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Abstract Water/oil flow characteristics in a water-wet
capillary were simulated at the pore scale to increase our
understanding on immiscible flow and enhanced oil
recovery. Volume of fluid method was used to capture
the interface between oil and water and a pore-throat
connecting structure was established to investigate the
effects of viscosity, interfacial tension (IFT) and capillary
number (Ca). The results show that during a water
displacement process, an initial continuous oil phase can
be snapped off in the water-wet pore due to the capillary
effect. By altering the viscosity of the displacing fluid and
the IFT between the wetting and non-wetting phases, the
snapped-off phenomenon can be eliminated or reduced
during the displacement. A stable displacement can be
obtained under high Ca number conditions. Different
displacement effects can be obtained at the same Ca
number due to its significant influence on the flow state,
i.e., snapped-off flow, transient flow and stable flow, and
ultralow IFT alone would not ensure a very high recovery
rate due to the fingering flow occurrence. A flow chart
relating flow states and the corresponding oil recovery
factor is established.

Keywords VOF, pore scale, immiscible displacement,
EOR, snap-off, Ca

1 Introduction

Immiscible flow in porous media is fundamental to a range
of applications such as underground pollutants transport,
oil spillage and treatment, soil remediation and enhanced
oil recovery (EOR), where pore scale understanding of the
phase displacement is crucial. Pore scale ranges from a few
micrometres to millimetres where the capillary force
dominates the displacement process [1–3]. Previous

pore-scale study of multiphase flow has been focused on
EOR, and the fluid displacement process is investigated
experimentally by X-ray computed micro-tomography
techniques for different core samples [4–6]. Pore-scale
modelling by computational fluid dynamics (CFD) method
has recently been established as a complimentary to the
costly core analysis method. It is being used in the
petroleum and environment sectors to model multiphase
flow in column/core samples and to predict the effects of
various dependent factors such as rock type, interfacial
tension (IFT) and wettability [7].
There are generally two main methods to model the

phase displacement. Interface tracking method based on
lagrangian algorithms is normally not well suited for flow
with interfaces undergoing complex deformations (such as
coalescence or break up). In contrast, interface capturing
method based on Eulerian algorithms is more appropriate
for complex interface motion [8,9]. Volume of fluid (VOF)
method was first introduced by Hirt and Nichols [10],
which treated the immiscible phase as a single fluid with
variable properties. Many studies have shown that VOF
method is able to model multiphase flow through porous
media with sub-pore resolution and to capture detailed
interfacial phenomena, such as viscous deformation of the
meniscus, snap-off and coalescence, jumps and abrupt
reconfiguration of the interface [11–17].
At the pore scale, capillary force plays an important role

in the fluid displacement. For example, in the EOR
applications, a dominant mechanism for residual oil left in
reservoirs is the “snap-off” phenomenon, which has been
extensively studied. For oil droplets in water-wet pores,
Roof [18] first proposed a structural criterion to determine
the snap-off occurrence in circular pores. According to this

classical model, snap-off occurs when
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where Rb and Rt are the effective radii of the pore body and
pore throat respectively, and Rc is the transverse radius of
the throat curvature. The dependence of the snap-off on
local geometry has been experimentally confirmed by Kiss
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et al. [19] and Yu and Wardlaw [20]. Extending from
Roof’s criterion for circular pores, Ransohoff et al. [21,22]
proposed a quasi-static criterion for non-circular pores by
using a dimensionless interfacial curvature, which varied
for capillaries with different cross-sectional shapes. Later,
Al-Gharbi et al. [23,24] presented a dynamic pore-scale
network model that could predict the meniscus oscillations
and snap-off phenomena observed in micromodel experi-
ments. Beresnev and Deng [25] proposed a nonlinear
dimensionless equation as a purely geometric criterion to
describe the dynamics of snap-off and calculated the snap-
off time, which was verified by the results of CFD
simulations [26,27]. Deng et al. [28,29] further extended
Roof and Ransohoff criteria by considering the imbalance
between the pore body and the pore throat, considering a
wetting film existing between a non-wetting fluid and wall.
Roman and Abu-Al-Sand et al. [30,31] developed a
multiscale sharp-interface level-set method to investigate
the snap-off coalescence phenomenon for immiscible two-
phase flow with a pre-existing thin film on solid surfaces,
whose results were validated by comparison with both
theory and experiments. Recently, Deng et al. [32]
analysed the dynamics of the wetting/non-wetting interface
instability in sinusoidal constricted capillary tubes by using
a theoretical model to couple the wetting film thickness to
the local capillary number (Ca) at the pore throat.
Although the pore-scale snap-off process has been
extensively investigated , there are still three main
limitations: (i) most of previous research was based on
core-scale study with a main focus on the flow displace-
ment in a crossing pore network , and detailed study at a
single pore scale is still insufficient; (ii) previous pore-scale
studies are mainly focused on super-critical carbon dioxide
as the non-wetting fluids, which cannot represent water/oil
displacement suitable for EOR and oil remediation
applications; (iii) no study has been investigated on
potential ways to suppress the snap-off process at the
pore scale to decrease the amount of trapped oil.
On the other hand, to suppress the snap-off phenomenon at

