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Abstract The rational design of photocatalyst that can
effectively reduce CO2 under visible light (l> 400 nm),
and simultaneously precise control of the products syngas
(CO/H2) ratio is highly desirable for the Fischer-Tropsch
reaction. In this work, we synthesized a series of CeO2-
decorated layered double hydroxides (LDHs, Ce-x)
samples for photocatalytic CO2 reduction. It was found
that the selectivity and productivity of CO and H2 from
photoreduction of CO2 in conjunction with Ru-complex as
photosensitizer performed an obvious “volcano-like”
trend, with the highest point at Ce-0.15 and the CO/H2

ratio can be widely tunable from 1/7.7 to 1/1.3.
Furthermore, compared with LDH, Ce-0.15 also drove
photocatalytic CO2 to syngas under 600 nm irradiation. It
implied that an optimum amount of CeO2 modifying LDH
promoted the photoreduction of CO2 to syngas. This report
gives the way to fully utilize the rare earth elements and
provides a promising route to enhance the photo-response
ability and charge injection efficiency of LDH-based
photocatalysts in the synthesis of syngas with a tunable
ratio under visible light irradiation.
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1 Introduction

Syngas (CO, H2) with different ratio (1:1 to 1:3), as the
main raw in C1 chemistry, plays a vital role in the synthesis
of hydrocarbons, alcohols or fine chemicals through
Fischer-Tropsch process, etc. In industry, the desirable

ratio of syngas generally was produced from gasification of
fossil fuels combination with water gas shift reaction (CO
+ H2O = CO2 + H2) under harsh conditions, forming
abundant of CO2 as by-product. Photocatalysis provide an
alternative and green approach for replacing the conven-
tional thermal catalysis, mainly ascribe to the abundance of
solar energy on Earth and the high selectivity to desirable
products under mild reaction conditions. Photocatalyst for
photoreduction of CO2 (CO2PR) into syngas in water with
precise control of selectivity have attracted various
attention for the utilization of renewable and clean energy
[1–3]. In the past decades, various typical photocatalysts
have been reported for efficient CO2PR to syngas, such as
C3N4 [4–6], TiO2 [7–10], CeO2 [11–13], CuInSx [2], CdS
[14] etc., ascribed to their stability and environmental
benignity. Although the performance of them have been
fully investigated in the synthesis of CO from CO2PR, the
efficiency of CO2PR still suffers from the weak absorption
in the visible light region and relatively poor charge
transfer in photocatalytic process, which has restricted
those photocatalysts further industry application [15–17].
Therefore, achieving cost-effective catalysts with high
performance in syngas synthesis, wider light absorption
area and superior stability for CO2PR remains a big
challenge.
Amongst the reported photocatalysts, layered double

hydroxides (LDHs) represent a typical inorganic two-
dimensional (2D) materials with a formula [M1 – x

2+

Mx
3+(OH)2]

x+(An–)x/n$mH2O, where M2+ is the divalent
cation, M3+ is trivalent cation in the laminate layers and
An– is the interlaminated anion [18–23]. Owing to the
special lamellar structure with highly dispersed metal
elements and remarkable tunable light absorption capacity,
LDHs are regarded as a promising photocatalysts for H2O
splitting [24], CO2 reduction [25–29], N2 fixation [30] and
selective oxidation of benzene to phenol, etc [31–33].
Recently, several strategies (e.g., tuning the composition of
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the LDHs host layers [34], loading Pd on the surface of
LDHs [35–37], integrating with traditional catalysts (e.g.,
g-C3N4/NiAl-LDH and CoAl-LDH@TiO2-NT) [25,26],
intercalation [38], and defects engineering [39,40]) have
been investigated to enhance the performance of LDHs-
based photocatalysts. Nevertheless, due to poor charge
mobility, serious recombination of photoinduced charge
carriers is inevitable for traditional LDHs-based photo-
catalysts. Therefore, efforts for the efficient separation of
photo-induced carriers and thus facilitating the interfacial
kinetics are highly necessary for LDHs-based photocata-
lysts.
Cerium as one of typical rare earth elements (REEs) has

been widely used for the catalytic conversion of auto-
mobile gasoline engine exhausts, CO oxidation, and some
photocatalytic reactions, as mainly due to the abundance of
oxygen vacancies with related to the easily passing from
Ce3+ and Ce4+ [41–43]. Heterostructured photocatalysts
that composing with two semiconductors could facilitate
charge transfer, providing a promising strategy for the
improvement of photocatalytic performance (e.g., Pd/Au/
CeO2 [44], Au/CeO2 [45]). Compared with pristine CeO2,
the heterostructured CeO2 structure exhibits superior

performance in CO2PR under visible light irradiation by
narrowing the bandgap of CeO2 [46,47]. Therefore,
heterostructured photocatalysts designed reasonably have
considerable prospects for the efficient CO2PR for syngas
synthesis.
Herein, a series of heterostructured CeO2/LDHs with

different loading of CeO2 (denoted as, Ce-x, x = 0.05, 0.10,
0.15, 0.20, 0.30 and 0.40) were prepared via hydrothermal
method. The selectivity and productivity of product syngas
(CO and H2) in CO2PR under visible light performed a
distinct “volcano-like” trend in conjunction with Ru-
complex photosensitizer, with the tunable CO/H2 ratio
from 1/7.7 to 1/1.3 and the highest CO evolution rate of
85 µmol$g–1$h–1 at Ce-0.15 photocatalysts. Compared
with pristine LDH, the Ce-0.15 photocatalyst displayed
moderate photo-induced charge separation/transformation
efficiency as confirmed by photoluminescence and elec-
trochemical measurements. Furthermore, the Ce-0.15 can
even drive CO2PR to syngas under 600 nm irradiation. In
all, this work reports a sustainable route for the synthesis of
syngas with tunable ratio using heterostructured CeO2/
LDHs photocatalysts under visible light irradiation
(Scheme 1).

Scheme 1 Scheme of the tunable selectivity of syngas from photocatalytic CO2 reduction by LDH, Ce-x (x = 0.05, 0.10, 0.15, 0.20, 0.30
and 0.40) and CeO2 in conjunction with Ru-complex photosensitizer.
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2 Experimental

2.1 Materials

AlCl3$6H2O, CeCl3$6H2O, MgCl2$6H2O, KOH, and
KCl, Na2SO4, Ru(bpy)3Cl2$6H2O, triethanolamine
(TEOA) and acetonitrile were purchased from Sigma-
Aldrich Co. and used directly without any purification.
Pure CO2 gas (99.999%) was purchased from Beijing
Beiwen Gas Co. and used directly as a substrate for
photocatalytic reduction. The water used in the synthesis of
the materials was deionized.

2.2 Methods

2.2.1 Synthesis of CeO2 modified Mg6Al2 – xCex-LDH
(denoted as Ce-x)

A series of CeO2 modified MgAl-LDH were prepared by
the hydrothermal method using chloride salts of Mg, Al
and Ce where 0£x£0.40 [48]. Typically, aqueous
solutions containing MgCl2$6H2O, AlCl3$6H2O and
CeCl3$6H2O in the ratios of (i) 24:8:0, (ii) 24:7.8:0.2,
(iii) 24:1.6:0.40, (iv) 24:7.4:0.6, (v) 24:7.2:0.8, (vi)
24:6.8:1.2 and (vii) 24:6.4:1.6 together with 5.899 g of
KCl were prepared in 80 mL of deionized H2O. The mixed
solution was vigorously stirred about 10 min and then
adjusted to pH = 10 with drop-wise addition of 2 mol∙L–1

KOH solution. The slurry was further stirred for 20 min,
then transferred to 100 mL Teflon-lined stainless steel
autoclave, and treated at 65 °C about 18 h. The resulting
milky white to pale yellow product was centrifuged and
washed to pH = 7. The product was oven-dried at 50 °C
about 12 h.

