Please wait a minute...

Frontiers of Chemical Science and Engineering

Front Chem Sci Eng    2011, Vol. 5 Issue (1) : 11-18     DOI: 10.1007/s11705-010-1011-x
RESEARCH ARTICLE |
Electrospinning of polycarbonate urethane biomaterials
Yakai FENG(), Fanru MENG, Ruofang XIAO, Haiyang ZHAO, Jintang GUO()
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Download: PDF(346 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Polycarbonate urethane (PCU) nano-fibers were fabricated via electrospinning using N,N- dimethylformamide (DMF) and tetrahydrofuran (THF) as the mixed solvent. The effect of volume ratios of DMF and THF in the mixed solvent on the fiber structures was investigated. The results show that nano-fibers with a narrow diameter distribution and a few defects were obtained when mixed solvent with the appropriate volume ratio of DMF and THF as 1∶1. When the proportion of DMF was more than 75% in the mixed solvent, it was easy to form many beaded fibers. The applied voltage in the electrospinning process has a significant influence on the morphology of fibers. When the electric voltage was set between 22 and 32 kV, the average diameters of the fibers were found between 420 and 570 nm. Scanning electron microscopy (SEM) images showed that fiber diameter and structural morphology of the electrospun PCU membranes are a function of the polymer solution concentration. When the concentration of PCU solution was 6.0 wt-%, a beaded-fiber microstructure was obtained. With increasing the concentration of PCU solutions above 6.0 wt-%, beaded fiber decreased and finally disappeared. However, when the PCU concentration was over 14.0 wt-%, the average diameter of fibers became large, closed to 2 μm, because of the high solution viscosity. The average diameter of nanofibers increased linearly with increasing the volume flow rate of the PCU solution (10.0 wt-%) when the applied voltage was 24 kV. The results show that the morphology of PCU fibers could be controlled by electrospinning parameters, such as solution concentration, electric voltage and flow rate.

Keywords electrospinning      polycarbonate urethane      process parameter      average diameter      morphology     
Corresponding Authors: FENG Yakai,Email:yakaifeng@hotmail.com; GUO Jintang,Email:jintang_guo@hotmail.com   
Issue Date: 05 March 2011
 Cite this article:   
Yakai FENG,Fanru MENG,Jintang GUO, et al. Electrospinning of polycarbonate urethane biomaterials[J]. Front Chem Sci Eng, 2011, 5(1): 11-18.
 URL:  
http://journal.hep.com.cn/fcse/EN/10.1007/s11705-010-1011-x
http://journal.hep.com.cn/fcse/EN/Y2011/V5/I1/11
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yakai FENG
Fanru MENG
Jintang GUO
Ruofang XIAO
Haiyang ZHAO
Fig.1  SEM of PCU fiber membranes prepared at the voltage of 20 kV, volume flow rate of 1.5 mL/h, concentration of PCU 10.0 wt-%. The volume ratios of DMF/THF solvent were 1 ∶ 0 (a), 3 ∶ 1 (b), 1 ∶ 1 (c), 1 ∶ 3 (d)
sample ID in Fig. 1volume ratio of DMF/THFviscosity /(mPa·S)conductivity /(μs·cm-1)average diameter /μmvariance
a1 ∶ 05421.370.24±0.01 (calculated without beaded-fibers)0.06
b3 ∶ 16752.300.72±0.170.23
c1 ∶ 16774.200.92±0.180.20
d1 ∶ 38400.351.15±1.631.42
Tab.1  Average diameter of fibers prepared at different volume ratio of DMF/THF as mixed solvent
Fig.2  SEM of PCU fiber membranes prepared at the volume flow rate of 0.6 mL/h, concentration of 10.0 wt-% PCU, volume ratio of DMF/THF solvent of 1 ∶ 1, at applied voltage: 22 kV (a), 24 kV (b), 26 kV (c), 30 kV (d), 32 kV(e)
sample ID in Fig. 2voltage /kVaverage diameter/nmvariance
a22570±740.13
b24540±700.13
c26510±810.16
d30430±300.07
e32420±420.10
Tab.2  Average diameter of fibers prepared at different voltages
