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Abstract Functional materials are widely used in
chemical industry in order to reduce the process cost
while simultaneously increase the product quality. Con-
sidering their significant effects, systematic methods for
the optimal selection and design of materials are essential.
The conventional synthesis-and-test method for materials
development is inefficient and costly. Additionally, the
performance of the resulting materials is usually limited by
the designer’s expertise. During the past few decades,
computational methods have been significantly developed
and they now become a very important tool for the optimal
design of functional materials for various chemical
processes. This article selectively focuses on two important
process functional materials, namely heterogeneous cata-
lyst and gas separation agent. Theoretical methods and
representative works for computational screening and
design of these materials are reviewed.

Keywords heterogeneous catalyst, gas separation, sol-
vent, porous adsorbent, material screening and design

1 Introduction

A chemical process can be typically decomposed into
multiple scales (or levels) where different physical and/or
chemical phenomena take place. As illustrated in Fig. 1,
molecules or materials are first aggregated into a single or
multiphase fluid mixture possessing certain macroscopic
properties. Transitioning from chemistry into engineering,
the analysis and design of process units are performed. The
process units are finally integrated into a chemical plant
under the consideration of economics, health, safety, and
environmental regulations. The lowest level considers all
decisions that are linked to the structures of functional

molecules or materials used in a chemical process, for
example, catalysts, solvents, and adsorbents. Considering
the significant impacts of these functional materials, they
must be carefully selected in order to reduce the process
cost while simultaneously increasing the product quality.
On the other hand, one should note that there are always
strong interactions between the selection of materials and
the operation of processes. It is due to this reason that all
levels involved in a process system should be considered
simultaneously, which makes the integrated materials and
process design very essential.
The traditional material exploration approach first

hypothesizes a material, experimentally synthesize and
evaluate it. If the material does not meet the desired
properties or performance criteria, then modify the
structure and re-perform the experiments. This generate-
and-test method is very time-consuming and costly.
Moreover, the performance of the finally identified
material is limited by the designer’s expertise and knowl-
edge. With the exponential growth of computer power as
well as the constantly improving theoretical and modeling
approaches, it is now possible to apply computational
methods to design materials for specific applications.
Considering that catalysts and separation agents are two
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most frequently used process materials and distillation is
normally used for liquid separation, this article selectively
focuses on catalytic and gas separation materials. Methods,
research status, and representative work in the computa-
tional screening and design of these materials are
reviewed.

2 Catalyst design for reactions

Although a chemical reaction may be possible from a
thermodynamic point of view, the reaction rate has to be
enhanced by a suitable catalyst that allows product
formation at relatively mild conditions. Catalysts are
used in almost every chemical processes, such as ammonia
synthesis, methanol synthesis, hydrocarbon reforming, etc
[1]. Most catalysts used in large-scale industrial processes
are solids (or heterogeneous) where the gas or liquid
reaction takes place on the surface of the catalyst.
Traditionally, the search of new catalysts and improvement
of existing catalysts have been empirical or mostly
depended on experimentations. During the past few
decades, many theoretical and computational methods
have been developed in strong interaction with experi-

mentalists to design high-performing heterogeneous cata-
lysts. Methods for computational catalyst design can be
generally classified into two groups: first-principle and
data-driven approaches. The first-principle method studies
the reaction mechanism, quantifies the rates of elementary
steps, and uses computational techniques to find promising
catalysts. In data-driven catalyst design, an empirical
structure-performance relationship model is usually built
from experimental or computational data. Once estab-
lished, the model can be used to predict the performance of
various catalysts.

2.1 First-principles catalyst design

One of the earliest works on theoretical catalyst design can
be attributed to [2], who proposed a systematic catalyst
design framework based on reaction mechanism analysis
and quantum chemical calculation. The framework is
modified and updated herein. As shown in Fig. 2, the
computation starts with a proposal of a reaction mechan-
ism, based on which the main reactions, reaction
intermediates, and elementary steps are identified. For
those reactions that are not well understood, an initial
guess of the reaction mechanism has to be postulated based

