
Front. Comput. Sci., 2019, 13(3): 599–617

https://doi.org/10.1007/s11704-017-6124-7

Cloud service selection using cloud service brokers:
approaches and challenges

Meysam VAKILI 1, Neda JAHANGIRI1, Mohsen SHARIFI2

1 Department of Computer Engineering, University of Science and Culture, Tehran 14619-68151, Iran

2 School of Computer Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran

c© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract Cloud computing users are faced with a wide va-

riety of services to choose from. Consequently, a number of

cloud service brokers (CSBs) have emerged to help users in

their service selection process. This paper reviews the recent

approaches that have been introduced and used for cloud ser-

vice brokerage and discusses their challenges accordingly.

We propose a set of attributes for a CSB to be considered

effective. Different CSBs’ approaches are classified as either

single service or multiple service models. The CSBs are then

assessed, analyzed, and compared with respect to the pro-

posed set of attributes. Based on our studies, CSBs with mul-

tiple service models that support more of the proposed effec-

tive CSB attributes have wider application in cloud comput-

ing environments.

Keywords cloud service broker (CSB), cloud service selec-

tion, cloud computing, quality of service (QoS)

1 Introduction

The National Institute of Standards and Technology (NIST)

defines cloud computing as: “a model for enabling ubiq-

uitous, convenient, on-demand network access to a shared

pool of configurable computing resources that can be rapidly

provisioned and released with minimal management effort

or service provider interaction” [1]. Cloud service providers

have tried to provide as many services as they canto align

with this credible definition, resulting in the provision of a

Received February 29, 2016; accepted April 26, 2017

E-mail: m.vakili@usc.ac.ir

variety of services for cloud users. To help and guide users of

cloud services to reach their desired services, out of existing

provisioned cloud services, a variety of Cloud Service Bro-

kers (CSB) [2–4] have emerged. A cloud service customer’s

choice of CSB can be critical to the effectiveness of cloud

computing services in customers’ applications. In a nutshell,

our review of CSB approaches aims to facilitate customers’

choice of CBS by a cloud service customer.

A CSB can be defined as a service that acts on behalf of

a client to provide resources and deploy application compo-

nents [5–7]. It is an entity that manages the usage, perfor-

mance, and delivery of cloud services and acts as a mediator

for negotiation between cloud providers and consumers [8].

Grozev and Buyya [9] divided CSB responsibilities into

three classes:

1) Automatic resource provisioning and management

across multiple clouds.

2) Automatic deployment of application components in

the provisioned resources.

3) Scheduling and load balancing of incoming requests to

allocated resources.

CSBs have additionally been classified according to their

roles and the mechanisms they deploy to perform their bro-

kerage responsibility [2,9,10].

Wadhwa et al. [2] have considered four different roles of

CSBs: aggregator, integrator, governance service, and cus-

tomizer. Sanchez et al. [10] defined three classes of CSB:

business cloud brokers, financial cloud brokers, and technical



600 Front. Comput. Sci., 2019, 13(3): 599–617

cloud brokers. Grozev and Buyya [9] categorized CSB mech-

anisms as directly managed and externally managed and fur-

ther divided the externally managed CSBs as either service

level agreement based or trigger-action.

Liu et al. [8] presented one of the most notable categoriza-

tions of CSBs as the following three classes: intermediation

service, aggregation, and arbitrage. In the intermediation ser-

vice, a cloud broker upgrades a specific service by improving

some definite capabilities and providing additional services

for consumers. A cloud broker offering the aggregation ser-

vice combines some services and integrates them into fewer

services or even just one service. In the arbitrage service, a

broker integrates unfixed services and grants permission for

selecting from few providers.

Although different cloud providers may have designed a

different architecture for their brokerage services [11–13],

they have all envisaged the same role of cloud service dis-

covery and selection for their CSBs [14]. Cloud service dis-

covery is the process of finding a cloud provider who can best

satisfy a consumer’s needs, and service selection is a method

for requesting discovered services. Every CSB uses its own

algorithms and mechanisms for selecting an appropriate ser-

vice from a huge collection presented by cloud providers in

order to satisfy a cloud consumer’s needs.

