Please wait a minute...
 首页  期刊列表 期刊订阅 开放获取 关于我们
English
最新录用  |  在线预览  |  当期目录  |  过刊浏览  |  专题文章  |  热点文章  |  下载排行
Front. Chem. Sci. Eng.    2010, Vol. 4 Issue (1) : 52-56     https://doi.org/10.1007/s11705-009-0301-7
Research articles
Modeling of specific structure crystallization coupling with dissolution
Modeling of specific structure crystallization coupling with dissolution
Yuanhui JI1,Hongliang QIAN1,Chang LIU1,Xiaohua LU1,Xin FENG1,Xiaoyan JI2,
1.State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China; 2.Division of Energy Engineering, Luleå University of Technology, 97187 Luleå, Sweden;
全文: PDF(105 KB)  
导出: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract:In this paper, the research framework for specific structure crystallization modeling has been proposed in which four steps are required in order to investigate the rigorous crystallization modeling by thermodynamics. The first is the activity coefficient model of the solution, the second is Solid-Liquid equilibrium, the third and fourth are the dissolution and crystallization kinetics modeling, respectively. Our investigations show that the mechanisms of complex structure formation and microphase transition can be analyzed by combining the dissolution and crystallization kinetics modeling. Moreover, the formation mechanism of the porous KCl has been analyzed, which may provide a reference for the porous structure formation in the advanced material synthesis.
发布日期: 2010-03-05
服务
推荐给朋友
免费邮件订阅
RSS订阅
作者相关文章
Hongliang QIAN
Yuanhui JI
Chang LIU
Xiaohua LU
Xin FENG
Xiaoyan JI
引用本文:   
Hongliang QIAN,Yuanhui JI,Chang LIU, et al. Modeling of specific structure crystallization coupling with dissolution[J]. Front. Chem. Sci. Eng., 2010, 4(1): 52-56.
网址:  
https://journal.hep.com.cn/fcse/EN/10.1007/s11705-009-0301-7     OR     https://journal.hep.com.cn/fcse/EN/Y2010/V4/I1/52
Wei J. ProductEngineering: Molecular Structure and Properties. New York: Oxford University Press, 2006
Li J H, Zhang J Y, Ge W, Liu X H. Multi-scalemethodology for complex systems. ChemicalEngineering Science, 2004, 59(8―9): 1687―1700

doi: 10.1016/j.ces.2004.01.025
Xu N P, Shi J. Progress in material-orientedchemical engineering of China. Journalof Chemical Industry and Engineering (China), 2003, 54(4): 423―426 (in Chinese)
Lu X H, Maurer G. Model for describing activitycoefficients in mixed electrolyte aqueous solutions. AIChE J, 1993, 39(9): 1527―1538

doi: 10.1002/aic.690390912
Lu X H, Zhang L Z, Wang Y R, Shi J. Simultaneousprediction of activity coefficients and enthalpy for aqueous electrolytesolutions at high temperatures. Fluid PhaseEquilibria, 1996, 116(1―2): 201―208

doi: 10.1016/0378-3812(96)83887-8
Lu X H, Zhang L Z, Wang Y R, Shi J, Maurer G. Prediction of activity coefficients ofelectrolytes in aqueous solutions at high temperatures. Industrial & Engineering Chemistry Research, 1996, 35(5): 1777―1784

doi: 10.1021/ie950474k
Ji X Y, Feng X, Lu X H, Zhang L Z, Wang Y R, Shi J. Ageneralized method for the solid-liquid equilibrium stage and itsapplication in process simulation. IndEng Chem Res, 2002, 41(8): 2040―2046

doi: 10.1021/ie0004545
Salem M R, Mangood A H, Hamdona S K. Dissolution of calcite crystals in the presence of somemetal ions. J Mater Sci, 1994, 29(24): 6463―6467

doi: 10.1007/BF00354005
Palwe B G, Tavare N S. Growth kinetics of potassiumsulphate crystals in a DTB agitated crystallizer. Chem Eng Sci, 1984, 39(5): 903―905

doi: 10.1016/0009-2509(84)85059-9
Kralj D, Brecevic L, Kontrec J. Vaterite growth and dissolution in aqueous solution.III: Kinetics of transformation. J CrystGrowth, 1997, 177(3―4): 248―257

doi: 10.1016/S0022-0248(96)01128-1
Ji X Y, Chen D L, Wei T, Lu X H, Wang Y R, Shi J. Determinationof dissolution kinetics of K2SO4 crystal with ion selective electrode. Chemical Engineering Science, 2001, 56(24): 7017―7024

doi: 10.1016/S0009-2509(01)00333-5
Liu C, Feng X, Ji X Y, Chen D L, Wei T, Lu X H. The study of dissolution kinetics of K2SO4 crystal in aqueous ethanol solutions with a statisticalrate theory. Chinese Journal of ChemicalEngineering, 2004, 12(1): 128―130
Bergfors T M. Protein crystallization. California: International University Line, La Jooa, 1999
Mullin J W. Crystallization. Woburn: Butterworth-Heinnemann, 1997
Taguchi Y, Yoshida M, Kobayashi H J. Temperature dependence of the crystal growth rate ofpotassium sulfate at low temperature. ChemEng Jpn, 2002, 35(11): 1038―1044

doi: 10.1252/jcej.35.1038
Feng X, Liu C, Ji X Y, Chen D L, Lu X H. The simulation and analysis for the processof potassium sulfate production by Glauber salt method. Gaoxiao Huaxue Gongcheng Xuebao, 2000, 14(6): 583―589 (in Chinese)
Kim S, Myerson A S. Metastable solution thermodynamicproperties and crystal growth kinetics. Ind Eng Chem Res, 1996, 35(4): 1078―1084

doi: 10.1021/ie950327m
Mohan R, Myerson A S. Growth kinetics: a thermodynamicapproach. Chem Eng Sci, 2002, 57(20): 4277―4285

doi: 10.1016/S0009-2509(02)00344-5
Cheng F Q, Bai Y, Liu C, Lu X H, Dong C. Thermodynamic analysis of temperaturedependence of the crystal growth rate of potassium sulfate. Industrial & Engineering Chemistry Research, 2006, 45(18): 6266―6271

doi: 10.1021/ie0513649
Liu C, Ji Y H, Bai Y, Cheng F Q, Lu X H. Formation of porous crystals by couplingof dissolution and nucleation process in fractional crystallization. Fluid Phase Equilibria, 2007, 261(1―2): 300―305

doi: 10.1016/j.fluid.2007.07.052
Ji Y H, Ji X Y, Liu C, Lu X H. Modellingof mass transfer coupling with crystallization kinetics in microscale. Chem Eng Sci, 2009,

doi: 10.1016/j.ces.2009.12.045
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 高等教育出版社.
电话: 010-58556848 (技术); 010-58556485 (订阅) E-mail: subscribe@hep.com.cn