Fig.3  SEM of PCU fiber membranes prepared at the voltage of 20 kV, volume flow rate of 0.9 mL/h, volume ratio of DMF/THF solvent of 3 ∶ 1, and different PCU concentrations: 6.0 wt-% (a), 10.0 wt-% (b), 12.0 wt-% (c), 14.0 wt-% (d)
sample ID in Fig. 3PCU concentration /(wt-%)viscosity /(mPa·S)surface tension /(mN·m-1)conductivity /(μs·cm-1)average diameter /μmvariance
a6.07335.20.880.35±0.05(calculated without beaded-fibers)0.15
b10.067534.62.300.72±0.080.12
c12.0105034.71.220.44±0.140.32
d14.0280034.60.821.65±0.510.31
Tab.3  Average diameter of fibers when electrospinning at different concentrations of PCU
Fig.4  SEM of PCU fiber membranes prepared at the voltage of 24 kV, PCU concentration of 10.0 wt-%, volume ratio of DMF/THF solvent of 1 ∶ 3, and different volume flow rate: 0.6 mL/h (a), 0.9 mL/h (b), 1.2 mL/h (c), 1.5 mL/h (d), 1.8 mL/h (e)
sample ID in Fig. 4flow rate /(mL·h-1)average diameter /μmvariance
a0.60.81±0.230.29
b0.91.07±0.340.32
c1.21.27±0.300.24
d1.51.70±0.800.47
e1.81.79±1.470.82
Tab.4  Average diameter of fibers when electrospinning at different flow rates
Fig.5  SEM of PCU fiber membranes prepared at the voltage of 30 kV, volume flow rate of 0.6 mL/h, PCU concentration of 10.0 wt-%, and volume ratio of DMF/THF solvent of 1 ∶ 1, with different inner diameter of tips: 0.34 mm (a), 0.32 mm (b)
sample ID in Fig. 5inner diameter of tip /mmaverage diameter /nmvariance
a0.34430±300.07
b0.32650±1100.17
Tab.5  Average diameter of fibers when electrospinning with different inner diameter of tips
sample ID in Fig. 2voltage /kVE /MPaσb /MPa?b /%
a220.9±0.013.8±0.3280±11
b241.6±0.963.7±1.0110±87
c261.9±0.0810.6±0.7260±53
d301.7±0.0711.0±0.4310±7
e321.7±0.159.5±0.8270±14
PCU film8.5±0.5537.5±5.8600±40
Tab.6  Mechanical properties of fiber membranes prepared at different voltages
1 Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology , 2003, 63(15): 2223–2253
doi: 10.1016/S0266-3538(03)00178-7
2 Park H S, Park Y O. Filtration properties of electrospun ultrafine fiber webs. Korean Journal of Chemical Engineering , 2005, 22(1): 165–172
doi: 10.1007/BF02701480
3 Huang L, Nagapudi K, Apkarian R P, Chaikof E L. Engineered collagen-PEO nanofibers and fabrics. J Biomater Sci Polym Ed , 2001, 12(9): 979–993
doi: 10.1163/156856201753252516
4 Wang X, Drew C, Lee S H, Senecal K J, Kumar J, Samuelson L A. Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Letters , 2002, 2(11): 1273–1275
doi: 10.1021/nl020216u
5 Li W J, Laurencin C T, Caterson E J, Tuan R S, Ko F K. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research , 2002, 60(4): 613–621
6 He Q, Cui Y, Ai S, Tian Y, Li J. Self-assembly of composite nanotubes and their applications. Current Opinion in Colloid & Interface Science , 2009, 14(2): 115–125
doi: 10.1016/j.cocis.2008.09.005
7 Buttafoco L, Kolkman N G, Engbers-Buijtenhuijs P, Poot A A, Dijkstra P J, Vermes I, Feijen J. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials , 2006, 27(5): 724–734
doi: 10.1016/j.biomaterials.2005.06.024
8 Sun B, Duan B, Yuan X. Preparation of core/shell PVP/PLA ultrafine fibers by coaxial electrospinning. Journal of Applied Polymer Science , 2006, 102(1): 39–45
doi: 10.1002/app.24297
9 Yang F, Both S K, Yang X, Walboomers X F, Jansen J A. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomaterialia , 2009, 5(9): 3295–3304
doi: 10.1016/j.actbio.2009.05.023
10 Duling R R, Dupaix R B, Katsube N, Lannutti J. Mechanical characterization of electrospun polycaprolactone (PCL): a potential scaffold for tissue engineering. Journal of Biomechanical Engineering , 2008, 130(1): 011006–011018
doi: 10.1115/1.2838033