Fig. 2 Catalyst design framework modified and updated from [2].
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on the expertise (knowledge) or analogy to other similar
reactions.
One of the key steps in catalyst design is to establish a

reliable microkinetic model based on the proposed reaction
mechanism. Unlike the macrokinetic model, microkinetic
models provide fundamental and quantitative insights into
the heterogeneous reactions by incorporating knowledge
of elementary reactions taking place on the catalyst
surface. This characteristic makes it possible to use first-
principle (mainly density functional theory, DFT) calcula-
tions to predict macroscopic reaction properties such as
reaction rate for a given catalyst. The whole microkinetic
model is usually expressed by a set of ordinary differential
and algebraic equations (DAEs) with one equation
indicating a steady-state relation for each reaction inter-
mediate. The next step is to estimate the parameters
involved in the DAEs. Transition state theory can be
employed to make estimations on the order of magnitude
of the pre-exponential factors for the rate constants. The
direct computation of activation energies is quite challen-
ging. However, several groups have found that there is a
linear correlation between the reaction activation barrier
and the enthalpy change of the reaction, known as the
Brønsted-Evans-Polanyi (BEP) relation [3]. This provides
a feasible way to estimate the reaction activation energy
from the binding energies of reaction species on the
catalyst surface, which can be obtained directly from DFT
calculations. Considering that different parameters can
have distinct influences on the reaction kinetics, parameter
sensitivity study can be performed to identify the most
significant parameters.
Subsequently, the DAE-based kinetic model is solved

and model calibration is performed by comparing the
model predictions with experimental observations. If the
predictions do not agree with experimental data, the key
kinetic parameters must be adjusted systematically within
reasonable physical ranges. If agreement cannot be
achieved by tuning the parameters, the reaction mechanism
must be modified and the above steps have to be repeated.
After the kinetic model is calibrated, the best catalyst can
be identified by solving an optimization problem where the
catalyst performance in terms of the reaction rate,
conversion, or selectivity is maximized. In fact, two
steps are involved here. First, the optimal values of key
parameters are determined from the optimization. Next,
based on empirical knowledge, existing database, or DFT
calculations, the catalyst designer decides how these
optimal parameters can be achieved by changing the
nature of the existing catalyst or proposing a new one.
Once the optimal catalyst is successfully identified, it
should be synthesized and the practical performance can be
experimentally validated.
According to the above framework, Katare et al. [4]

developed a Reaction Modeling Suites (RMS), a rational,
automated, and intelligent system, to help establish
microkinetic models to be used for catalyst design.

Based on the microkinetic model, a genetic algorithm
was employed to search for optimal model parameters that
correspond to an improved catalyst performance. The
reliability of RMS has been demonstrated on a zeolite-
catalyzed propane aromatization reaction. Linic et al. [5]
developed a microkinetic model for ethylene epoxidation
on Ag catalysts. Kinetic parameters for important elemen-
tary steps were either derived from DFT or measured in
surface science experiments. The proposed model can
successfully reproduce macroscopic properties measured
in a microreactor. Based on the microkinetic model, a new
Cu/Ag alloy catalyst that is more selective than Ag was
identified. Considering the possible uncertainty in the
microkinetic model, Lee et al. [6] proposed an efficient
method to design catalysts where the uncertainties
associated with experimental data are represented as
exogenous variables with assumed probability distribu-
tions. The method has been successfully applied to the
ammonia decomposition reaction where the binding
energies of nitrogen and hydrogen, as the key model
parameters, were optimized to maximize the reaction
conversion. The obtained optimal binding energies were
subsequently mapped into an actual catalyst. Xu et al. [7]
combined DFT calculation with microkinetic modeling to
predict the rate and selectivity of steam reforming of
methane on different catalysts. A large number of
transition metal catalysts have been screened with respect
to their steam reforming activities. Other works employing
the catalyst design framework shown in Fig. 2 include
Herron et al. [8] and Rangarajan et al. [9] where the CO
oxidation and methanol synthesis reactions were investi-
gated, respectively.
Wang and Hu [10] simplified the catalyst design

framework into three major steps. For a given catalyst
and known reaction mechanism, the energy profile of the
reaction species can be obtained from DFT calculation.
With this energy profile, the microkinetic model is built
and parameterized, based on which the overall turnover
frequency (TOF), a reaction rate indicator, can be
predicted. The authors expressed catalyst structure, energy
profile, and the TOF into a structure matrix r, an energy
vector e, and a scalar variable TOF, respectively. The DFT
calculation and micro-kinetic prediction were abstracted
and represented as functions g(r) and h(e), respectively,
with e = g(r) and TOF = h(g(r)). The optimal catalyst
structure denoted by ropt can be identified by solving an
optimization problem where TOF is maximized.
It is worth noting that in reality many catalyst design