Various studies have been carried out on cloud service se-

lection. Whaiduzzaman et al. [15] reviewed and classified

cloud services’ provisioning strategies using different crite-

ria. Sun et al. [16] investigated cloud service selection ap-

proaches from five different perspectives: decision making

techniques, data representation models, parameters and char-

acteristics of cloud services, contexts, and purposes. Subha

and Banu [17] surveyed various studies on quality of service

(QoS) ranking of cloud computing and cloud service selec-

tion. Jula et al. [18] also surveyed cloud service selection ap-

proaches and determined nine classes of cloud service com-

position research approaches.

Despite the existence of a rich repertoire of surveys on

cloud computing services and their brokerage, a deep and

comprehensive review on the role of CSBs in cloud service

selection is still missing.

This paper investigates the approaches and mechanisms

of brokerage in cloud computing environments for the se-

lection of cloud services that conform with users’ needs.A

cloud service is defined as “any resource that is provided for

the users over the Internet”, such as infrastructure as a ser-

vice (IaaS), platform as a service (PaaS), and software as a

service (SaaS). Prominent works with unique ideas are inves-

tigated and analyzed with regard to important criteria in the

cloud service selection process. Two categories of CSBs are

reviewed: CSBs that use the services of just one cloud service

provider (called single service models) and CSBs that use the

services of more than one cloud service provider (called mul-

tiple services models). The main challenges of each work are

discussed, summarized, compared, assessed,and reported in

tabular form.

The remainder of this paper is organized as follows. Sec-

tion 2 discusses the brokerage process in cloud computing

environments and proposes a set of attributes for determining

the effectiveness of a CSB. Section 3 reviews a categorized

presentation of eminent CSBs, focusing on their approaches

towards service selection. Section 4 presents the most im-

portant specific and common challenges in each work.

Section 5 compares and evaluates the reviewed CSBs with

respect to our proposed attributes, and in Section 6 we give

concluding remarks on our paper.

2 Attributes of an effective CSB

We require a set of criteria in order to categorically com-

pare and assess different approaches towards the brokerage of

cloud services. Regardless of differences in existing CSB ar-

chitectures and their architectural components,which are de-

signed according to cloud providers’ policies and consumer

needs, a generic set of criteria can be envisaged as a set of at-

tributes of an effective CSB. Based on the reviews of studies

reported in this paper, we propose the following eight desired

attributes for any typical CSB, whose main role is to facili-

tate service discovery and selection and effectively satisfy the

requirements of its cloud customers:

1) Support for various QoS attributes QoS refers to a col-

lection of service qualities or attributes, such as availability,

security, performance, scalability, throughput, latency, us-

ability, reputation, and reliability [3,16]. An effective CSB

must consider a broad spectrum of both qualitative or quan-

titative QoS attributes in selecting suitable services. It must

also allow cloud customers to select their own QoS attributes

in an appropriate way.

2) SLA violation recognition An SLA is a legal contract

between providers and consumers,which defines the quality

of service and is achieved through a negotiation process [19].

The majority of existing commercial and research-based

CSBs use SLA in order to progress negotiations between

providers and customers, but very few also include a flex-

ible and suitable mechanism against SLA violation. When

an SLA is established, it may display incompetency due to



Meysam VAKILI et al. Cloud service selection using cloud service brokers: approaches and challenges 601

changes in components, workloads, or external conditions

or software or hardware faults [20]. In such circumstances,

an effective CSB must identify SLA violations, take proper

actions to end such violations, and compensate any accrued

losses.

3) Price optimization One vital parameter in selecting a

suitable service provider is the cost [21]. Irrespective of the

type of cost model the provider uses, CSBs must consider the

cost as an important (or even the most important) criterion

in service selection. Most CSBs offer the same costs for the

same services, but what makes a CSB eminent among oth-

ers is a mechanism for optimizing customer value for money.

Particularly when a CSB supports service composition, the

ability of optimizing the cost of those forced-to-compose ser-

vices is really important.