11 Duan Y Y, Jia J, Wang S H, Yan W, Jin L, Wang Z Y. Preparation of antimicrobial poly(?-caprolactone) electrospun nanofibers containing silver-loaded zirconium phosphate nanoparticles. Journal of Applied Polymer Science , 2007, 106(2): 1208–1214
doi: 10.1002/app.26786
12 You Y, Min B M, Lee S J, Lee T S, Park W H. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). Journal of Applied Polymer Science , 2005, 95(2): 193–200
doi: 10.1002/app.21116
13 Sell S A, Bowlin G L. Creating small diameter bioresorbable vascular grafts through electrospinning. Journal of Materials Chemistry , 2008, 18(3): 260–263
doi: 10.1039/b711848a
14 Ulrich H. Introduction to Industrial Polymers. New York: Hanser Publishers, 1993
15 Okoshi T, Soldani G, Goddard M, Galletti P M. Very small-diameter polyurethane vascular prostheses with rapid endothelialization for coronary artery bypass grafting. J Thorac Cardiovasc Surg , 1993, 105(5): 791–795
16 Lee S. Multifunctionality of layered fabric systems based on electrospun polyurethane/zinc oxide nanocomposite fibers. Journal of Applied Polymer Science , 2009, 114(6): 3652–3658
doi: 10.1002/app.30778
17 Peng P, Chen Y Z, Gao Y F, Yu J, Guo Z X. Phase morphology and mechanical properties of the electrospun polyoxymethylene/polyurethane blend fiber mats. Journal of Polymer Science. Part B, Polymer Physics , 2009, 47(19): 1853–1859
doi: 10.1002/polb.21787
18 Cha D I, Kim H Y, Lee K H, Jung Y C, Cho J W, Chun B C. Electrospun nonwovens of shape-memory polyurethane block copolymers. Journal of Applied Polymer Science , 2005, 96(2): 460–465
doi: 10.1002/app.21467
19 Guan J J, Fujimoto K L, Sacks M S, Wagner W R. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials , 2005, 26(18): 3961–3971
doi: 10.1016/j.biomaterials.2004.10.018
20 McKee M G, Park T, Unal S, Yilgor I, Long T E. Electrospinning of linear and highly branched segmented poly(urethane urea)s. Polymer , 2005, 46(7): 2011–2015
doi: 10.1016/j.polymer.2005.01.028
21 Marois Y, Paris E, Zhang Z, Doillon C J, King M W, Guidoin R G. Vascugraft? microporous polyesterurethane arterial prosthesis as a thoraco-abdominal bypass in dogs. Biomaterials , 1996, 17(13): 1289–1300
doi: 10.1016/0142-9612(96)88674-1
22 Doi K, Matsuda T. Significance of porosity and compliance of microporous, polyurethane-based microarterial vessel on neoarterial wall regeneration. Journal of Biomedical Materials Research. Part A , 1997, 37(4): 573–584
doi: 10.1002/(SICI)1097-4636(19971215)37:4<573::AID-JBM17>3.0.CO;2-9
23 Demir M M, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer , 2002, 43(11): 3303–3309
doi: 10.1016/S0032-3861(02)00136-2
24 Chen S, Hou H, Hu P, Wendorff J H, Greiner A, Agarwal S. Polymeric Nanosprings by Bicomponent Electrospinning. Macromolecular Materials and Engineering , 2009, 294(4): 265–271
doi: 10.1002/mame.200800342
25 Badami A S, Kreke M R, Thompson M S, Riffle J S, Goldstein A S. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials , 2006, 27(4): 596–606
doi: 10.1016/j.biomaterials.2005.05.084
26 Lowery J L, Datta N, Rutledge G C. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(?-caprolactone) fibrous mats. Biomaterials , 2010, 31(3): 491–504
doi: 10.1016/j.biomaterials.2009.09.072
27 Pinchuk L. A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of ‘biostable’ polyurethanes. Journal of Biomaterials Science. Polymer Edition , 1995, 6(3): 225–267
doi: 10.1163/156856294X00347
28 Thomas V, Kumari T V, Jayabalan M. In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly(urethane urea) for blood contact applications. Biomacromolecules , 2001, 2(2): 588–596
doi: 10.1021/bm010044f