studies do not follow strictly all the steps in Fig. 2. For
instance, instead of performing rigorous parameter sensi-
tivity study, researchers may identify key parameters based
on their reaction knowledge or expertise. A large number
of studies have found that the plot of reaction activity (e.g.,
TOF) against the sorption (or binding) energies of key
reaction species or elements (atoms) on the catalyst surface
always passes through a maximum, looking roughly like a
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triangle or a parabola. This kind of plot is called volcano
curve, which is very useful for heterogeneous catalyst
design. In fact, this phenomenon can be well explained by
imposing the BEP relation (also known as the “scaling
relation”) on the rate-determining step. Jacobsen et al. [11]
obtained the volcano-shaped relation between the ammo-
nia synthesis activity and the nitrogen adsorption energy.
Based on this observation, a high-performing catalyst was
discovered. Later, Jacobsen et al. [12] found that the
position of the maximum of the volcano curve is sensitive
to the reaction condition, indicating the significance of
performing integrated reactor and catalyst design. Nørskov
et al. [13] demonstrated that the TOF of the syngas-to-
methane reaction is mainly influenced by two parameters,
carbon and oxygen binding energies, DEC and DEO. As
illustrated in Fig. 3, Ru and Co lie at the top of the volcano,
which agrees well with the experimental findings. Despite
their high reaction performances, Ni is still preferred due to
its much lower price. However, the Ni3Fe alloy catalyst
(peak of the volcano) was found to be better and cheaper
alternative to Ni.

Considering the strong interaction between catalyst
selection and reactor operation, Thybaut et al. [14]
proposed a systematic method for integrated catalyst and
reactor design. The method was exemplified on the
oxidative coupling of methane reaction. A reliable
microkinetic model was first established and validated
from experimental data. Based on this model, the yield of
products was then optimized using a genetic algorithm
followed by the Rosenbrock and Levenberg-Marquardt
method. The decision variables include catalyst descriptors
(binding energies of the reaction intermediates), catalyst
texture properties (radius of catalyst pellet, porosity,
surface area, and tortuosity of catalyst), as well as feed

and reactor conditions (feed flow rate and composition,
operating temperature and pressure).

2.2 Data-driven catalyst design

Quantum chemical (QC) calculations combined with
microkinetic modeling provide the possibility for first-
principles catalyst design. However, the large computa-
tional cost limits their applications to simple reactions and
a limited number of catalyst candidates only. With the
rapidly increasing amount of available data as well as the
development of catalysis informatics, catalyst structure and
activity relationships can now be well described using
data-driven machine learning (ML) models. Typically,
these models are trained with computational or experi-
mental data and later used for the systematic screening or
optimal design of new catalysts to improve the reaction
activity.
Huang et al. [15] developed a data-driven catalyst design

framework where an artificial neural network (ANN)
model is employed to describe the relation between
catalyst composition and performance. A hybrid genetic
algorithm was proposed and used to find the optimal
catalysts based on the ANN model. The design strategy
consists of the following steps. (1) An ANN model is first
established from an initial set of training data, comprising
several catalysts designed by the orthogonal experiment
method. (2) Based on the trained ANN model, a few
promising catalysts can be identified to maximize the
reaction performance by solving an optimization problem
using the genetic algorithm. (3) These catalysts are
synthesized and tested to obtain their actual reaction
performance. (4) Compare the actual performance with the
predicted results. If the error is acceptable, jump to step 7;
otherwise, go to the next step. (5) Add the designed
catalysts and experimental performances into the training
set. (6) Re-train the ANN model and repeat steps 2–4. (7)
Better catalysts are found. The above-described catalyst
design method was applied on the methane oxidative
coupling reaction. A few high-performance catalysts were
found and the C2 hydrocarbon yield of the best catalyst
reached 27.78%, higher than those of the previously
reported catalysts.
Baumes et al. [16] successfully employed ANN models

to predict catalyst performance for the water gas shift
reaction. It was proven that compared to the traditional
high-throughput computational and experimental trial-and-
error approaches, ML methods possess a great potential in
accelerating the discovery of high-performing catalytic
materials. Baumes et al. [17] introduced the support vector
machine (SVM) model to predict the activities of
heterogeneous catalysts for light paraffin isomerization.
The advantages of SVM compared to other ML techniques
such as ANN were highlighted. Corma et al. [18]
illustrated how spectral characterization descriptors can
be used for the construction of catalyst performance

Fig. 3 Two-dimensional volcano contour for the production of
methane from syngas, taken from [13]. Reaction conditions are
573 K, 40 bar H2, and 40 bar CO.
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prediction models. Principal component analysis was first
employed to extract the desired spectral descriptors from
the X-ray diffraction characterization of the catalyst.
Performance prediction models were then derived using
ANN and decision tree methods. Through the application
to an epoxidation reaction, it was proven that the use of
spectral descriptors can remarkably improve the prediction
accuracy of the catalyst reactivity model.
Fernandez et al. [19] developed ANN models to predict

the catalytic activities of platinum nanoparticles from their
structural characteristics such as particle diameter, surface
area, and sphericity. It was demonstrated that the trained
ANN model can rapidly estimate the catalytic performance
of nanomaterials at a relatively high accuracy. Li et al. [20]
developed MLmodels for fast screening of transition metal
catalysts using easily accessible catalyst descriptors as the
model inputs. The descriptors include the local electro-
negativity and effective coordination number of an
adsorption site as well as the intrinsic properties of active
metal atoms such as the ionic potential and electronic
affinity. The trained models were used to screen multi-
metallic alloys for electrochemical CO2 reduction. Several
promising catalyst candidates were identified.
Goldsmith et al. [21] recently conceptualized a data-

driven catalyst development workflow (see Fig. 4) where
instead of directly estimating catalyst activities, ML is used
to predict the interatomic potentials (potential energy of a
system of atoms) trained with data generated from QC
calculations. Based on the model predictions, stable
catalyst structures under operating conditions are deter-
mined. Later, mechanistic analysis and microkinetic
simulations can be performed to extract catalyst design
insights and make catalytic performance predictions,
which can next be verified by catalyst synthesis,
characterization, and testing. The potential energy of the
synthesized catalysts can be obtained by ab initio
calculations to close the workflow cycle.
Despite the popularity and high-efficiency of data-

driven methods for catalyst development, one needs to be
careful when applying these methods. First, a large effort

should be invested in the selection of catalyst descriptors.
To find a suitable set of catalyst theoretical descriptors is
always the prerequisite. Second, unlike the first-principles
design method, an accurate MLmodel prediction is usually
limited to the catalysts and reaction conditions similar to
those used in model training. In order to increase the
robustness of the model and to ensure a highly reliable
design result, a substantial amount of representative
training data should be used.

3 Material design for gas separations

Gas separations, such as carbon capture and natural gas
sweetening, play significant roles in reducing the environ-
mental impact and cost of industrial processes. Solvent-
based absorption and porous material-based adsorption are
the most commonly used technologies for separating gas
mixtures. In this section, representative works on solvent
and porous materials design for gas separation are
reviewed.

3.1 Solvent design

Solvents, as important mass separation agents, are widely
used in various separation processes. When considering
the large number of existing solvents and the necessity for
finding new solvents, systematic methods for optimal
solvent design are significant [22]. During the past few
decades, the computer-aided molecular design (CAMD)
method [23] has been widely used for optimal solvent
design [24‒28]. Considering the strong interactions
between solvent selection and process operation, inte-
grated solvent and process design is also essential [29‒33].
Figure 5 shows the schematic diagram for solvent and
process design using the CAMD method. Starting with
solvent molecular structure, solvent properties are pre-
dicted via various types of predictive models. Substituting
these properties into process models, the performance of
solvent-based processes can be predicted. The optimal
solvent structure as well as the best process conditions can
then be reversely determined by solving an optimization
problem where the process performance is maximized. In
this section, representative works on CAMD-based solvent

Fig. 4 Machine-learned interatomic potentials for catalyst struc-
ture searches [21].

Fig. 5 Schematic diagram for solvent and process design using
the CAMD methodology.
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design as well as integrated solvent and process design for
gas separation applications are reviewed.
Bardow et al. [29] proposed a CAMD method for

integrated solvent and process design. Solvent molecules
are represented by a set of molecular-specific thermo-
dynamic parameters. These parameters are simultaneously
optimized with the process operating conditions. After-
wards, the optimized molecular parameters representing an
ideal hypothetical molecule are mapped onto an existing
solvent. The method has been successfully used to design
solvents for pre-combustion CO2 capture. Improvements
of the separation performance were obtained compared to
the reference solvent methanol. Burger et al. [30] proposed
a hierarchical decomposition method for integrated solvent
and process design. The reliability and efficiency of the
method have been demonstrated on a CO2/CH4 separation
process. The best solvent with optimal process perfor-
mance was found to be poly(oxymethylene)dimethylether.
Papadopoulos et al. [34] attempted to search for optimal

solvents for CO2 chemisorption. First, a large number of
solvents were screened out based on their thermodynamic,
kinetic, and sustainability behaviors. Second, high-per-
forming solvents were further screened using a more
detailed thermodynamic model to accurately predict the
chemical and phase equilibrium of the solvent-water-CO2

mixtures. As a result, a few promising solvents were
successfully identified and assessed. Ahmad et al. [35]
used the CAMD method to design chemical solvents for
post-combustion CO2 capture. The work consists of five
steps: (1) Problem formulation; (2) generation of solvent
candidates using the ProCAMD tool in the ICAS software
[36]; (3) prediction of the reaction mechanism between the
solvent candidate and CO2; (4) evaluation of process
performance by calculating the heat required for the
solvent regeneration; and (5) selection of the best solvent
based on the process performance. In total, 25 promising
chemical solvents were successfully identified and sub-
stantial energy savings for solvent regeneration (up to
31.4%) can be achieved compared to the conventional
solvent monoethanolamine.
Recently, ionic liquids (ILs) have attracted much

attention as alternatives to conventional organic solvents
for separating gas mixtures. Due to the large number of
cations and anions making up the ILs, experiment-based IL
selection is very tedious and costly. Fortunately, the
CAMD method has been successfully extended to IL
design. Chong et al. [37] used the CAMD approach to
design ILs for carbon capture. The UNIFAC model [38]
was used to predict CO2 solubility in different ILs and
group contribution (GC) methods were employed to
estimate the thermophysical properties of the ILs. The
best ILs were identified by solving an optimization-based
computer-aided ionic liquid design (CAILD) problem
where the CO2 absorption capacity was maximized. As a
result, 1-decyl-3-methylimidazolium tetrafluoroborate was
found to be the best solvent. Considering the strong

interactions between solvent selection and process opera-
tion, Chong et al. [33] proposed a method to simulta-
neously design IL solvent and carbon capture process.
Disjunctive programming was introduced to find optimal
process conditions while the IL design problem was solved
via CAMD. Valencia-Marquez et al. [39] performed
another IL and process design work for CO2 capture. IL
physical properties were estimated by GC models and the
vapor-liquid equilibrium was predicted by an empirical
thermodynamic model. The integrated design problem was
formulated and solved as a mixed-integer nonlinear
programming problem. A multi-objective optimization
strategy was employed to handle conflicting design
objectives related to process economics and environmental
impact.
Peng et al. [40] developed a GC model to quickly

estimate IL s-profiles and VCOSMO, two parameters
required to perform activity coefficient calculation using
the COSMO-SAC (Conductor-like Screening Model—
Segment Activity Coefficient) method [41]. With this GC
model, an optimization-based CAILD problem was
formulated and solved to identify the best ILs for post-
combustion CO2 capture. In order to design ILs for natural
gas purification, Mortazavi-Manesh et al. [42] proposed a
thermodynamic method to predict the solubility of CO2,
H2S, CH4, and C2H6 in ILs at 298.15 K and 20 bar.
Specifically, the Conductor-like screening model for
realistic solvents (COSMO-RS) model [43] was used to
predict the activity coefficient of gases in ILs and a cubic
equation-of-state was employed to calculate the vapor-
phase fugacity coefficient. Over 400 ILs were designed and
ranked according to their absorption selectivities of CO2

and H2S over CH4 and C2H6. Zhao et al. [44] predicted
Henry constants of 12 different gases in more than 10000
ILs at 313.15 K using the COSMO-RS model. Based on
the predicted data, a systematic IL screening framework
was developed for the optimal selection of ILs to separate
specific gas mixtures. Two important gas separation tasks,
CO2/CH4 and C2H2/C2H4, were investigated and promis-
ing IL solvents were identified for both tasks.

3.2 Porous materials screening

Porous materials are crystalline framework structured
materials with pores and cages. Zeolites are the most
important porous materials that have shown excellent
potential as adsorbents. Recently, metal-organic frame-
works (MOFs), emerged as a new type of porous material,
have attracted more and more attention for gas separation
due to their tunable pore sizes, large surface areas, high
porosities, good thermal and mechanical stabilities.
Compared to zeolites, the structures of MOFs can be
controlled to a much higher degree through variations in
the types of the organic linker and the metal. During the
past few decades, molecular simulation techniques such as
the grand canonical Monte Carlo (GCMC) and molecular
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dynamics (MD) simulations have been significantly
developed. For gas separation, the GCMC simulation is
normally used to predict the equilibrium loading (adsorp-
tion isotherm) of gases and MD simulations are used to
quantify the diffusion properties of gases in the material.
This section briefly summarizes the recent work on
computational porous materials design for gas separations.
Hasan et al. [45] proposed a hierarchical computational

method combining zeolite screening with separation
process optimization. As illustrated in Fig. 6, the
computation starts with a three-dimensional pore char-
acterization [46] to obtain a short list of zeolite candidates
as potential adsorbents based on shape, size, and pore
selectivities. The other filtering is performed based on
adsorption selectivity obtained from the isotherms of gases
being separated. For the remaining zeolites, the optimiza-
tion of a pressure-swing adsorption or vacuum-swing
adsorption process is carried out and afterwards, a ranked
list of zeolites based on the total process cost is finally
obtained. The approach was applied to a post-combustion
carbon capture process. Later, First et al. [47] applied the
above method to select zeolites and adsorption process
conditions for CH4/CO2 separation. A minimal purity of
97% and recovery of 95% were introduced as hard
constraints. Eight novel zeolites were identified for
efficiently removing CO2 from CH4. The separation cost
was minimized through hierarchical material screening
combined with rigorous process modeling and optimiza-
tion. Liu et al. [48] further extended the method to the
removal of H2S from industrial gas mixtures including acid

gas (H2S/CO2), tail gas (H2S/N2), and natural gas (H2S/
CH4). Several novel and cost-effective zeolites were
identified for each purification process.
MOFs are composed of metal nodes and organic linkers.

Their functionalities can be well tuned by optimally
selecting and/or changing the combination of metals and
linkers, which provides them great potential as tunable
materials for gas separations. Erucar and Keskin [49]
summarized the fundamental steps for large-scale compu-
tational screening of MOFs (see Fig. 7). First, a MOF
database is constructed and the structural properties such as
pore size and surface area are determined [50]. GCMC and
MD simulations are then performed to quantify the
adsorption and diffusion of gases in MOFs, respectively.
Data obtained from molecular simulations are used to
calculate separation performance metrics of MOFs. From
the performance metrics, MOFs can be finally ranked and
the most promising materials are targeted for further
experimental validation. The structure-performance rela-
tionship analysis is performed either for all the MOFs or
only for the promising ones to obtain insights into the
design of new structures that can give better separation
performance.
Bae and Snurr [51] introduced five adsorbent perfor-

mance metrics including CO2 uptake and working
capacity, regenerability, and selectivity to assess the
potential of over 40 MOFs for CO2 separation from flue
gas, natural gas, and landfill gas. Comparisons with other
materials such as zeolites were made and the relations
between MOF properties and their separation perfor-
mances were analyzed. Wu et al. [52] computationally
examined 105 MOFs for CO2/N2 separation under
industrial conditions. A structure-performance relationship

Fig. 6 Hierarchical computational approach for zeolite adsorbent
screening, adapted from [45]. Fig. 7 Method for computational MOF screening, adapted from [49].
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model was built to rationalize the resulting CO2/N2

selectivity of MOFs. The result shows that the heat of
adsorption of pure CO2 and N2 as well as the porosity of
the adsorbent are the main factors influencing the
adsorption selectivity of the MOFs. Later, Wu et al. [53]
studied the performance of MOFs to remove CH4 from H2.
The top MOFs show either higher adsorption selectivity
with similar working capacity or higher working capacity
with similar selectivity, compared with the traditional
adsorbents such as carbonaceous materials and zeolites.
Haldoupis et al. [54] computationally screened 500 MOFs
to separate CO2 from N2. Two MOFs, experimentally
known to be stable upon solvent removal, with extremely
high CO2/N2 adsorption selectivity were identified.
Li et al. [55] investigated the performance of 151 MOFs