the pore scale, many chemicals have been used after the
secondary water flooding process, which is termed as
chemical EOR [33]. The main idea is to increase the value
of the Ca, Ca = v$µ/σ, (i.e., decreasing the IFT by using
surfactants, or increasing the invading fluid’s viscosity by
using polymers), and to decrease the snap-off probability,
leading to a reduction of the residual oil saturation. Though
many core flooding experiments have been performed [34–
37], only very limited studies have been conducted at the pore

scale, with inconsistent results reported [38–43]. Ultralow
IFT injection has also been proposed recently as a promising
EOR technology; however, it is still debatable on the exact
role that IFT plays in the process [33]. It has been accepted
generally that a highCa can lead to a large oil recovery factor,
regardless the modification of viscosity or IFT.
Using EOR as an example, this work performs a

fundamental flow study at the single pore scale to increase
our understanding of oil displacement and water/oil flow
characteristics based on the VOF method. A pore-throat
connecting channel is established under water-wet condi-
tion and a parametric study of the effect of viscosity and
IFT at the same Ca on oil displacement is performed,
leading to the establishment of a flow map and the
identification of the different roles of viscosity and IFT.

2 Mathematical methods

The two phase flow of oil and water in this simulation is
described by the incompressible Navier-Stokes equations:

∂
∂t
�uþ�r$ðuuÞ ¼ –rpþ�r$ðruþruTÞþFþ�g

r$u ¼ 0

8<
: ,

(1)

where u is the velocity vector, � is the density fluid, � is the
viscosity of fluid, p is the static pressure, F is the general
body force which is the volume surface tension Fvol in this
simulation, and g is the gravitational acceleration, which is
neglected in this simulation due to its minor influence at
the pore scale. The superscript “T” denotes the matrix
transpose.
The finite-volume based the CFD code FLUENT is used

to solve the Navier-Stokes equations numerically. The
VOF method is adopted to describe oil/water two phase
flow. The volume fraction equation is used for tracking the
interface between multiple phases:

∂ðαi�iÞ
∂t

þr$ðαi�iuÞ ¼ �iSαi
þ
Xn

j¼1
_mji – _mij

� �
, (2)

where mji and mji are the mass transfer from each other
between phase i and phase j, both mji and mji are zero in this
simulation due to the no mass-transfer assumption between
water and oil phase in this work, Sαi

is the source term of ith

fluid, �i is the density of ith fluid, and u is the flow velocity
vector. The volume fraction αi is defined as follows:

αi ¼ 0 : the cell is emptywith no traced fluid inside

0 < αi < 1 : the cell contains the interface

αi ¼ 1 : the cell is full of the ith fluidXn

p¼1
αp ¼ 1 : the cell must be f illedwith either single fluid phase or a combination

8>>>>><
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The fluid properties at the interface are given by

� ¼
X

αi�i

� ¼
X

αi�i

8<
: , which are averaged volume fraction for

an n-phase system.
The continuum surface force (CSF) model [44] is used

to calculate the curvature of the interface and volume
surface tension. In the CSF model, the volume surface
force has the following form: Fvol ¼ �κrαi where � is the
IFT, and κ is the curvature, which is defined as: κ ¼ r$n,
where n is the unit normal vector of the interface,

n ¼ rαi
jrαij

. The pressure based unsteady solver is used

for the simulation by using the following algorithm: the
pressure-implicit with splitting of operators for pressure-
velocity coupling, the least squares cell-based scheme for
gradient spatial discretization, the pressure-staggered
option for pressure spatial discretization, the geometric
reconstruction approach for volume faction spatial dis-
cretization, and the first order explicit scheme for temporal
discretization.