4) Selection of suitable providers for different types of

cloud services By one renowned classification, cloud ser-

vices fall into one of three classes: IaaS, PaaS, or SaaS.

But more recently, all Internet-oriented services have very

quickly moved into or towards the cloud, which a growing

concern for the everything as a service (XaaS) discipline [22].

Cloud services have a wide spectrum of end users, compa-

nies, and organizations with different requirements, so an ef-

fective CSB must recognize all types of cloud providers and

search among all available cloud services.

5) Customer profiling Regardless of the unique attributes

and characteristics of different cloud environments, cloud ser-

vice selection is a kind of search problem. In every search

algorithm, the speed of search is a key factor in evaluating

its performance, and many factors play a role in improving

search speed. The use of a profile or history of all past re-

quested services of each user can accelerate the search pro-

cess [3,23].

6) Dynamic brokerage CSBs are faced with cloud users

whose requests for cloud services vary dynamically in size

and characteristics, while cloud providers’ statuses of service

provisioning vary dynamically too [24]. The cost of services

for providers and the price of services for users also varies dy-

namically with respect to current supply and demand for re-

sources [4]. Effective CSBs should be equipped with proper

mechanisms to dynamically broker and select suitable ser-

vices to offer to users.They should detect newly registered

services and even switch users to new services that could

serve users better than their previous one. Thus, CSBs must

search periodically for available services.

7) Partial information request on specification of services

from customers Most cloud service selection mechanisms

assume that cloud customers are competent in using the cloud

and can be asked to provide full specification of their re-

quested services [25]. This blanket assumption deprives less

experienced and novice customers from using cloud services

[16]. It is desirable that CSBs can mediate between cloud

providers and less professional cloud customers too, asking

for the least information on required services from the cus-

tomers and figuring out other necessary information about the

customers’ requested services by other means, such as using

user profiles, history files, and recommendation systems. In-

deed, CSBs can still cater for professional customers differ-

ently and receive full information on services from them.

8) Customer preference prioritization Customers should

be able to pass their preferences on functional and non-

functional attributes of their requested services on to CSBs.

Preferences on non-functional attributes greatly influence the

effectiveness of cloud services for customers [26]. The qual-

ity requirements can be multi-objective and service con-

sumers can give different priorities to different quality at-

tributes aligned with their quality requirements [27]. An ef-

fective CSB must consider the priorities of each customer in

the selection of appropriate services from service providers.

3 Cloud service brokers

Having proposed a minimal set of desired attributes for effec-

tive CSBs in the previous section, eminent CSBs over the last

five years are reviewed in this section; their evaluation with

respect to the proposed attributes is presented later in Section

5. Two classes of CSB are differentiated in our review: single

service models and multiple service models. Table 1 shows

the names of the CSBs that are reviewed in this section.

Acronyms are used for naming different CSBs in this pa-

per, and as such, their names may differ from the title of pa-

pers in which they have been reported; for the papers they

are reported in, please follow the references given alongside

them.

3.1 Single service model CSBs

This subsection investigates the single service model CSBs.

These CSBs almost support the IaaS model, but any other

CSB designed for a special type of cloud service will also be

in this class.

3.1.1 QBROKAGE

QBROKAGE [28] uses a genetic algorithm with four goals:

responding to heterogeneous QoS requirements of appli-

cations,preventing vendor lock-in, supporting various price



602 Front. Comput. Sci., 2019, 13(3): 599–617

Table 1 Classification of reviewed CSBs

Single service model Multiple service model

QBROKAGE [28] AHP & TOPSIS [21]

SLA-based SaaS Provisioning [3] CSP-index [33]

Brokering Using Game Theory [23] Two Layered Brokerage [34]

STRATOS [29] SMICloud [35]

Distributed Cloud Brokering [30]

Multi-Cloud Brokering [24]
Brokering for Optimized Placement of Virtual Machines [36]

Dynamic Brokering on Federated Clouds [31] OWL-S Based Semantic CSB [14]

T-Broker [32] Price Optimization using 0-1 Knapsack [4]

models, and appropriate scaling while preserving interactiv-

ity.