2.2.2 Characterization

X-ray diffraction (XRD) patterns were characterized from
Rigaku XRD. Infrared measurements were examined by
Bruker 22 Fourier transform infrared spectroscopy equip-
ment. Scanning electron microscopy (SEM) images were
obtained on Zeiss Supra 55 SEM. High-resolution
transmission electron microscopy (HRTEM) images were
recorded on a JEOL JEM-2010. Brunauer-Emmett-Teller
(BET) surface area was obtained on Quantachrome
Autosorb-1C analyzer. UV-visible spectra were collected
on a Beijing PGENERAL TU-1901. X-ray photoelectron
spectroscopy (XPS) spectra were calibrated against C 1s
(284.8 eV). The photoluminescence (PL) spectra were
collected on Shimadzu RF-6000 at room temperature.
Electrochemical impedance spectroscopy (EIS) spectra

were performed on CHI760A electrochemical workstation
(Shanghai Chenhua, China). The Ce-x modified glassy
carbon electrode was employed as a working electrode, Pt
electrode was regarded as counter electrode and saturated

calomel electrode was used as reference electrode. 1 cm2

area of glassy carbon electrodes, 130 µL of homogeneous
Nafion-treated Ce-x sample suspension was applied. The
sample suspension was dispersed by adding 50 µL of
Nafion and 2 mg of Ce-x in 1 mL ethanol.

2.2.3 Photocatalytic CO2 reduction

Photocatalytic CO2 reduction was explored in a 50 mL
closed stainless reactor. At first, 10 mg Ce-x was dispersed
in the 10 mL solution (H2O:CH3CN:TEOA = 1:3:1 (v:v:
v)), next 3.3 mg [Ru(bpy)3]Cl2$6H2O was added into the
mixed system, and then the reactor was evaculated and
refilled with pure CO2. Finally, 0.18 MPa CO2 was filled
into the reactor. The performance of each photocatalyst
was checked at 30 °C with 300 W Xe lamp under visible
light. The products were analyzed by Shimadzu GC-2014
chromatography with flame ionization detector and
thermal conductivity detector. The isotopic experiment
was carried out under the same condition filling 13CO2

(Linde Gas Comp. 99%) using gas chromatography-mass
spectrometry (GC-MS, QP2020) to check the products.

3 Results and discussion

MgAl-LDH was chosen as support for loading CeO2, since
MgAl-LDH was one of the most successful scale-up LDH
based products in the industry due to the easy synthesis and
cheap raw materials. A series of Ce-x samples were
prepared by co-precipitation method and followed by
hydrothermal treatment, as the previous report [48]. As
presented in Fig. 1, the peaks of (00l), (110) and (113)
in XRD patterns and the weakness carbonate feature at
1373 cm–1 in the FTIR spectra illustrated the successful
synthesis of CO3

2– intercalated LDH structure. The
modified Ce did not affect the crystal structure of LDHs.
More interestingly, the intensity of peak at 28° in XRD
patterns ascribed to (111) of CeO2 in cubic fluorite
structure [12,47,49], enhanced with increasing the amount
of Ce in LDHs structure. Furthermore, the Ce-x structure
possessed type IV isotherm adsorption curves and BET
surface area of Ce-0.15 was 116.9 m2$g–1, which was
highest among the as-prepared catalyst (Fig. 1(c) and
Table S1 (cf. Electronic Supplementary Material, ESM),
demonstrated that Ce-0.15 provided the larger reaction
area and more active sites for the photocatalysis. Ce-0.15
also exhibited relatively uniform mesopores with a narrow
pore diameter distribution (4–9 nm) (Fig. 1(d)), thus may
benifical for the diffusion of reactants, playing a key role in
the following photocatalytic efficiency [43], as discussed
below.
The SEM (Fig. S1, cf. ESM) and TEM (Fig. 2) images

showed nanosheet morphology of LDHs-based substrate.
Besides, there were some black dots on the LDHs
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nanosheet, which was corresponding to the CeO2 nanos-
tructure. The size of ultrathin CeO2 nanoparticles was
determined to be ~3.19 nm (Fig. 2(c) inset). Meanwhile, as
presented in HRTEM images (Fig. 2(d)), a lattice fringe
spacing of 0.30 nm can be determined to be the (111)
facet of CeO2 [11]. Moreover, the energy-dispersive X-ray
spectroscopy mapping images suggested the uniform
distributions of Mg, Al, O and Ce over the entire Ce-0.15
structure (Fig. S2, cf. ESM). Furthermore, the ratio of
Mg/Al/Ce in LDH and Ce-x (x = 0.05, 0.10, 0.15, 0.20,
0.30 and 0.40) was measured to be 3.64:1.00:0.00,
3.62:1.00:0.01, 3.63:1.00:0.03, 3.60:1.00:0.06,
3.66:1.00:0.09, 3.68:1.00:0.19 and 3.65:1.00:0.59, respec-
tively, as presented in Fig. S2(f) and Fig. S3 (cf. ESM). It
proved that the intensity of CeO2 concentration was
enhanced with increasing the amount of Ce in the synthetic
process. The surface characteristics and chemical compo-
sitions of Ce-x were determined via XPS measurement
(Fig. S4, cf. ESM). As shown in Fig. S4(a), the XPS

spectra provided complete views of the surface elemental
compositions of Ce-x, which all showed the presence of
Mg and Al elements. With increasing the Cerium
concentration, the enhanced intensity of Ce 3d and the
presence of Ce4+ in Ce-x can be ascribed to the modified
CeO2 in LDHs nanosheets. Besides, the Mg 1s, Al 2p or
O 1s exhibited similar to each other in Ce-x, indicating the
modified of CeO2 had little effect on the structure of LDHs.
The photocatalytic activity of as-prepared photocatalysts

(Ce-x) was investigated under visible light in conjunction
with Ru-complex and TEOA served as a photosensitizer
and sacrificial agent in CO2 atmosphere as previous reports
[50,51]. Based on the 1H-NMR result (Figure S5), no
detectable liquid chemicals such as HCHO, CH3OH and
HCOOH were formed. As shown in Fig. 3(a), LDH, Ce-x
and also CeO2 gave the only products of syngas (CO and
H2), in detail, the selectivity of CO gave 11.4% for LDH,
through decorating CeO2 on the surface of LDH, the CO
selectivity further increased to 42.1% for Ce-0.15, and

Fig. 1 (a) XRD patterns and (b) FTIR spectra of LDH and Ce-x (x = 0.05, 0.10, 0.15, 0.20, 0.30 and 0.40), respectively; (c) BET of the
as-synthesized LDH, Ce-x (x = 0.15, 0.20 and 0.40) and (d) the corresponding pore size distribution.
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further increasing the loading amount of CeO2, the CO
selectivity decreased to 16.4% (Ce-0.40), nearly the same
as that of referenced CeO2 (12.9%). The ratio of syngas
(CO/H2) can be optimized from 1/7.1 (LDH) to 1/1.30 (Ce-
0.15) with the highest CO selectivity of 42.1% for Ce-0.15.
This tunable syngas is much beneficial for the methanol
synthesis and Fischer-Tropsch process in the industry. As
shown in Fig. 3(b), the productivity of CO can be also
optimized to 0.85 mmol (Ce-0.15), 4.7 and 9.4 times higher
than that of LDH (0.18 mmol) and CeO2 (0.09 mmol),
respectively. In all, the selectivity and productivity trend of
CO performed an obvious “volcano-like” trend, with the
highest point at Ce-0.15 (42.1% selectivity to CO with a
rate of 85 mmol$g–1$h–1). The reason for Ce-0.15
performed outstanding selectivity and activity in CO2PR
will be further discussed.
Furthermore, GC-MS was employed to verify the origin

of as-produced CO. As shown in Fig. 3(c), the 12CO2 or
13CO2 was used as a reactant and the corresponding signal

of 12CO or 13CO was m/z = 28 or 29, respectively,
indicating the produced CO originated from the photo-
reduction of CO2 gas source (Fig. 3(c)). As shown in
Fig. 3(d) and Fig. S6 (cf. ESM), ultrahigh selectivity of H2

in Ar atmosphere (100%, 0.01 mmol) or without adding
Ce-0.15 (97.1%, 1.53 mmol) in CO2PR and no detectable
products were generated without adding Ru(bpy)3Cl2 and
in dark experimental condition. These control experiments
indicated the Ru(bpy)3Cl2 together with Ce-x played an
important role in CO2PR. In addition, the Ce-0.15
photocatalyst can be recycled at least four times, the
selectivity (Fig. 3(e)) and productivity (Fig. 3(f)) nearly
maintained as the first cycle, proving the stability of the as-
synthesized photocatalyst. The XRD pattern (Fig. S7) and
TEM images (Fig. S8, cf. ESM) of recycled Ce-0.15 also
proved its good stability.
The UV-vis spectra of Ce-x were collected to gauge

their light absorption ability to explore the influence factor
of their photocatalytic activity. As shown in Fig. 4(a),
CeO2 showed two absorption peaks at 280 and 320 nm,
which was attributed to the absorption of Ce3+ and Ce4+,
respectively [43]. The MgAl-LDH only absorbed UV
light and the absorbance range was improved to a visible
light area with modifying CeO2 on the surface of LDH.
Most interestingly, the Ce-0.15 photocatalyst exhibited
the highest absorbance intensity in the visible range,
which may be ascribed to the optimal interaction effect
between CeO2 and LDH [47]. Accordingly, we investi-
gated the performance of Ce-0.15 and LDH in CO2PR
under different cut-off filter light irradiation (Fig. S9,
cf. ESM) to reveal the effect of CeO2 modification
on LDH, especially with the presence of photosensitizer
Ru(bpy)3Cl2$6H2O since its much wider visible light
absorbance from ~600 to 200 nm (Fig. 4(b)). As shown in
Figs. 4(c,d) and Fig. S10 (cf. ESM), the performance of
both LDH and CeO2 decreased with increasing the
irradiation wavelength from 405 to 600 nm, and LDH
did not exhibit any photoactivity under irradiation 600 nm,
mainly due to the limited light absorbance ability.
Especially, under 600 nm irradiation, we found the
productivity/selectivity of CO was 0.05 mmol, 8.7% and
the productivity/selectivity of H2 was 0.52 µmol, 91.3% by
Ce-0.15, respectively. The external quantum efficiency of
CO still retain 0.05% (Ce-0.15) under irradiation at 600 nm
(Table S2) compared with 0% of LDH. From previous
reports (Table S3, cf. ESM), Ce-x achieved precise control
of the products syngas (CO/H2) ratio under> 400 nm and
were able to convert CO2 to syngas under 600 nm
irradiation, this 600 nm induced syngas synthesis from
CO2 can be well understood due to the heterostructure
CeO2/LDH.
To reveal the optoelectronic properties and intrinsic

reasons for the efficient syngas synthesis from CO2PR on
Ce-0.15, we investigated the PL and EIS spectra. As
shown in PL spectra (Fig. 5(a)), a moderate weaker

Fig. 2 TEM images of (a) LDH, (b) Ce-0.05, (c) Ce-0.15, and
the corresponding particle size distribution of CeO2 (the insert
picture of Fig. 2(c)), (d) HRTEM image of Ce-0.15; TEM images
of (e) Ce-0.20 and (f) Ce-0.40.
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photoluminescence emission of Ru(bpy)3Cl2 on Ce-0.15
than other samples proved efficient electron-hole separa-
tion between Ce-0.15 and Ru(bpy)3Cl2 in photocatalysis.
In addition, EIS spectra (Fig. 5(b)) confirmed that Ce-0.15
provided relative decreased charge transfer resistance

comparing with pristine LDH, which further indicated
the efficient separation and transfer of photogenerated
electron-hole pairs. The improved conductivity of Ce-0.4
may be ascribed to the enhanced interaction between CeO2

and LDH. Above all, a possible reaction mechanism was

Fig. 3 The (a) selectivity, (b) productivity of LDH and Ce-x (x = 0.05, 0.10, 0.15, 0.20, 0.30 and 0.40, respectively) and CeO2 in CO2PR
under visible light irradiation; (c) isotope trace analysis GC-MS spectra using Ce-0.15 photocatalysts; (d) the selectivity of catalyst under
control experimental reaction conditions (1. Ar atmosphere; 2. Without Ce-0.15; 3. Without Ru(bpy)3Cl2; 4. In dark); (e) selectivity and (f)
productivity of recycle Ce-0.15.
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Fig. 4 The UV-vis spectra of (a) LDH, Ce-x and CeO2, (b) the photosensitizer Ru(bpy)3Cl2$6H2O as our previous report [39] and the
selectivity of (c) LDH and (d) Ce-0.15 in CO2PR under different cut-off filter light irradiation.

Fig. 5 (a) PL spectra of as-synthesized catalyst in a solution containing 4 � 10–6 mol Ru(bpy)3Cl2$6H2O; (b) EIS spectra of the as-
synthesized LDH and Ce-x.
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proposed as follows (Scheme S1, cf. ESM), under visible
light irradiation, the Ru photosensitizer was activated to
the excited state ([Ru(bpy)3]

2+*) [50], and the photo-
induced electrons from the excited state directly transferred
to the surface of catalysts (LDH and CeO2). Subsequently,
the electrons produced the reduction reaction (splitting
water into active hydrogen species (H*)) [40,52], then the
absorbed CO2 molecules on the surface of catalyst were
further hydrogenated with 2 equivalence mol of active H*
for the formation of CO; meantime, the surface-active H*
can be easily coupling for the evolution of H2. This
competition between hydrogenation and coupling of
surface-active H* resulted in the tunable selectivity of
syngas (CO and H2). Finally, the oxidized [Ru(bpy)3]

3+

can be returned to [Ru(bpy)3]
2+ with the assistance of

sacrificial agent (TEOA) [37]. For the pure LDH and CeO2

structure, the photoinduced H* on the surface preferred to
coupling rather than hydrogenation, leading to the
formation of much more favourable H2 evolution rather
than the valuable product CO, mainly due to the rapid
electron-hole recombination. Desirably, for the hetero-
structured CeO2/LDH (Ce-0.15), moderate separation
efficiency of electron-hole by suppressing their recombi-
nation, resulted in an enhanced hydrogenation reaction for
the CO evolution around the abundant of interfaces in
heterostructured CeO2/LDH, explaining the enhanced
CO2PR to CO, and the tunable ratio of syngas.

4 Conclusions

In summary, a series of Ce-x samples were successfully
synthesized by co-precipitation method and followed
by hydrothermal treatment. We found that the selectivity
and productivity of syngas performed an obvious
“volcano-like” trend, with the highest point at Ce-0.15.
And the ratio of the products of CO/H2 (syngas) can be
tunable from 1/7.1 (LDH) to 1/1.30 (Ce-0.15). More
importantly, Ce-0.15 can drove CO2PR to syngas under
600 nm irradiation. UV-vis, PL, and EIS revealed that Ce-
0.15 performed a suitable separation and transfer of
photogenerated electron-hole in photocatalysis. This
work paves the way to fully utilize the rare earth elements
and stimulates the development of REEs-based catalysts in
the synthesis of syngas under solar irradiation. Other rare-
earth element (like Er) doped LDH for photoreduction of
CO2 is underway in our lab.
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