3 Physical model

3.1 Pore geometry

According to the previous studies [45,46], pore-throat sizes
(diameters) are generally greater than 2 µm in conventional
reservoir rocks. Geometrical reasoning and experimental
data suggest that conventional reservoir rocks have aspect
ratios, i.e., the ratio of pore body size to pore throat size, in
the range of 5:1 to 10:1 [47]. In this work, a two-
dimensional pore body-throat connecting channel is
proposed with an aspect ratio of 7:1 as the standard case,
shown in Fig. 1. The radius of the connecting pore throats
d/2 is 2.5 µm, and the radius R1 of the circular pore is
17.5 µm. To smooth the sharp corners in the geometry, the
connectivity between pore bodies and throats are optimised
by a curve with the radius of R2 = 2.5 µm. The side length
L of the pore-throat connecting channel is 175 µm. A unit
length in the z direct perpendicular to the figure is applied
to allow 2D simulation. This represents a typical geometry
in microchips used for pore-scale study and some reservoir
pores. The shadow region refers to the solid reservoir rock.
Due to the scale of the channel, the gravity effect is
neglected in this work. For such simple geometries, it has
been shown by many studies that 2D simulation is
adequate to capture the complex multiphase flow dynamics
[2,8,25,28,32], and is adopted in this work.

3.2 Fluid properties

The properties of crude oil and water are affected by
various factors, such as temperature and pressure. Con-
sidering that during a flooding process, the reservoir

pressure and temperature are generally constant, constant
fluid properties are assumed, and no heat transfer occurs
between the two-phase flows. A pure water-wet sandstone
pore surface is assumed here. According to the typical oil-
recovery applications, assuming the water viscosity of
0.001 Pa$s and a typical oil viscosity of 0.01 Pa$s [48,49],
the ratio of �w=�o for the standard case is set as 0.1. Both
the density of the core fluid and displacing fluid are set as
1000 kg∙m–3 [27]. The standard oil/water IFTwith a value
of 0.05 N∙m–1 is taken from the reference [11].

3.3 Initial and boundary conditions

The initial interface configuration used in this work is
shown in Fig. 2, which initial oil saturation is 73.97%. The
red part represents the oil phase, while the blue part
represents the water phase. A uniform water-film thickness
of 1.5 µm was used as an initial pattern for a completely
water-wet situation, where the contact angle is zero
between the aqueous phase and the rock surface.

The boundary condition for the left inlet is the velocity
inlet, where the inlet velocity with 0.005 m∙s–1 of the
invading phase (water) is calculated from the average flow
rate used in a typical EOR operation. It is obtained by
assuming water as the reservoir’s most abundant phase and

Darcy’s Law applied. It states that QD ¼ κ*$A
�w

� �
px,

where k* is the permeability, A is the cross-sectional area,
�w is water viscosity and px is the background pressure
gradient. To convertQD to an estimated velocity in a single

channel, below equation is obtained, u ¼ κ*

�w$φ

� �
px,

where φ is the porosity. The maximum background
pressure gradients of a typical oil field, px, are on the

Fig. 1 Schematic view of the two-dimensional pore-throat
configuration.

Fig. 2 The initial water-wet pore configuration.
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order of 106 Pa/m, and the high end of reservoir
permeability k* is on the order of 10–11 m2 [50]. For most
reservoir rocks, porosity varies from less than 1% to 40%,
thus the Ca varies from an order of 10–2 to 10–6. The outlet
of the pore is specified as the pressure outlet. The boundary
conditions for the pore wall are the adiabatic boundary and
no-slip condition. The constant total flow rate is main-
tained in this work.

4 Results and discussions

4.1 Grid independency and numerical validation

Grid-refinement studies are performed to ensure that the
computed profiles and the time evolution of the fluid-fluid
interface are grid independent. The structured rectangular
grid is used for simulations in this study with refined grids
near the boundaries, generated by the meshing code ICEM
CFD. Initially, a grid independence study is performed in a
water-wet system originally saturated with oil. A time
evolution of 10–9 s is used for calculations to satisfy the
Courant number and Brackbill constrains.
The process of water flooding through an oil-saturated

pore is applied as a classic and standard example of
multiphase flow dynamics for the grid independency test
here. Figure 3 shows the water/oil distributions after the
flooding time of 10.0 and 100 ms in the displacement
process at different mesh resolutions. The oil/water
distributions are nearly the same, with some small
variations at the water/oil interface. The higher the
resolution, the sharper the interface is. Based on the grid
sensitivity test results, the differences of the predicted
pressure drop among the five grid systems are 9.74%,
6.04%, 3.68%, 0.46%, and 0.28% respectively. Therefore,
considering both computational accuracy and efficiency,
the fourth mesh system with 35276 computational grids is

selected for all simulations. From the comparison, it could
be seen that the capillary pressure from the simulation
satisfies the Laplace theory quite well.

4.2 Snap-off phenomenon of oil phase in water-wet pores

In this section, water invasion at the pore scale is modelled
as the standard case. The water/oil phase distribution
evolutions with time are shown in Fig. 4. It could be seen
that the “snap-off” phenomenon can occur during the
imbibition process, but only in the pore throat region. The
phenomenon in which a wetting phase in the corners
pinches off the non-wetting phase in the middle of the pore
throat is referred to snap-off, which is a dominant
mechanism for residual trapped oil in porous media. At
the pore scale, capillary force plays an important role and
can prevent the non-wetting phase from flowing. The snap-
off process is mainly dependent on the physical geometry
of pore channels, wettability and IFT [18]. At the first stage
of the displacement, water tends to flow through the films,
thus a swelling of the water film appears. As water invasion
continues, the filling grows so that eventually the wetting
fluid is able to fill the pore throat, making the snap-off
happen. As the non-wetting phase cannot fill the next pore
body rapidly and cannot keep the capillary pressure on the
pore throat high enough, it is consequently pinched off by
the wetting phase, which remains in the pore throat. This
process continues intermittently until the second pore body
is filled up, and the non-wetting phase in both pore bodies
can stay connected without being snapped off. Ultimately,
the oil phase is snapped off with seven discontinuous parts
and stuck in the pore geometries, as shown in the final state
in Fig. 4. This stuck phenomenon of the oil phase is
consistent with previous experimental results [51], which
demonstrated that a critical Ca to mobilize discontinuous
oil is higher than that to mobilize continuous oil.
An example pressure distribution along the central axis

Fig. 3 Grid independency study for the initial oil-saturated channel case. (a) t = 10 ms; (b) t = 100 ms.
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along horizontal direction after 1.0 ms is shown in Fig. 5.
Under the same condition, the smaller capillary diameter
leads to a larger capillary pressure. Capillary force by a snap-
off mechanism makes the oil phase unconnected, forming
high pressure islands that prevent the recovery of oil.

After the non-wetting phase forms pockets that are
disconnected from the continuous phase, it is considered to
be trapped and plug water channels. At the displacing time
of 1.0 ms, the remaining oil fraction in the pore channel is
73.97%, which suggest that for this particular case
simulated, traditional water flooding would not increase
oil recovery rate significantly: nearly all the residual oil is
trapped in the pore channel due to the capillary effect. In
order to increase the Ca and suppress the snap-off
phenomenon at the pore scale, the viscosity and IFT
effects on the displacement for the water-wet pores are
studied in the next section.

4.3 The effects of IFT and viscosity on the displacement for
water-wet pores

The effects of IFT and viscosity on the displacement were

simulated by 17 case studies, as shown in Table 1. The
simulation results of Case 1, as the standard case of
traditional water flooding process, have been presented in
the section 4.2. For the IFT effect study, the IFT between
the invading fluid and oil phase was varied from 0.05 to
0.0005 N∙m–1 at a given viscosity of 0.001 Pa$s (Cases 1–
9). To simulate the effect of the invading fluid viscosity, the
viscosity of the invading fluid was varied from 0.001 to
0.05 Pa∙s at a given IFT value of 0.05 N∙m–1 (Cases 1, 10‒
16). The corresponding Ca distribution is within the range
of 3.56�10–5 to 3.56�10–3. An optimal case (Case 17) was
also investigated with the minimum test IFT of 0.0005
N∙m–1 and the maximum test viscosity of 0.05 Pa$s, with a
corresponding Ca of 1.780�10–1.
Compared with the standard case, the simulation results

of IFT and viscosity effects from Case 2 to Case 16 show
that the pattern of the interface-shape evolution does not
change dramatically, the snap-off phenomenon still occurs
for all the cases at larger capillary numbers. However, the
snap-off time was postponed significantly as compared
with the traditional water flooding scenario and the number
of the snapped-off positions was decreased (i.e., less than
seven parts). For comparisons, the snap-off time in this
paper refers to the time of the third break-up position for
the oil phase. A dimensionless snap-off time t is defined as
t = ts/t0, where t0 is the standard snap-off time for
traditional water flooding (Case 1). By using the
dimensionless time and the Ca, the snap-off time vs. the
channel Ca is shown in Fig. 6. It can be seen that a lower
IFT has stronger effects on postponing the snap-off time,
which is beneficial for keeping the oil phase continuously.
The effects of viscosity and IFT on the oil recovery

factor at the snap-off time are shown in Fig. 7. It can be
observed that: (i) due to the snap-off phenomenon still
existing, the oil recovery rates for all the cases are still
remaining at a low level, (ii) though a low IFT flooding can
postpone the snap-off time, larger viscosity of the invading

Fig. 4 Standard case: Traditional water flooding process, Ca = 3.56�10–5.

Fig. 5 The pressure distribution along the central axis of
horizontal direction at the time evolutions of 1.0 ms.
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fluid shows better recovery performance at the snap-off
time. The viscosity effect on oil recovery is due to a
decreased mobility difference between the displacing and
displaced fluid by decreasing the capillary forces in
comparison with viscous force, which is beneficial for oil
recovery, (iii) different oil recovery rates can be obtained
under the same Ca conditions, which differs from the
macro-scale experimental conclusions, where it reported
that the EOR effect is mainly dependent on the Ca. A
comparative example of water/oil mobilization profile by
the IFT and viscosity effect respectively at a fixed Ca =
3.56�10–4 is shown in Fig. 8.

For the optimal case (Case 17) with the minimum test
IFT of 0.0005 N∙m–1 and the maximum test viscosity of
0.05 Pa$s, which corresponding to a Ca of 1.780�10–1, the
water/oil phase distribution during the displacement
process is shown in Fig. 9. It can be seen that although
the collar in pore throats is growing in time, no snap-off is
observed. A stable displacement process is achieved
during the flooding, instead of snap-off or viscous
fingering flow happening previously. This stable displace-
ment contributes to nearly one hundred percentage of oil
recovery, which represents the ideal situation for macro-
scale oil recovery. It could be concluded that by increasing
the displacing viscosity and decreasing the IFT between oil

Table 1 Parameters of the study on viscosity and IFT effects

Case No. µ0 / (Pa$s) s/ (N$m–1) Ca Viscosity ratio (µo/µi)

1

0.001

0.05 3.560�10–5

10:1

2 0.04 4.450�10–5

3 0.03 5.933�10–5

4 0.02 8.900�10–5

5 0.01 1.780�10–4

6 0.005 3.560�10–4

7 0.0025 7.120�10–4

8 0.001 1.780�10–3

9 0.0005 3.560�10–3

10

0.05

0.0025 8.900�10–5 4:1

11 0.005 1.780�10–4 2:1

12 0.01 3.560�10–4 1:1

13 0.02 7.120�10–4 1:2

14 0.03 1.068�10–3 1:3

15 0.04 1.424�10–3 1:4

16 0.05 1.780�10–3 1:5

17 0.0005 0.05 1.780�10–1 1:5

Fig. 6 The effects of viscosity and IFT on the snap-off
dimensionless time.