In QBROKAGE, requested user services (called appli-

ances), resources, and QoS attributes are modeled (Anastasi

et al. [37]). An appliance is represented by a non-directional

graph, wherein each vertex displays an appliance and each

edge displays a connection path. Each provider is also mod-

eled as a data center containing a collection of hosts running

a number of virtual machines (VMs). QoS attributes are clas-

sified as ascending, descending,or equal [38]. These classes

correspond to the amount of user demand for each QoS at-

tribute and the real amount that a provider can supply for

each. To cater for price model differences used by various

providers, two models of pre-resource and pre-VM price are

supported.

Figure 1 shows the overall architecture of QBROKAGE.

The customer sends their request application (service specs)

in the standard OVF (open virtualization format) to QBROK-

AGE. The OVF parser component analyzes the OVF input

and creates a graph application. The application is added to

the application queue, which buffers current requests to map

an application and manages the delivery to the mapping com-

ponent. Given the datacenter and application properties, the

mapping component computes a set of application mappings.

Other required information for the mapping component such

as the characteristics of the network connecting data centers

and provider conditions are supplied by the monitoring and

net estimator components. When one or more map plans are

computed, they are sent to the allocator component as input.

Eventually, the allocator component assigns VMs for each

mapping plan in turn.

The mapping component is the main part of QBROKAGE;

it uses a genetic algorithm to map applications to VMs and

data centers. The genetic algorithm allows constraints to be

added with the least interference. The represented brokerage

algorithm uses the main procedure of the standard genetic al-

gorithm. The difference is that each solution (chromosome)

is a vector that represents the allocation mapping of each ap-

pliance/VM to providers, and each cell represents one appli-

cation. The fitness function is also computed based on rela-

tionshipss between QoS supplied by cloud providers and QoS

requested by users.

Fig. 1 QBROKAGE architecture [28]

3.1.2 SLA-based SaaS provisioning

Badidi [3] proposed a framework in which a broker is in

charge of selecting an appropriate service provider in accor-

dance with QoS requirements of the service consumer and

negotiation of SLA conditions. As shown in Fig. 2, the pro-

posed framework is divided into four parts: consumer, broker,

monitoring infrastructure, and service providers. The broker

has managing functions,including access controls, manage-

ment policies, SLAs, and service supplements. All parts are

monitored by the coordinator (broker). The broker’s back-end

database holds managing policies, SLAs, and QoS informa-

tion. The selection manager applies the function of provider

management and it is in charge of applying different policies

to select an appropriate provider based on consumer consid-

ered QoS parameters. The monitoring infrastructure consists

of a monitoring adapter and measurement services. There is a

monitoring adaptor for each measurement service that maps

QoS metrics to SLA parameters, assesses the level of recent

services, and evaluates an agreement with the SLA.



Meysam VAKILI et al. Cloud service selection using cloud service brokers: approaches and challenges 603

Fig. 2 SLA-based SaaS provisioning framework [3]

The negotiation process starts with the consumer SLA re-

quest and the result is sent to the broker. After authenticating

the consumer, the broker requests the customer profile from

the profile manager. Then a request for selecting an appropri-

ate provider and receiving service supplier policies are sent to

the selection manager and policy manager, respectively. If the

service consumer specification exists in the profile repository,

the coordinator can recognize whether the proposed provider

can provide the considered service. If there is no profile for

the consumer, the coordinator asks the consumer for informa-

tion about assumed quality level in order to complete the pro-

file. If at least one provider can supply the user’s needs, the

SLA manager sends the coordinator’s request to the user. If

the SLA request is acceptable to the provider, the coordinator

analyzes it to check whether it satisfies the user’s functional

or non-functional needs.

Having found an appropriate SLA, the certificate is sent

to the provider. After receiving the SLA certificate from the

broker, the SLA manager registers the consumer as a member

and the SLA is ready to be applied.

3.1.3 Brokering using game theory

Ray et al. [23] presented a broker that uses the game the-

ory model for automatic SLA negotiations to provide an op-

timized amount of price and quality for both provider and

customer. Figure 3 shows the broker’s architecture. The main

modules of the broker are as follows:

• Resource request requirement This module saves the

details of user requests. A user request includes the

name of the task to be computed, the task type, and an

SLA template. This request is sent to the request ana-

lyzer module.

• Request analyzer A request is first analyzed by look-

ing at the history. If details of the task exist in the his-

tory, proper measures are adopted. Otherwise, task de-

tails and task template are sent to the service provider

broker and SLA service module, respectively.

• History This module holds the completion times of re-

quested tasks and their related SLA documents. In the

case that a new requested task exists in the history, a

proper resource is selected faster.Otherwise, a new en-

try is created for the task in the history.

• Service provider broker This module assumes the

duty of administrating a collection of IaaS providers.

The service provider broker acts as the owner of virtual

resources that some service providers have registered

on them as member. The service provider broker also

records details of registered providers and their corre-

sponding SLA details.

• Execution time analyzer This module estimates the

task completion time statically. It also computes the ex-

ecution duration of the task and sends the result to the

request analyzer module.

• SLA service This module takes two input parameters



604 Front. Comput. Sci., 2019, 13(3): 599–617

of task price and the quality of selected instance and

starts the SLA negotiation process using game theory.

In fact, the SLA service module receives SLA templates

related to a provider and a user and at each round of

the game tries to decrease the difference in satisfaction

level at the equilibrium point. Optimized value is gained

when the difference in satisfaction level between user

and provider at equilibrium level is close to or equal to

zero. Finally, an optimized value for price and quality

is calculated and sent to the resource selection module

for service selection.

Fig. 3 Brokering using Game Theory [23]

3.1.4 STRATOS

This brokering method [29] provides resources in inter-cloud.

STRATOS lets application developers identify their needs in

terms of key performance indicators. When a service request

is sent to the broker, the request is sent to all providers and

the best resource is selected. This application distribution de-

creases topology price and satisfies user goals better. The

problem of resource acquisition decision (RAD) has been for-

mulated as a multi-criterion optimizing problem [39]. Each

RAD problem consists of selecting N resources from M lim-

ited providers.

According to Fig. 4, a topology descriptor file (TDF) is

defined by the user to describe the application topology the

user wants to be deployed in the cloud. The user appoints

many application requirements in this document, such as re-

quired clusters, servers, web hosts, container, and broker in-

puts. After receiving the topology document, the cloud man-

ager contacts the broker to create a topology instance. The

broker does primary RAD computing (resource allocation in

both providers). Configuration and its attributes are defined in

a third application programming interface (API) layer [40].

Fig. 4 STRATOS architecture [29]

More preferred user limitations and commitments are de-

fined in a goal function. STRATOS focuses on the two goals

of price and lock-in prevention. The broker needs information

on two classes of developers to solve the RAD problem: con-

figuration and a collection of goals. Configuration is defined

by a list of attributes, each one consisting of a triple (name,

value, and unit). Each goal indicates a computed utility func-

tion for topology. The broker tries to optimize the goal set

that is defined in the TDF. The weight of the goal collection

is used as default, but optimizing method can be defined by

the user.

Selection process takes place in two stages: possible con-

figuration identification and goal optimization. The broker se-

lects a set of goals that satisfy defined goals in the TDF. In the

second stage, a set of equivalent configurations are selected

by a multi-criterion optimizing process, resulting in an ap-

propriate provider. When no configuration satisfies the goals,

the broker attempts to find the closest configuration for each

property.

3.1.5 Distributed cloud brokering

This is a distributed multi-user brokering method that selects



Meysam VAKILI et al. Cloud service selection using cloud service brokers: approaches and challenges 605

resources from different providers dynamically. The broker

uses a document called CFP (call for proposal), which in-

cludes the customer’s needs and policies, such as price in time

unit and availability. CFP includes two documents: SLA de-

scribing model in the form of XML SLA@SOI schema and

exchanging policy that consists of a set of rules to be enforced

in service selection by the broker. To get the SLA descrip-

tion model from the user in the CFP document, a graphic

interface has been designed that takes four pieces of infor-

mation from the user about configuration of user essential re-

sources, technical requirements of applications, service level,

and service conditions. Alongside this information, the user

enters an SLA description template and soft/hard constraints

on browser policy as inputs so that the objective function can

be optimized.