for CO2/CH4 separation via temperature swing adsorption.
The energy consumption for material regeneration was
adopted as an important performance index. Cu-TDPAT
was found to be the best adsorbent showing a minimal
energy consumption. Qiao et al. [56] employed molecular
simulation to screen 4764 MOFs for removing CO2 from
fiue gas and natural gas. Quantitative relationships were
established, for the first time, between the type of metals
and the adsorbent performance. It was found that most of
the top 30 MOFs contain lanthanides. The same group
screened 137953 hypothetical MOFs generated from the
libraries of metals and organic linkers for membrane-based
natural gas purification [57]. Twenty-four MOFs were
prescreened for CO2/CH4 and N2/CH4 separations. Among
them, 5 best MOFs were finally identified for separating
the three-component CO2/N2/CH4 mixture at 298 K and
10 bar. It should be noted that membrane-based separation
is different from the conventional adsorption-based one. In
addition to the adsorption performance, diffusion and
permeation of the materials need to be taken into
account when selecting MOFs for membrane separation.
Wilmer et al. [58] built a MOF database consisting of over
130000 hypothetical MOFs. Clear correlations between
MOF structural features (e.g., pore size, surface area,
functional groups) and their adsorbent performance
metrics were obtained. Li et al. [59] screened ~10000
hypothetical MOFs with mixed linkers and functional
groups for CO2 capture using GCMC simulations. The
results demonstrate that functionalization enhances carbon
capture performance of MOFs when compared to their
unfunctionalized counterparts. Considering that computa-
tional material screening requires significant computa-
tional cost when exploring a large database, Chung et al.
[60] developed a genetic algorithm based method to
efficiently find top adsorbents for pre-combustion CO2

capture from a large database of hypothetical MOFs
without simulating all the candidates one by one. The
identified high-performing MOFs were synthesized and
evaluated. They showed a high CO2 working capacity as
well as a high CO2/H2 selectivity. One of the synthesized

MOFs even showed a CO2 working capacity higher than
any MOF reported in the previous literature.
The group of Keskin has contributed much work in

large-scale computational MOF screening. Gurdal and
Keskin [61] used GCMC and MD simulations to study the
performance of 10 common MOFs for noble gas Xe/Kr
and Xe/Ar separations. It was found that MOFs were
promising materials for Xe/Kr and Xe/Ar separations due
to their high Xe selectivity and permeability. Erucar and
Keskin [62] employed the same method to assess the
potential of 10 bio-MOFs for natural gas purification. The
bio-MOFs are composed of biocompatible metal cations
and linker molecules such as amino acids and sugars.
Results show that several bio-MOFs outperform the widely
studied MOFs and zeolites in both adsorption-based and
membrane-based CO2/CH4 separations. Using the same
method, Altintas and Keskin [63] screened 278 different
MOFs for the separation of C2H6/C2H4 and C2H6/CH4

mixtures. Later, Sumer and Keskin [64] computationally
examined the performance of 100 MOFs for the separation
of CO2/CH4, CO2/N2, and CO2/H2 mixtures under
different operating conditions. The results demonstrate
that regenerability is a very important performance metric
for screening materials in the first step and later MOFs can
be ranked according to their adsorption selectivities. The
relationships between structural properties of MOFs and
the separation performance were examined. It was found
that materials with pore sizes of 4-7 Å, surface areas of
200-800 m2/g, and porosities of 0.18-0.50 were the best
adsorbents. Azar and Keskin [65] performed a molecular
simulation study to investigate the performance of 174
different MOFs for separating C2H2/CO2 and C2H2/CH4

mixtures. Based on the evaluation of several different
adsorbent performance metrics, the best MOFs were
identified for both separations. The structure-performance
relationship was analyzed to guide the experimental
synthesis of new powerful MOFs.

4 Conclusions

Functional materials with tailored properties often repre-
sent the heart of process industry advances. Compared to
the experimental trial-and-error method, computational
approaches show large advantages in searching for existing
high-performance materials and exploring new powerful
candidates. A chemical process usually employs several
different types of materials. This article chooses to focus
on two most important process materials, namely hetero-
geneous catalyst and gas separation agent. Theoretical
methods and recent representative works on computational
design and screening of these two materials are reviewed.
Due to the constantly improving theoretical modeling tools
as well as the rapid growth of computer power, the
significance of computational methods for functional
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materials research and development will continue to
increase.
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