Fig. 7 Viscosity and IFT effects on oil recovery factor.
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and water at the same time, a stable displacement could be
achieved, instead of the snap-off phenomenon, which is
beneficial to oil recovery in the field scale.
Figure 10 shows the pressure distribution profile along

the centre of x axis with the Ca of 1.780�10–1 at the time of
2.0 µs. It can be observed that the pressure reduces
gradually with the injection of invading fluid in the first
stage, and it stays constant when water enters the middle
pore. After water flows into the right throat, the pressure
reduces continuously until the water breaks through. The
pressure difference between the inlet and outlet is around
10000 Pa, which is much smaller comparing to the
traditional water flooding case, Fig. 5. In addition, the
high-pressure islands associated with the snapped off
phenomenon is disappeared.

4.4 The effects of IFT on the displacement process at the
same Ca

Traditional flooding theory claimed that capillary effects
will have obviously negative influences on oil recovery in
macroscale when Ca< 10–5, due to the trapped effects.
Above simulation suggests that the same Ca could render
different oil recovery factors (RF) at the single pore scale.
Therefore, this section will focus on the flow characteristic
of flooding process for a given Ca. With the same injecting
velocity, four Ca number conditions with totally 28
scenarios were simulated here (i.e., in combination with
different IFT and invading viscosities), which was
8.90�10–5, 3.56�10–4, 1.78�10–3 and 1.78�10–2, respec-
tively.

Fig. 8 Comparisons of water/oil mobilization profile under the same Ca (Ca = 3.56�10–4) with the viscosity and IFT effect respectively.

Fig. 9 Water/oil phase distribution during the displacement process for case 17 (Ca = 1.780�10–1).
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Three kinds of flow regimes are observed from the
simulation results due to the effects of IFT and viscosity,
which are snapped-off flow regime, transient flow regime
and the stable flow regime, respectively. Hereinto, the
snapped-off flow regime is defined as the final oil phase
distribution with six or seven discontinuous parts; the
stable flow regime refers to the displacement process with
no snap-off position appearance, though with a tendency
towards snapped-off due to the capillary effect; the flow
with one to five discontinuous oil phase is termed as the
transient flow regimes, which lies between the snapped-off
and the stable displacement state. An example of each flow
regime is shown in Fig. 11.
The flow regime distributions of all the 28 cases and the

corresponding final oil recovery rates are concluded in
Fig. 12. The scatters of the IFT, viscosity and the final EOR
recovery factor are plotted on a logarithmic scale. Three
colours of each scatter are corresponding with the three
flow regime types, which are blue, dark yellow and
magenta respectively. The red colour is used to represent
the pore-scale EOR recovery factor for these 28 scenarios,
which is shown in the right y axis. The displacement
scenarios with same capillary numbers are indicated by
four shapes of points. The slopes of the four orange dash
lines are all the same, which can reflect that the
displacements are conducted with the same injecting and
average velocity conditions. Additional 17 cases men-
tioned in Sect. 4.3 are also plotted with cross mark as the

supplementary comparison. For the pore structure studied
in this paper with the completely water-wet state, the
simulation results show that: (i) by altering the invading
viscosity and IFT between two phases, oil different RF and
flow characteristics during the displacement process can be
obtained, (ii) the same Ca can result in different oil RF due
to the existence of different flow regimes, (iii) the critical
Ca for mobilizing all the oil phase in this strongly water-
wet pores is at a level of between 10–3 and 10–2, which is
consistent with previous experimental results [52], (iv)
different flow regimes are related to different pore-scale
EOR RF: the snapped-off regime mainly leads to a RF
around zero percentage; the transient flow can result in
2%–5% of oil recovery; and nearly one hundred
percentage for the stable displacement process, (v) the
three flow regime distributions can be divided into three
separate zones, separated by the two black dash lines in
this figure, which is more related to the variations of IFT
than the invading viscosity.

4.5 The effect of the ultralow IFT on the displacement
process

Above studies have showed that reducing IFT of oil-water
is one of the most important mechanisms for enhancing oil
recovery. However, a common belief that ultralow IFT
(i.e., less than the order of magnitude of 10–3 mN∙m–1)
values are needed for good performance in EOR has been

Fig. 10 The pressure distribution profile along the centre of x axis for Ca = 1.780�10–1 at the time of 2.0 µs.

Fig. 11 An example of the three flow regimes: (a) Snapped-off flow with Ca = 1.78�10–3, (b) Transient flow with Ca = 1.78�10–3, (c)
stable flow regime with Ca = 1.78�10–2.
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recently questioned [53]. To investigate if ultralow IFT is
feasible for EOR, a case of IFT = 50 nN∙m–1 was simulated
with a corresponding Ca of 35.6.
In a completely water-wet pore channel, the water/oil

flow characterization results can be observed in Fig. 13. At
the beginning of displacement, a stable interface advances
as a concave meniscus. Then the interface turns to a
convex meniscus and finally, it displays as a viscous
fingering profile. Though there is no snap-off phenomenon
happening in the capillary, there are still large quantities of
oil remaining in the pore channel due to the fingering flow.
The fingering has all the characteristics of the Saffman-
Taylor [50] instability, which appears when a less viscous
fluid pushes a more viscous fluid in a thin channel. The
interface between the fluids develops an instability, leading
to the formation of finger-like patterns. Similar fingering
flow regime has also been observed experimentally by
Zhang et al. [51] at an IFT = 50 nN∙m–1.
According to the numerical results, the remaining oil

faction is around 0.32 at the breakthrough time of the
displacing fluid, which leads to a pore-scale recovery
factor of 56.80%. Compared to traditional water flooding
with the snap-off flow regime, the oil recovery factor is
largely enhanced. However, nearly half of the oil is still
remained in the pore channel. Such results support the
recent questioning on the effect of IFT, i.e., an ultralow IFT
may not achieve the expected EOR effect at a similar Ca
[52]. Some recent flooding experiments [36] also showed
that in some cases, there is no straightforward correlation
between lowered IFT and enhanced recovery rate.
Figure 14 shows the pressure distribution along the

centre of x axis at t = 10 ms. It can be seen that the pressure
dropped slowly along the pore-scale channel during the
flooding process. The pressure difference between the inlet

and outlet is around 354.2 Pa, which is much smaller than
traditional water flooding and polymer/surfactant flooding.
Therefore, chemical flooding with ultralow IFT could have
encouraging effects of reducing injection pressure.

5 Conclusions

The effects of viscosity, IFT and Ca on the water/oil flow
characteristics during the displacement process were
simulated at the single pore scale by the VOF method. A
pore-throat connecting channel was established to inves-
tigate the flooding process under water-wet condition. A
flow regime was established revealing the different
influences of viscosity and IFT. The simulation results
can be concluded as the following:
(1) The initial continuous oil phase would be snapped

off into several discontinuous oil ganglia by water and
trapped into the pore channel due to the dominance of
capillary effect, which would cause a low oil recovery rate
at the macro scale.
(2) For water-wet pores, the snap-off phenomenon can

be weakened by increasing the invading viscosity or
decreasing the IFT respectively. Decreasing IFT mainly
keeps oil phase staying continuously, while the increasing
viscosity of invading fluid could enhance the confined fluid
mobilization. Both are beneficial to EOR at the pore scale.
(3) Through increasing the invading viscosity and

decreasing the IFT at the same time, the oil recovery
factor would be efficiently enhanced by altering the flow
regime from the snapped-off regime to the stable
displacement condition.
(4) For water-wet pores, the same Ca can lead to

different flow regimes and oil RF, due to the different

Fig. 12 Flow regime distributions of each case and the corresponding final EOR RF.
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effects from viscosity and IFT. For the pore geometry
studied in this paper, the snapped-off regime mainly can
lead to a very small recovery factor; the transient flow can
result in 2%–5% of oil recovery, and a one hundred
percentage of recovery factor can be obtained with the
stable flow at the single pore scale.
(5) When the IFT is decreased to an ultralow level,

viscous fingering regime would happen in the pore channel
though the injecting pressure can be reduced. A large Ca
would not always lead to a large recovery factor.
(6) A stable displacement process can be achieved by

properly increasing the displacing viscosity and decreasing

the IFT between oil and water. Ultralow oil/water IFT is
not necessarily due to the fingering possibility.

Acknowledgements This work was supported by European Research
Council Consolidator Grant (Grant No. 648375) and the China Scholarship
Council.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images
or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the material.

Fig. 13 Viscous fingering at ultralow IFT (s = 50 nN∙m–1).

Fig. 14 The pressure distribution profile along the centre of x axis at ultralow IFT (s = 50 nN∙m–1) at the time evolution of 10 ms.
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