29 Zhang Z, Marois Y, Guidoin R G, Bull P, Marois M, How T, Laroche G, King M W. Vascugraft? polyurethane arterial prosthesis as femoro-popliteal and femoro-peroneal bypasses in humans: pathological, structural and chemical analyses of four excised grafts. Biomaterials , 1997, 18(2): 113–124
doi: 10.1016/S0142-9612(96)00054-3
30 Yarin A L. Free Liquid Jets and Films: Hydrodynamics and Rheology. New York: Longman, 1993
31 Yuan X, Zhang Y, Dong C, Sheng J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International , 2004, 53(11): 1704–1710
doi: 10.1002/pi.1538
32 Chang K H, Lin H L. Electrospin of polysulfone in N,N’-dimethyl acetamide solutions. Journal of Polymer Research , 2009, 16(6): 611–622
doi: 10.1007/s10965-008-9266-3
33 Lee J S, Choi K H, Ghim H D, Kim S S, Chun D H, Kim H Y, Lyoo W S. Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of Applied Polymer Science , 2004, 93(4): 1638–1646
doi: 10.1002/app.20602
34 Zong X, Kim K, Fang D, Ran S, Hsiao B S, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer , 2002, 43(16): 4403–4412
doi: 10.1016/S0032-3861(02)00275-6
35 Shenoy S L, Bates W D, Frisch H L, Wnek G E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer , 2005, 46(10): 3372–3384
doi: 10.1016/j.polymer.2005.03.011
36 Deitzel J M, Kleinmeyer J, Harris D, Tan N C B. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer , 2001, 42(1): 261–272
doi: 10.1016/S0032-3861(00)00250-0
37 Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning. Polymer , 1999, 40(16): 4585–4592
doi: 10.1016/S0032-3861(99)00068-3
38 Nasir M, Matsumoto H, Danno T, Minagawa M, Irisawa T, Shioya M, Tanioka A. Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. Journal of Polymer Science. Part B, Polymer Physics , 2006, 44(5): 779–786
doi: 10.1002/polb.20737
39 Tsai P P, Schreuder-Gibson H, Gibson P.Different electrostatic methods for making electret filters. Journal of Electrostatics , 2002, 54(3-4): 333–341
doi: 10.1016/S0304-3886(01)00160-7
Related articles from Frontiers Journals
[1] C. SCHMIDT, J. ULRICH. Molecular level simulations on multi-component systems —a morphology prediction method[J]. Front Chem Sci Eng, 2013, 7(1): 49-54.
[2] Heyun WANG, Yakai FENG, Marc BEHL, Andreas LENDLEIN, Haiyang ZHAO, Ruofang XIAO, Jian LU, Li ZHANG, Jintang GUO. Hemocompatible polyurethane/gelatin-heparin nanofibrous scaffolds formed by a bi-layer electrospinning technique as potential artificial blood vessels[J]. Front Chem Sci Eng, 2011, 5(3): 392-400.
[3] Jinquan SUN, Zifeng YAN, Hongzhi CUI. Salt-assisted synthesis of tree-like oriented SnO2 nanodendrite[J]. Front Chem Sci Eng, 2011, 5(2): 227-230.
[4] Motoi YAMASHITA. Kinetic roughening transition and missing regime transition of melt crystallized polybutene-1 tetragonal phase: growth kinetics analysis[J]. Front Chem Eng Chin, 2009, 3(2): 125-134.
[5] Ying ZHANG, Shili ZHENG, Yifei ZHANG, Hongbin XU, Yi ZHANG. Additives effects on crystallization and morphology in a novel caustic aluminate solution decomposition process[J]. Front Chem Eng Chin, 2009, 3(1): 88-92.
[6] WANG Shoulian, HE Jie, ZENG Yu, YAN Bin, WANG Yinghan. Effect of polymer structures on electro-optical properties of polymer stabilized liquid crystal films[J]. Front. Chem. Sci. Eng., 2008, 2(3): 265-268.
[7] LU Yangcheng, WU Yingxin. Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method[J]. Front. Chem. Sci. Eng., 2008, 2(2): 204-208.
[8] RUN Mingtao, SONG Hongzan, WANG Yingjin, YAO Chenguang, GAO Jungang. Studies on the rheological, phase morphologic, thermal and mechanical properties of poly(trimethylene terephthalate)/ethylene propylene diene monomer copolymer grafted with maleic anhydride/metallocene polyethylene blends[J]. Front. Chem. Sci. Eng., 2007, 1(3): 238-245.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed