gas. Korean Journal of Chemical Engineering, 2016, 33(10): 2998–3010 - 345. Chen Y, Ho W W. High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO₂ capture from flue gas. Journal of Membrane Science, 2016, 514: 376–384 - 346. Karamouz F, Maghsoudi H, Yegani R. Synthesis and characterization of high permeable PEBA membranes for CO₂/CH₄ separation. Journal of Natural Gas Science and Engineering, 2016, 35: 980–985 - 347. Mosleh S, Mozdianfard M, Hemmati M, Khanbabaei G. Synthesis and characterization of rubbery/glassy blend membranes for CO₂/CH₄ gas separation. Journal of Polymer Research, 2016, 23(6): 120 - 348. Scofield J M, Gurr P A, Kim J, Fu Q, Kentish S E, Qiao G G. Development of novel fluorinated additives for high performance CO₂ separation thin-film composite membranes. Journal of Membrane Science, 2016, 499: 191–200 - 349. Solimando X, Lherbier C, Babin J, Arnal Herault C, Romero E, Acherar S, Jamart Gregoire B, Barth D, Roizard D, Jonquieres A. Pseudopeptide bioconjugate additives for CO₂ separation membranes. Polymer International, 2016, 65(12): 1464–1473 - 350. Wu D, Zhao L, Vakharia V K, Salim W, Ho W W. Synthesis and - characterization of nanoporous polyethersulfone membrane as support for composite membrane in CO₂ separation: from lab to pilot scale. Journal of Membrane Science, 2016, 510: 58–71 - 351. Azizi N, Arzani M, Mahdavi H R, Mohammadi T. Synthesis and characterization of poly(ether-block-amide) copolymers/multiwalled carbon nanotube nanocomposite membranes for CO₂/CH₄ separation. Korean Journal of Chemical Engineering, 2017, 34(9): 2459–2470 - 352. Azizi N, Mohammadi T, Behbahani R M. Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO₂) in order to separate CO₂ from CH₄. Journal of Natural Gas Science and Engineering, 2017, 37: 39–51 - 353. Azizi N, Mohammadi T, Behbahani R M. Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO₂ separation performance. Journal of Energy Chemistry, 2017, 26(3): 454– 465 - 354. Isfahani A P, Sadeghi M, Wakimoto K, Gibbons A H, Bagheri R, Sivaniah E, Ghalei B. Enhancement of CO₂ capture by polyethylene glycol-based polyurethane membranes. Journal of Membrane Science, 2017, 542: 143–149 - Jung J P, Park C H, Lee J H, Bae Y S, Kim J H. Room-temperature, one-pot process for CO₂ capture membranes based on PEMA-g-PPG graft copolymer. Chemical Engineering Journal, 2017, 313: 1615–1622 - 356. Prasad B, Mandal B. CO₂ separation performance by chitosan/tetraethylenepentamine/poly(ether sulfone) composite membrane. Journal of Applied Polymer Science, 2017, 134(34): 45206 - 357. Taniguchi I, Wada N, Kinugasa K, Higa M. CO₂ capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine). Open Physics, 2017, 15(1): 662–670 - 358. Tong Z, Ho W W. New sterically hindered polyvinylamine membranes for CO₂ separation and capture. Journal of Membrane Science, 2017, 543: 202–211 - 359. Himeno S, Tomita T, Suzuki K, Nakayama K, Yajima K, Yoshida S. Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO₂/CH₄ gaseous mixtures. Industrial & Engineering Chemistry Research, 2007, 46(21): 6989–6997 - 360. Hudiono Y C, Carlisle T K, Bara J E, Zhang Y, Gin D L, Noble R D. A three-component mixed-matrix membrane with enhanced CO₂ separation properties based on zeolites and ionic liquid materials. Journal of Membrane Science, 2010, 350(1-2): 117–123 - 361. Junaidi M, Khoo C, Leo C, Ahmad A. The effects of solvents on the modification of SAPO-34 zeolite using 3-aminopropyl trimethoxy silane for the preparation of asymmetric polysulfone mixed matrix membrane in the application of CO₂ separation. Microporous and Mesoporous Materials, 2014, 192: 52–59 - 362. Kim J, Abouelnasr M, Lin L C, Smit B. Large-scale screening of zeolite structures for CO₂ membrane separations. Journal of the American Chemical Society, 2013, 135(20): 7545–7552 - 363. Korelskiy D, Grahn M, Ye P, Zhou M, Hedlund J. A study of CO₂/CO separation by sub-micron b-oriented MFI membranes. Royal Society of ChemistryAdvances, 2016, 6(70): 65475–65482 - 364. Kosinov N, Auffret C, Gücüyener C, Szyja B M, Gascon J, Kapteijn F, Hensen E J. High flux high-silica SSZ-13 membrane for CO₂ separation. Journal of Materials Chemistry. A, Materials - for Energy and Sustainability, 2014, 2(32): 13083-13092 - 365. Lai L S, Yeong Y F, Lau K K, Shariff A M. Single and binary CO₂/CH₄ separation of a zeolitic imidazolate framework-8 membrane. Chemical Engineering & Technology, 2017, 40(6): 1031–1042 - 366. Li X, Remias J E, Neathery J K, Liu K. Liu K. NF/RO faujasite zeolite membrane-ammonia absorption solvent hybrid system for potential post-combustion CO₂ capture application. Journal of Membrane Science, 2011, 366(1-2): 220–228 - 367. Maghsoudi H, Soltanieh M. Simultaneous separation of H₂S and CO₂ from CH₄ by a high silica CHA-type zeolite membrane. Journal of Membrane Science, 2014, 470: 159–165 - 368. Mizukami K, Takaba H, Kobayashi Y, Oumi Y, Belosludov R V, Takami S, Kubo M, Miyamoto A. Molecular dynamics calculations of CO₂/N₂ mixture through the NaY type zeolite membrane. Journal of Membrane Science, 2001, 188(1): 21–28 - Sandström L, Sjöberg E, Hedlund J. Very high flux MFI membrane for CO₂ separation. Journal of Membrane Science, 2011, 380(1-2): 232–240 - 370. Sun C, Srivastava D J, Grandinetti P J, Dutta P K. Synthesis of chabazite/polymer composite membrane for CO₂/N₂ separation. Microporous and Mesoporous Materials, 2016, 230: 208–216 - 371. Xiang L, Sheng L, Wang C, Zhang L, Pan Y, Li Y. Amino-functionalized ZIF-7 nanocrystals: improved intrinsic separation ability and interfacial compatibility in mixed-matrix membranes for CO₂/CH₄ separation. Advanced Materials, 2017, 29(32): 1606999 - 372. Yin X, Chu N, Yang J, Wang J, Li Z. Thin zeolite T/carbon composite membranes supported on the porous alumina tubes for CO₂ separation. International Journal of Greenhouse Gas Control, 2013, 15: 55–64 - 373. Zhou M, Korelskiy D, Ye P, Grahn M, Hedlund J. A uniformly oriented MFI membrane for improved CO₂ separation. Angewandte Chemie International Edition, 2014, 53(13): 3492–3495 - 374. Kangas J, Sandström L, Malinen I, Hedlund J, Tanskanen J. Maxwell-Stefan modeling of the separation of H₂ and CO₂ at high pressure in an MFI membrane. Journal of Membrane Science, 2013, 435: 186–206 - 375. Lee H, Park S C, Roh J S, Moon G H, Shin J E, Kang Y S, Park H B. Metal-organic frameworks grown on a porous planar template with an exceptionally high surface area: promising nanofiller platforms for CO₂ separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(43): 22500–22505 - 376. An W, Swenson P, Wu L, Waller T, Ku A, Kuznicki S M. Selective separation of hydrogen from C1/C2 hydrocarbons and CO₂ through dense natural zeolite membranes. Journal of Membrane Science, 2011, 369(1-2): 414–419 - 377. Banihashemi F, Pakizeh M, Ahmadpour A. CO₂ separation using PDMS/ZSM-5 zeolite composite membrane. Separation and Purification Technology, 2011, 79(3): 293–302 - 378. Chew T L, Ahmad A L, Bhatia S. Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO₂/CH₄ gas separation. Chemical Engineering Journal, 2011, 171(3): 1053–1059 - 379. Hao L, Li P, Yang T, Chung T S. Room temperature ionic liquid/ ZIF-8 mixed-matrix membranes for natural gas sweetening and post-combustion CO₂ capture. Journal of Membrane Science, - 2013, 436: 221-231 - 380. Kwon W T, Kim S R, Kim E B, Bae S Y, Kim Y. H₂/CO₂ gas separation characteristic of zeolite membrane at high temperature. In: Advanced Materials Research. Zürich, Switzerland: Trans Tech Publications, Ltd., 2007, 267–270 - 381. Lai L S, Yeong Y F, Lau K K, Shariff A M. Synthesis of zeolitic imidazolate frameworks (ZIF)-8 membrane and its process optimization study in separation of CO₂ from natural gas. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2017, 92(2): 420–431 - 382. Liu Y, Hu E, Khan E A, Lai Z. Synthesis and characterization of ZIF-69 membranes and separation for CO₂/CO mixture. Journal of Membrane Science, 2010, 353(1-2): 36–40 - 383. Ohta Y, Takaba H, Nakao S I. A combinatorial dynamic Monte Carlo approach to finding a suitable zeolite membrane structure for CO₂/N₂ separation. Microporous and Mesoporous Materials, 2007, 101(1-2): 319–323 - 384. Song Z, Qiu F, Zaia E W, Wang Z, Kunz M, Guo J, Brady M, Mi B, Urban J J. Dual-channel, molecular-sieving core/shell ZIF@ MOF architectures as engineered fillers in hybrid membranes for highly selective CO₂ separation. Nano Letters, 2017, 17(11): 6752–6758 - 385. Tzialla O, Veziri C, Papatryfon X, Beltsios K, Labropoulos A, Iliev B, Adamova G, Schubert T, Kroon M, Francisco M, Zubeir L F, Romanos G E, Karanikolos G N. Zeolite imidazolate frameworkionic liquid hybrid membranes for highly selective CO₂ separation. Journal of Physical Chemistry C, 2013, 117(36): 18434–18440 - Ramsay J, Kallus S. Zeolite membranes. In: Membrane Science and Technology. Vol 6. Amsterdam: Elsevier, 2000, 373–395 - 387. Fan T, Xie W, Ji X, Liu C, Feng X, Lu X. CO₂/N₂ separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures. Chinese Journal of Chemical Engineering, 2016, 24(11): 1513–1521 - 388. Hu L, Cheng J, Li Y, Liu J, Zhang L, Zhou J, Cen K. Composites of ionic liquid and amine-modified SAPO-34 improve $\rm CO_2$ separation of $\rm CO_2$ -selective polymer membranes. Applied Surface Science, 2017, 410: 249–258 - 389. Iarikov D, Hacarlioglu P, Oyama S. Supported room temperature ionic liquid membranes for CO₂/CH₄ separation. Chemical Engineering Journal, 2011, 166(1): 401–406 - 390. Karousos D S, Labropoulos A I, Sapalidis A, Kanellopoulos N K, Iliev B, Schubert T J, Romanos G E. Nanoporous ceramic supported ionic liquid membranes for CO₂ and SO₂ removal from flue gas. Chemical Engineering Journal, 2017, 313: 777–790 - 391. Karunakaran M, Villalobos L F, Kumar M, Shevate R, Akhtar F H, Peinemann K V. Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO₂ capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(2): 649–656 - 392. Li P, Paul D R, Chung T S. High performance membranes based on ionic liquid polymers for CO₂ separation from the flue gas. Green Chemistry, 2012, 14(4): 1052–1063 - 393. Li P, Pramoda K, Chung T S. CO₂ separation from flue gas using polyvinyl-(room temperature ionic liquid)-room temperature ionic liquid composite membranes. Industrial & Engineering Chemistry Research, 2011, 50(15): 9344–9353 - 394. Li Y, Rui Z, Xia C, Anderson M, Lin Y. Performance of ionic-conducting ceramic/carbonate composite material as solid oxide fuel cell electrolyte and CO₂ permeation membrane. Catalysis Today, 2009, 148(3-4): 303–309 - 395. Liu Z, Liu C, Li L, Qin W, Xu A. CO₂ separation by supported ionic liquid membranes and prediction of separation performance. International Journal of Greenhouse Gas Control, 2016, 53: 79–84 - 396. Lu J G, Ge H, Chen Y, Ren R T, Xu Y, Zhao Y X, Zhao X, Qian H. CO₂ capture using a functional protic ionic liquid by membrane absorption. Journal of the Energy Institute, 2017, 90(6): 933–940 - Lu J G, Lu C T, Chen Y, Gao L, Zhao X, Zhang H, Xu Z W. CO₂ capture by membrane absorption coupling process: application of ionic liquids. Applied Energy, 2014, 115: 573–581 - 398. Lu S C, Khan A L, Vankelecom I F. Polysulfone-ionic liquid based membranes for CO₂/N₂ separation with tunable porous surface features. Journal of Membrane Science, 2016, 518: 10–20 - 399. Mannan H, Mohshim D, Mukhtar H, Murugesan T, Man Z, Bustam M. Synthesis, characterization and CO₂ separation performance of polyether sulfone/[EMIM][Tf2N] ionic liquidpolymeric membranes (ILPMs). Journal of Industrial and Engineering Chemistry, 2017, 54: 98–106 - 400. Ramli N A, Hashim N A, Aroua M K. Prediction of CO₂/O₂ absorption selectivity using supported ionic liquid membranes (SILMs) for gas-liquid membrane contactor. Chemical Engineering Communications, 2018, 205(3): 295–310 - 401. Tomé L C, Patinha D J, Freire C S, Rebelo L P N, Marrucho I M. CO₂ separation applying ionic liquid mixtures: the effect of mixing different anions on gas permeation through supported ionic liquid membranes. Royal Society of Chemistry Advances, 2013, 3(30): 12220–12229 - 402. Ur Rehman R, Rafiq S, Muhammad N, Khan A L, Ur Rehman A, TingTing L, Saeed M, Jamil F, Ghauri M, Gu X. Development of ethanolamine-based ionic liquid membranes for efficient CO₂/CH₄ separation. Journal of Applied Polymer Science, 2017, 134(44): 45395 - 403. Yoon K W, Kim H, Kang Y S, Kang S W. 1-Butyl-3-methylimidazolium tetrafluoroborate/zinc oxide composite membrane for high CO₂ separation performance. Chemical Engineering Journal, 2017, 320: 50–54 - 404. Zhang X M, Tu Z H, Li H, Li L, Wu Y T, Hu X B. Supported protic-ionic-liquid membranes with facilitated transport mechanism for the selective separation of CO₂. Journal of Membrane Science, 2017, 527: 60–67 - 405. Chen H, Kovvali A, Sirkar K. Selective CO₂ Separation from CO₂-N₂ mixtures by immobilized glycine-Na-glycerol membranes. Industrial & Engineering Chemistry Research, 2000, 39(7): 2447–2458 - 406. Ilyas A, Muhammad N, Gilani M A, Ayub K, Vankelecom I F, Khan A L. Supported protic ionic liquid membrane based on 3-(trimethoxysilyl) propan-1-aminium acetate for the highly selective separation of CO₂. Journal of Membrane Science, 2017, 543: 301–309 - 407. Ranjbaran F, Kamio E, Matsuyama H. Ion gel membrane with tunable inorganic/organic composite network for CO₂ separation. Industrial & Engineering Chemistry Research, 2017, 56(44): 12763–12772 - 408. Jindaratsamee P, Shimoyama Y, Ito A. Amine/glycol liquid membranes for CO₂ recovery form air. Journal of Membrane Science, 2011, 385: 171–176 - 409. Hussain A. Three stage membrane process for CO₂ capture from natural gas. AA, 2017, 50:1 - 410. Niwa M, Ohya H, Tanaka Y, Yoshikawa N, Matsumoto K, Negishi Y. Separation of gaseous mixtures of CO₂ and CH₄ using a composite microporous glass membrane on ceramic tubing. Journal of Membrane Science, 1988, 39(3): 301–314 - 411. Saha S, Chakma A. Separation of CO_2 from gas mixtures with liquid membranes. Energy Conversion and Management, 1992, 33 (5-8): 413–420 - Xu L, Zhang L, Chen H. Study on CO₂ removal in air by hydrogel membranes. Desalination, 2002, 148(1-3): 309–313 - 413. Jordal K, Bredesen R, Kvamsdal H, Bolland O. Integration of H₂-separating membrane technology in gas turbine processes for CO₂ capture. Energy, 2004, 29(9-10): 1269–1278 - Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO₂/CH₄ separation. Journal of Membrane Science, 2004, 241(1): 121–135 - 415. Moon J H, Ahn H, Hyun S H, Lee C H. Separation characteristics of tetrapropylammoniumbromide templating silica/alumina composite membrane in CO₂/N₂, CO₂/H₂ and CH₄/H₂ systems. Korean Journal of Chemical Engineering, 2004, 21(2): 477–487 - 416. Li S, Alvarado G, Noble R D, Falconer J L. Effects of impurities on CO₂/CH₄ separations through SAPO-34 membranes. Journal of Membrane Science, 2005, 251(1-2): 59–66 - 417. Li S, Martinek J G, Falconer J L, Noble R D, Gardner T Q. Highpressure CO₂/CH₄ separation using SAPO-34 membranes. Industrial & Engineering Chemistry Research, 2005, 44(9): 3220–3228 - 418. Jordal K, Bolland O, Möller B F, Torisson T. Optimization with genetic algorithms of a gas turbine cycle with H₂-separating membrane reactor for CO₂ capture. International Journal of Green Energy, 2005, 2(2): 167–180 - 419. Sakamoto Y, Nagata K, Yogo K, Yamada K. Preparation and $\rm CO_2$ separation properties of amine-modified mesoporous silica membranes. Microporous and Mesoporous Materials, 2007, 101(1-2): 303-311 - 420. Xiao S, Feng X, Huang R Y. Trimesoyl chloride crosslinked chitosan membranes for CO₂/N₂ separation and pervaporation dehydration of isopropanol. Journal of Membrane Science, 2007, 306(1-2): 36–46 - 421. Yegani R, Hirozawa H, Teramoto M, Himei H, Okada O, Takigawa T, Ohmura N, Matsumiya N, Matsuyama H. Selective separation of CO₂ by using novel facilitated transport membrane at elevated temperatures and pressures. Journal of Membrane Science, 2007, 291(1-2): 157–164 - 422. Paul S, Ghoshal A K, Mandal B. Theoretical studies on separation of CO₂ by single and blended aqueous alkanolamine solvents in flat sheet membrane contactor (FSMC). Chemical Engineering Journal, 2008, 144(3): 352–360 - 423. Kai T, Kazama S, Fujioka Y. Development of cesium-incorporated carbon membranes for CO₂ separation under humid conditions. Journal of Membrane Science, 2009, 342(1-2): 14–21 - 424. Nistor C, Shishatskiy S, Popa M, Nunes S P. CO₂ selective membranes based on epoxy silane. Revue Roumaine de Chimie, 2009, 54: 603–610 - 425. Li S, Carreon M A, Zhang Y, Funke H H, Noble R D, Falconer J L. Scale-up of SAPO-34 membranes for CO₂/CH₄ separation. Journal of Membrane Science, 2010, 352(1-2): 7–13 - 426. Scholes C A, Smith K H, Kentish S E, Stevens G W. CO₂ capture from pre-combustion processes—strategies for membrane gas separation. International Journal of Greenhouse Gas Control, 2010, 4(5): 739–755 - 427. Tiscornia I, Kumakiri I, Bredesen R, Téllez C, Coronas J. Microporous titanosilicate ETS-10 membrane for high pressure CO₂ separation. Separation and Purification Technology, 2010, 73 (1): 8–12 - 428. Favre N, Pierre A C. Synthesis and behaviour of hybrid polymersilica membranes made by sol gel process with adsorbed carbonic anhydrase enzyme, in the capture of CO₂. Journal of Sol-Gel Science and Technology, 2011, 60(2): 177–188 - 429. Lotrič A, Sekavčnik M, Kunze C, Spliethoff H. Simulation of water-gas shift membrane reactor for integrated gasification combined cycle plant with CO₂ capture. Chinese Journal of Mechanical Engineering, 2011, 57(12): 911–926 - 430. Martin F Z, Dijkstra J W, Boon J, Meuldijk J. A membrane reformer with permeate side combustion for CO₂ capture: modeling and design. Energy Procedia, 2011, 4: 707–714 - 431. Ostwal M, Singh R P, Dec S F, Lusk M T, Way J D. 3-Aminopropyltriethoxysilane functionalized inorganic membranes for high temperature CO₂/N₂ separation. Journal of Membrane Science, 2011, 369(1-2): 139–147 - 432. Venna S R, Carreon M A. Amino-functionalized SAPO-34 membranes for CO₂/CH₄ and CO₂/N₂ separation. Langmuir, 2011, 27(6): 2888–2894 - 433. Wade J L, Lee C, West A C, Lackner K S. Composite electrolyte membranes for high temperature CO₂ separation. Journal of Membrane Science, 2011, 369(1-2): 20–29 - 434. Chabanon E, Roizard D, Favre E. Modelling strategies of membrane contactor processes for CO₂ post-combustion capture: a critical reassessment. Procedia Engineering, 2012, 44: 343–346 - 435. Lau C H, Paul D R, Chung T S. Molecular design of nanohybrid gas separation membranes for optimal CO₂ separation. Polymer, 2012, 53(2): 454–465 - 436. Li H, Pieterse J, Dijkstra J, Boon J, Van Den Brink R, Jansen D. Bench-scale WGS membrane reactor for CO₂ capture with co-production of H₂. International Journal of Hydrogen Energy, 2012, 37(5): 4139–4143 - 437. Madhusoodana C, Patil M, Aminabhavi T. Ceramic supported composite membranes of hydroxy-ethyl-cellulose loaded with AL-MCM-41 for CO₂ separation. Procedia Engineering, 2012, 44: 108–109 - 438. Modarresi S, Soltanieh M, Mousavi S A, Shabani I. Effect of low-frequency oxygen plasma on polysulfone membranes for CO₂/CH₄ Separation. Journal of Applied Polymer Science, 2012, 124(S1): E100, E204 - 439. Rongwong W, Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R. Simultaneous absorption of CO₂ and H₂S from biogas by capillary membrane contactor. Journal of Membrane Science, 2012, 392: 38–47 - 440. Smart S, Vente J, Da Costa J D. High temperature H₂/CO₂ separation using cobalt oxide silica membranes. International - Journal of Hydrogen Energy, 2012, 37(17): 12700-12707 - 441. Bae T H, Long J R. CO₂/N₂ separations with mixed-matrix membranes containing Mg₂(dobdc) nanocrystals. Energy & Environmental Science, 2013, 6(12): 3565–3569 - 442. Choi J H, Park M J, Kim J, Ko Y, Lee S H, Baek I. Modelling and analysis of pre-combustion CO₂ capture with membranes. Korean Journal of Chemical Engineering, 2013, 30(6): 1187–1194 - 443. Koutsonikolas D E, Kaldis S P, Pantoleontos G T, Zaspalis V T, Sakellaropoulos G P. Techno-economic assessment of polymeric, ceramic and metallic membranes integration in an advanced IGCC process for H₂ production and CO₂ capture. Trans, 2013, 35: 715– 720 - 444. Lee C B, Lee S W, Park J S, Lee D W, Hwang K R, Ryi S K, Kim S H. Long-term CO₂ capture tests of Pd-based composite membranes with module configuration. International Journal of Hydrogen Energy, 2013, 38(19): 7896–7903 - 445. Lin Y F, Chen C H, Tung K L, Wei T Y, Lu S Y, Chang K S. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO₂ capture with large absorption flux enhancements. ChemSusChem, 2013, 6(3): 437–442 - 446. Ryi S K, Lee C B, Lee S W, Park J S. Pd-based composite membrane and its high-pressure module for pre-combustion CO₂ capture. Energy, 2013, 51: 237–242 - 447. Zhang K, Zou Y, Su C, Shao Z, Liu L, Wang S, Liu S. CO₂ and water vapor-tolerant yttria stabilized bismuth oxide (YSB) membranes with external short circuit for oxygen separation with CO₂ capture at intermediate temperatures. Journal of Membrane Science, 2013, 427: 168–175 - 448. Zhu X, Chai S, Tian C, Fulvio P F, Han K S, Hagaman E W, Veith G M, Mahurin S M, Brown S, Liu H, Dai S. Synthesis of porous, nitrogen-doped adsorption/diffusion carbonaceous membranes for efficient CO₂ separation. Macromolecular Rapid Communications, 2013, 34(5): 452–459 - 449. Zhao Y, Jung B T, Ansaloni L, Ho W W. Multiwalled carbon nanotube mixed matrix membranes containing amines for high pressure CO₂/H₂ separation. Journal of Membrane Science, 2014, 459: 233–243 - 450. Deng L, Hägg M B. Carbon nanotube reinforced PVAm/PVA blend FSC nanocomposite membrane for CO₂/CH₄ separation. International Journal of Greenhouse Gas Control, 2014, 26: 127– 134 - 451. Lin Y F, Ko C C, Chen C H, Tung K L, Chang K S, Chung T W. Sol-gel preparation of polymethylsilsesquioxane aerogel membranes for CO₂ absorption fluxes in membrane contactors. Applied Energy, 2014, 129: 25–31 - 452. Patel R, Kim S J, Roh D K, Kim J H. Synthesis of amphiphilic PCZ-r-PEG nanostructural copolymers and their use in CO₂/N₂ separation membranes. Chemical Engineering Journal, 2014, 254: 46–53 - 453. Pedram M Z, Omidkhah M, Amooghin A E. Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinylalcohol/glutaraldehyde membranes for CO₂/CH₄ separation. Journal of Industrial and Engineering Chemistry, 2014, 20(1): 74– 82 - 454. Rabiee H, Soltanieh M, Mousavi S A, Ghadimi A. Improvement in CO₂/H₂ separation by fabrication of poly(ether-*b*-amide6)/glycerol - triacetate gel membranes. Journal of Membrane Science, 2014, 469: 43–58 - 455. Ryi S K, Lee S W, Park J W, Oh D K, Park J S, Kim S S. Combined steam and CO₂ reforming of methane using catalytic nickel membrane for gas to liquid (GTL) process. Catalysis Today, 2014, 236: 49–56 - 456. Scholes C A, Ho M T, Aguiar A A, Wiley D E, Stevens G W, Kentish S E. Membrane gas separation processes for CO₂ capture from cement kiln flue gas. International Journal of Greenhouse Gas Control, 2014, 24: 78–86 - 457. Shi H. Synthesis of SAPO-34 zeolite membranes with the aid of crystal growth inhibitors for CO₂-CH₄ separation. New Journal of Chemistry, 2014, 38(11): 5276–5278 - 458. Taniguchi I, Fujikawa S. CO₂ separation with nano-thick polymeric membrane for pre-combustion. Energy Procedia, 2014, 63: 235–242 - 459. Tseng H H, Chang S H, Wey M Y. A carbon gutter layer-modified α -Al₂O₃ substrate for PPO membrane fabrication and CO₂ separation. Journal of Membrane Science, 2014, 454: 51–61 - 460. Wu T, Wang B, Lu Z, Zhou R, Chen X. Alumina-supported AIPO-18 membranes for CO₂/CH₄ separation. Journal of Membrane Science, 2014, 471: 338–346 - 461. Zhang L, Gong Y, Brinkman K S, Wei T, Wang S, Huang K. Flux of silver-carbonate membranes for post-combustion CO₂ capture: the effects of membrane thickness, gas concentration and time. Journal of Membrane Science, 2014, 455: 162–167 - 462. Zhang L, Gong Y, Yaggie J, Wang S, Romito K, Huang K. Surface modified silver-carbonate mixed conducting membranes for high flux CO₂ separation with enhanced stability. Journal of Membrane Science, 2014, 453: 36–41 - 463. Azizi M, Mousavi S A. CO₂/H₂ separation using a highly permeable polyurethane membrane: molecular dynamics simulation. Journal of Molecular Structure, 2015, 1100: 401–414 - 464. Kammakakam I, Nam S, Kim T H. Ionic group-mediated crosslinked polyimide membranes for enhanced CO₂ separation. Royal Society of Chemistry Advances, 2015, 5(86): 69907–69914 - 465. Konruang S, Sirijarukul S, Wanichapichart P, Yu L, Chittrakarn T. Ultraviolet-ray treatment of polysulfone membranes on the O₂/N₂ and CO₂/CH₄ separation performance. Journal of Applied Polymer Science, 2015, 132(25): 42074 - 466. Lin Y F, Chang J M, Ye Q, Tung K L. Hydrophobic fluorocarbon-modified silica aerogel tubular membranes with excellent CO₂ recovery ability in membrane contactors. Applied Energy, 2015, 154: 21–25 - 467. Nabian N, Ghoreyshi A A, Rahimpour A, Shakeri M. Performance evaluation and mass transfer study of CO₂ absorption in flat sheet membrane contactor using novel porous polysulfone membrane. Korean Journal of Chemical Engineering, 2015, 32(11): 2204– 2211 - 468. Nwogu N C, Kajama M N, Osueke G, Gobina E. High performance valuation of CO₂ gas separation ceramic membrane system. In: Ao S I, Gelman L, Hukins D W L, Hunter A, Korsunsky A M, eds. Proceedings of the 2015 World Congress on Engineering (WCE 2015). Hong Kong: Newswood Academic Publishing, 2015, 824–827 - 469. Qiao Z, Wang Z, Yuan S, Wang J, Wang S. Preparation and - characterization of small molecular amine modified PVAm membranes for CO_2/H_2 separation. Journal of Membrane Science, 2015, 475: 290–302 - 470. Shin D Y, Hwang K R, Park J S, Park M J. Computational fluid dynamics modeling and analysis of Pd-based membrane module for CO₂ capture from H₂/CO₂ binary gas mixture. Korean Journal of Chemical Engineering, 2015, 32(7): 1414–1421 - 471. Sun C, Wen B, Bai B. Application of nanoporous graphene membranes in natural gas processing: molecular simulations of CH₄/CO₂, CH₄/H₂S and CH₄/N₂ separation. Chemical Engineering Science, 2015, 138: 616–621 - 472. Tong J, Zhang L, Fang J, Han M, Huang K. Electrochemical capture of CO₂ from natural gas using a high-temperature ceramiccarbonate membrane. Journal of the Electrochemical Society, 2015, 162(4): E43–E46 - 473. Wang B, Sun C, Li Y, Zhao L, Ho W W, Dutta P K. Rapid synthesis of faujasite/polyethersulfone composite membrane and application for CO₂/N₂ separation. Microporous and Mesoporous Materials, 2015, 208: 72–82 - 474. Wang N, Mundstock A, Liu Y, Huang A, Caro J. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H₂/CO₂ separation. Chemical Engineering Science, 2015, 124: 27–36 - 475. Wang S, Tian Z, Feng J, Wu H, Li Y, Liu Y, Li X, Xin Q, Jiang Z. Enhanced CO₂ separation properties by incorporating poly (ethylene glycol)-containing polymeric submicrospheres into polyimide membrane. Journal of Membrane Science, 2015, 473: 310–317 - 476. Xin Q, Gao Y, Wu X, Li C, Liu T, Shi Y, Li Y, Jiang Z, Wu H, Cao X. Incorporating one-dimensional aminated titania nanotubes into sulfonated poly(ether ether ketone) membrane to construct CO₂-facilitated transport pathways for enhanced CO₂ separation. Journal of Membrane Science, 2015, 488: 13–29 - 477. Xing W, Peters T, Fontaine M L, Evans A, Henriksen P P, Norby T, Bredesen R. Steam-promoted CO₂ flux in dual-phase CO₂ separation membranes. Journal of Membrane Science, 2015, 482: 115–119 - 478. Zheng Y, Hu N, Wang H, Bu N, Zhang F, Zhou R. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO_2/CH_4 and C_2H_4/C_2H_6 separation. Journal of Membrane Science, 2015, 475: 303–310 - 479. Zhou R, Wang H, Wang B, Chen X, Li S, Yu M. Defect-patching of zeolite membranes by surface modification using siloxane polymers for CO₂ separation. Industrial & Engineering Chemistry Research, 2015, 54(30): 7516–7523 - 480. Dai Z, Bai L, Hval K N, Zhang X, Zhang S, Deng L. Pebax®/TSIL blend thin film composite membranes for CO₂ separation. Science China. Chemistry, 2016, 59(5): 538–546 - 481. Dong G, Zhang Y, Hou J, Shen J, Chen V. Graphene oxide nanosheets based novel facilitated transport membranes for efficient CO₂ capture. Industrial & Engineering Chemistry Research, 2016, 55(18): 5403-5414 - 482. Dong L, Zhang C, Bai Y, Shi D, Li X, Zhang H, Chen M. High-performance PEBA2533-functional MMT mixed matrix membrane containing high-speed facilitated transport channels for CO₂/N₂ separation. ACS Sustainable Chemistry & Engineering, 2016, 4 (6): 3486–3496 - 483. Jeon H, Kim D J, Park M S, Ryu D Y, Kim J H. Amphiphilic graft copolymer nanospheres: from colloidal self-assembly to CO₂ capture membranes. ACS Applied Materials & Interfaces, 2016, 8 (14): 9454–9461 - 484. Karimi S, Korelskiy D, Mortazavi Y, Khodadadi A A, Sardari K, Esmaeili M, Antzutkin O N, Shah F U, Hedlund J. High flux acetate functionalized silica membranes based on *in-situ* cocondensation for CO₂/N₂ separation. Journal of Membrane Science, 2016, 520: 574–582 - 485. Li W, Zhang Y, Su P, Xu Z, Zhang G, Shen C, Meng Q. Metal-organic framework channelled graphene composite membranes for H₂/CO₂ separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(48): 18747–18752 - 486. Lin Y F, Kuo J W. Mesoporous bis(trimethoxysilyl) hexane (BTMSH)/tetraethyl orthosilicate (TEOS)-based hybrid silica aerogel membranes for CO₂ capture. Chemical Engineering Journal, 2016, 300: 29–35 - 487. Moradi M R, Chenar M P, Noie S H. Using PDMS coated TFC-RO membranes for CO₂/N₂ gas separation: experimental study, modeling and optimization. Polymer Testing, 2016, 56: 287–298 - 488. Mubashir M, Yeong Y F, Lau K K. Ultrasonic-assisted secondary growth of deca-dodecasil 3 rhombohedral (DD3R) membrane and its process optimization studies in CO₂/CH₄ separation using response surface methodology. Journal of Natural Gas Science and Engineering, 2016, 30: 50–63 - 489. Pohlmann J, Bram M, Wilkner K, Brinkmann T. Pilot scale separation of $\rm CO_2$ from power plant flue gases by membrane technology. International Journal of Greenhouse Gas Control, 2016, 53: 56–64 - 490. Qin Y, Lv J, Fu X, Guo R, Li X, Zhang J, Wei Z. High-performance SPEEK/amino acid salt membranes for CO₂ separation. Royal Society of Chemistry Advances, 2016, 6(3): 2252–2258 - 491. Saedi S, Seidi F, Moradi F, Xiang X. Preparation and characterization of an amino-cellulose (AC) derivative for development of thin-film composite membrane for CO₂/CH₄ separation. Stärke, 2016, 68(7-8): 651–661 - 492. Saeed M, Deng L. Carbon nanotube enhanced PVA-mimic enzyme membrane for post-combustion CO₂ capture. International Journal of Greenhouse Gas Control, 2016, 53: 254–262 - 493. Wang Y, Yang Q, Li J, Yang J, Zhong C. Exploration of nanoporous graphene membranes for the separation of N₂ from CO₂: a multi-scale computational study. Physical Chemistry Chemical Physics, 2016, 18(12): 8352–8358 - 494. Wong K, Goh P, Ismail A F. Thin film nanocomposite: the next generation selective membrane for CO₂ removal. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(41): 15726–15748 - 495. Zhang P, Tong J, Jee Y, Huang K. Stabilizing a high-temperature electrochemical silver-carbonate CO₂ capture membrane by atomic layer deposition of a ZrO₂ overcoat. Chemical Communications, 2016, 52(63): 9817–9820 - 496. Zhong S, Bu N, Zhou R, Jin W, Yu M, Li S. Aluminophosphate-17 and silicoaluminophosphate-17 membranes for CO₂ separations. Journal of Membrane Science, 2016, 520: 507–514 - 497. Benito J, Sánchez Laínez J, Zornoza B, Martín S, Carta M, - Malpass Evans R, Téllez C, McKeown N B, Coronas J, Gascón I. Ultrathin composite polymeric membranes for CO₂/N₂ separation with minimum thickness and high CO₂ permeance. Chem-SusChem, 2017, 10(20): 4014–4017 - 498. Kgaphola K, Sigalas I, Daramola M O. Synthesis and characterization of nanocomposite SAPO-34/ceramic membrane for post-combustion CO₂ capture. Asia-Pacific Journal of Chemical Engineering, 2017, 12(6): 894–904 - 499. Khakpay A, Rahmani F, Nouranian S, Scovazzo P. Molecular insights on the CH₄/CO₂ separation in nanoporous graphene and graphene oxide separation platforms: adsorbents versus membranes. Journal of Physical Chemistry C, 2017, 121(22): 12308– 12320 - 500. Kim N U, Park B J, Choi Y, Lee K B, Kim J H. High-performance self-cross-linked PGP-POEM comb copolymer membranes for CO₂ capture. Macromolecules, 2017, 50(22): 8938–8947 - 501. Kline G K, Weidman J R, Zhang Q, Guo R. Studies of the synergistic effects of crosslink density and crosslink inhomogeneity on crosslinked PEO membranes for CO₂-selective separations. Journal of Membrane Science, 2017, 544: 25–34 - 502. Mahdavi H R, Azizi N, Mohammadi T. Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/γ-Al₂O₃ membrane for CO₂/CH₄ separation using response surface methodology. Journal of Polymer Research, 2017, 24(5): 67 - 503. Peng D, Wang S, Tian Z, Wu X, Wu Y, Wu H, Xin Q, Chen J, Cao X, Jiang Z. Facilitated transport membranes by incorporating graphene nanosheets with high zinc ion loading for enhanced CO₂ separation. Journal of Membrane Science, 2017, 522: 351–362 - 504. Qu Y, Li F, Zhao M. Theoretical design of highly efficient CO₂/N₂ separation membranes based on electric quadrupole distinction. Journal of Physical Chemistry C, 2017, 121(33): 17925–17931 - Selyanchyn R, Fujikawa S. Membrane thinning for efficient CO₂ capture. Science and Technology of Advanced Materials, 2017, 18 (1): 816–827 - 506. Shafie S N A, Man Z, Idris A. Development of polycarbonate-silica matrix membrane for CO₂/CH₄ separation. In: AIP Conference Proceedings. Melville, NY: AIP Publishing, 2017, 020129 - 507. Song C, Liu Q, Ji N, Deng S, Zhao J, Li Y, Kitamura Y. Reducing the energy consumption of membrane-cryogenic hybrid CO₂ capture by process optimization. Energy, 2017, 124: 29–39 - 508. Taniguchi I, Kinugasa K, Toyoda M, Minezaki K. Effect of amine structure on CO₂ capture by polymeric membranes. Science and Technology of Advanced Materials, 2017, 18(1): 950–958 - 509. Wang P, Li W, Du C, Zheng X, Sun X, Yan Y, Zhang J. CO₂/N₂ separation via multilayer nanoslit graphene oxide membranes: molecular dynamics simulation study. Computational Materials Science, 2017, 140: 284–289 - 510. Wang S, Xie Y, He G, Xin Q, Zhang J, Yang L, Li Y, Wu H, Zhang Y, Guiver M D, Jiang Z. Graphene oxide membranes with heterogeneous nanodomains for efficient CO₂ separations. Angewandte Chemie International Edition, 2017, 56(45): 14246–14251 - 511. Zhang C, Zhang W, Gao H, Bai Y, Sun Y, Chen Y. Synthesis and gas transport properties of poly(ionic liquid) based semi-interpenetrating polymer network membranes for CO₂/N₂ separation. Journal of Membrane Science, 2017, 528: 72–81 - 512. Zhang Y, Wang H, Zhang Y, Ding X, Liu J. Thin film composite - membranes functionalized with montmorillonite and hydrotalcite nanosheets for CO_2/N_2 separation. Separation and Purification Technology, 2017, 189: 128–137 - 513. Zhao L, Sang P, Guo S, Liu X, Li J, Zhu H, Guo W. Promising monolayer membranes for CO₂/N₂/CH₄ separation: graphdiynes modified respectively with hydrogen, fluorine and oxygen atoms. Applied Surface Science, 2017, 405: 455–464 - 514. Zhu L, Swihart M T, Lin H. Tightening polybenzimidazole (PBI) nanostructure via chemical cross-linking for membrane H₂/CO₂ separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(37): 19914–19923 - 515. Constantinou A, Barrass S, Gavriilidis A. CO₂ absorption in flat membrane microstructured contactors of different wettability using aqueous solution of NaOH. Green Processing and Synthesis, 2018, 7(6): 471–476 - 516. Russo G, Prpich G, Anthony E J, Montagnaro F, Jurado N, Di Lorenzo G, Darabkhani H G. Selective-exhaust gas recirculation for CO₂ capture using membrane technology. Journal of Membrane Science, 2018, 549: 649–659 - 517. Yu L, Kanezashi M, Nagasawa H, Moriyama N, Tsuru T, Ito K. Enhanced CO₂ separation performance for tertiary amine-silica membranes via thermally induced local liberation of CH₃Cl. AIChE Journal. American Institute of Chemical Engineers, 2018, 64(5): 1528–1539 - 518. Zhang N, Peng D, Wu H, Ren Y, Yang L, Wu X, Wu Y, Qu Z, Jiang Z, Cao X. Significantly enhanced CO₂ capture properties by synergy of zinc ion and sulfonate in Pebax-pitch hybrid membranes. Journal of Membrane Science, 2018, 549: 670–679 - 519. Hu L, Cheng J, Li Y, Liu J, Zhou J, Cen K. Optimization of coating solution viscosity of hollow fiber-supported polydimethylsiloxane membrane for CO₂/H₂ separation. Journal of Applied Polymer Science, 2018, 135(5): 45765 - 520. Ovalle Encinia O, Pfeiffer H, Ortiz Landeros J. Ce_{0.85}Sm_{0.15}O₂-Sm_{0.6}Sr_{0.4}Al_{0.3}Fe_{0.7}O₃ composite for the preparation of dense ceramic-carbonate membranes for CO₂ separation. Journal of Membrane Science, 2018, 547: 11–18 - 521. Constantinou A, Barrass S, Pronk F, Bril T, Wenn D, Shaw J, Gavriilidis A. CO₂ absorption in a high efficiency silicon nitride mesh contactor. Chemical Engineering Journal, 2012, 207: 766–771 - 522. Constantinou A, Gavriilidis A. CO₂ absorption in a microstructured mesh reactor. Industrial & Engineering Chemistry Research, 2010, 49(3): 1041–1049 - 523. Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO₂/CH₄ separations: effect of Si/Al ratio. Microporous and Mesoporous Materials, 2008, 110(2-3): 310–317 - 524. Duan S, Taniguchi I, Kai T, Kazama S. Development of poly (amidoamine) dendrimer/polyvinyl alcohol hybrid membranes for CO₂ capture at elevated pressures. Energy Procedia, 2013, 37: 924–931 - 525. Ahmad F, Lau K K, Shariff A M. Modeling and parametric study for CO₂/CH₄ separation using membrane processes. World Academy of Science, Engineering and Technology, 2010, 2010 (4): 387–392 - 526. Arias A M, Mussati M C, Mores P L, Scenna N J, Caballero J A, Mussati S F. Optimization of multi-stage membrane systems for - CO₂ capture from flue gas. International Journal of Greenhouse Gas Control, 2016, 53: 371–390 - 527. Couling D J, Prakash K, Green W H. Analysis of membrane and adsorbent processes for warm syngas cleanup in integrated gasification combined-cycle power with CO₂ capture and sequestration. Industrial & Engineering Chemistry Research, 2011, 50 (19): 11313–11336 - 528. Hasan M F, Baliban R C, Elia J A, Floudas C A. Modeling, simulation, and optimization of postcombustion CO₂ capture for variable feed concentration and flow rate. 1. Chemical absorption and membrane processes. Industrial & Engineering Chemistry Research, 2012, 51(48): 15642–15664 - 529. Johannessen E, Jordal K. Study of a H₂ separating membrane reactor for methane steam reforming at conditions relevant for power processes with CO₂ capture. Energy Conversion and Management, 2005, 46(7-8): 1059–1071 - 530. Jusoh N, Lau K K, Shariff A M, Yeong Y. Capture of bulk CO₂ from methane with the presence of heavy hydrocarbon using membrane process. International Journal of Greenhouse Gas Control. 2014. 22: 213–222 - Jusoh N, Lau K K, Yeong Y F, Shariff A M. Bulk CO₂/CH₄ separation for offshore operating conditions using membrane process. Sains Malaysiana, 2016, 45(11): 1707–1714 - 532. Lee S H, Kim J N, Eom W H, Ryi S K, Park J S, Baek I H. Development of pilot WGS/multi-layer membrane for CO₂ capture. Chemical Engineering Journal, 2012, 207: 521–525 - 533. Merkel T C, Wei X, He Z, White L S, Wijmans J, Baker R W. Selective exhaust gas recycle with membranes for CO₂ capture from natural gas combined cycle power plants. Industrial & Engineering Chemistry Research, 2012, 52(3): 1150–1159 - 534. Nagumo R, Iwata S, Mori H. Simulated process evaluation of synthetic natural gas production based on biomass gasification and potential of CO₂ capture using membrane separation Technology. Journal of the Japan Petroleum Institute, 2013, 56(6): 395–400 - 535. Piroonlerkgul P, Laosiripojana N, Adesina A, Assabumrungrat S. Performance of biogas-fed solid oxide fuel cell systems integrated with membrane module for CO₂ removal. Chemical Engineering and Processing: Process Intensification, 2009, 48(2): 672–682 - 536. Rezvani S, Huang Y, McIlveen Wright D, Hewitt N, Mondol J D. Comparative assessment of coal fired IGCC systems with CO₂ capture using physical absorption, membrane reactors and chemical looping. Fuel, 2009, 88(12): 2463–2472 - 537. Scholes C A, Simioni M, Qader A, Stevens G W, Kentish S E. Membrane gas-solvent contactor trials of CO₂ absorption from syngas. Chemical Engineering Journal, 2012, 195: 188–197 - 538. Shao P, Dal Cin M M, Guiver M D, Kumar A. Simulation of membrane-based CO₂ capture in a coal-fired power plant. Journal of Membrane Science, 2013, 427: 451–459 - 539. Shen J, Liu G, Huang K, Jin W, Lee K R, Xu N. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO₂ capture. Angewandte Chemie, 2015, 127(2): 588–592 - 540. Skorek Osikowska A, Bartela Ł, Kotowicz J. Thermodynamic and - economic evaluation of a CO₂ membrane separation unit integrated into a supercritical coal-fired heat and power plant. Journal of Power Technologies, 2015, 95(3): 201–210 - 541. Stanislowski J, Holmes M, Snyder A, Tolbert S, Curran T. Advanced CO₂ separation technologies: coal gasification, warm-gas cleanup, and hydrogen separation membranes. Energy Procedia, 2013, 37: 2316–2326 - 542. Tuinier M, Hamers H, van Sint Annaland M. Techno-economic evaluation of cryogenic CO₂ capture—a comparison with absorption and membrane technology. International Journal of Greenhouse Gas Control, 2011, 5(6): 1559–1565 - 543. Turi D, Ho M, Ferrari M, Chiesa P, Wiley D, Romano M C. CO₂ capture from natural gas combined cycles by CO₂ selective membranes. International Journal of Greenhouse Gas Control, 2017, 61: 168–183 - 544. Wang B, Zhu D C, Zhan M C, Liu W, Chen C S. Combustion of coal-derived CO with membrane-supplied oxygen enabling CO₂ capture. AIChE Journal. American Institute of Chemical Engineers, 2007, 53(9): 2481–2484 - 545. Yang D, Wang Z, Wang J, Wang S. Potential of two-stage membrane system with recycle stream for CO₂ capture from postcombustion gas. Energy & Fuels, 2009, 23(10): 4755–4762 - 546. Franz J, Scherer V. An evaluation of CO₂ and H₂ selective polymeric membranes for CO₂ separation in IGCC processes. Journal of Membrane Science, 2010, 359(1-2): 173–183 - 547. Wang Z, Dong S, Li N, Cao X, Sheng M, Xu R, Wang B, Wu H, Ma C, Yuan Y. CO₂-selective membranes: how easy is their moving from laboratory to industrial scale? In: Current Trends and Future Developments on (bio-) membranes. Amsterdam: Elsevier, 2018, 75–102 - Doran P. Chapter 11-Unit Operations, In: Bioprocess Engineering Principles. 2nd ed. London: Elsevier, 2013, 445–595 - 549. Cui Z, Muralidhara H. Membrane Technology: A Practical Guide to Membrane Technology and Applications in Food and Bioprocessing. Burlington: Elsevier, 2010, 1–270 - 550. Yilbas B S. The Laser Cutting Process: Analysis and Applications. Amsterdam: Elsevier, 2017, 5–311 - 551. Rezzadori K, Penha F M, Proner M C, Zin G, Petrus J C, Di Luccio M. Impact of organic solvents on physicochemical properties of nanofiltration and reverse-osmosis membranes. Chemical Engineering & Technology, 2019, 42(12): 2700–2708 - 552. Zhang Y T, Dai X G, Xu G H, Zhang L, Zhang H Q, Liu J D, Chen H L. Modeling of CO₂ mass transport across a hollow fiber membrane reactor filled with immobilized enzyme. AIChE Journal. American Institute of Chemical Engineers, 2012, 58(7): 2069–2077 - 553. Zhang Y T, Zhang L, Chen H L, Zhang H M. Selective separation of low concentration CO₂ using hydrogel immobilized CA enzyme based hollow fiber membrane reactors. Chemical Engineering Science, 2010, 65(10): 3199–3207 - 554. Singh R. Membrane Technology and Engineering for Water Purification: Application, Systems Design and Operation. Oxford: Butterworth-Heinemann, 2014, 1–300