Users and vendors, who have been identified by usernames

and passwords, send their CFP proposals in parallel and asyn-

chronously to the system and receive acknowledgements.

While their requests are pending, users can wait for broker

results. When one of the brokers finds a feasible proposal

for that request, current results are updated. The exchange

ends when there is no special proposal for optimizing the user

query.

The broker uses the databases twice, once for user man-

agement, such as for checking their profiles and credentials

therein, and once for indexing proposals and querying the

SLA candidate. Agents withdraw different proposals from the

queue and index them to allow different brokers to query the

database and retrieve the SLA candidate to be brokered.

3.1.6 Multi-cloud brokering

The multi-cloud brokering CSB [24] has two main compo-

nents. The cloud broker administrator configures the broker

before use. Configuration involves defining a provider list

containing their information and an instance list consisting of

instance type and its prices in each cloud. The second compo-

nent is the cloud broker user and is responsible for identify-

ing a new service by a service description file upon receiving

cloud information and the instance list. Service description

is a user defined file containing accurate information on the

service to be deployed by the broker: information such as

service components, optimization criteria (such as cost, per-

formance, resource consumption, energy consumption, or a

combination of all), scheduling parameters and policies, in-

stance types, and instance efficiency.

The broker has a central database that saves different lists

that have been used by other components. The cloud list

saves provider information. The instance list saves informa-

tion about instance types in each cloud as well as their prices

and pricing models. The service list saves information about

services identified by the user. Each service is described in

one service description file. The VM list saves information

about the VMs managed by the broker in different clouds.

The list has each VM’s current status and information about

its scheduling and resource consumption.

The broker has three main components, namely the sched-

uler, the VM manager, and the cloud manager:

• The scheduler reads the service list and uses the service

description file as an input for deploying new services.

It recalls the schedule module defined in the service de-

scription, then specifies whether the VM list must be

deployed or cancelled in each cloud. It then updates

the VM list to notify the VM manager. Before each

scheduling action, the scheduler reads the instance list

to become aware of instance types, prices, and the num-

ber of available instances in each cloud.

• The VM manager reads the VM list periodically and

calls appropriate functions regarding the VM’s current

conditions. It is also in charge of monitoring the re-

source value for each VM and updating the VM list.

• The cloud manager collects information and prices

from available instances periodically for all instances

in the instant list and updates the list. This is done to

allow dynamic pricing.

3.1.7 Dynamic brokering in federated clouds

Resource allocation in the cloud can be done by multi-agent

systems [41]. Dynamic brokering on federated clouds [31]

is an exemplar CSB that uses three agents: consumer agent

(CA), resource brokering agent (RBA), and resource provider

agent (RPA).

Resource allocation is straightforward when requested re-

sources are available in one cloud provider, but more com-

plicated if requested resources are available in a collection

of cloud providers (e.g., in federated clouds). In the lat-

ter case, the resource allocator must be informed about the

providers’ services and the status of each provider in the fed-

erated clouds. Each resource may have different prices in dif-

ferent cloud providers; prices follow a supply and demand

model. Therefore, acquiring the current price of resources

from different providers is very difficult. Resource alloca-

tion is based on received feedbacks from users. The broker

agent checks each provider in turn by negotiating with the



606 Front. Comput. Sci., 2019, 13(3): 599–617

provider’s agent. If the consumer’s need is not completely

satisfied by the provider, the broker starts negotiating with

another provider.

Agents use three algorithms for negotiation: CA communi-

cation, RBA communication, and RPA communication. Fig-

ure 5 shows a flow diagram of the negotiation process. CA

creates a request as a CFP message and sends it to RBA.

RBA extracts resources and starts searching for best qual-

ity and lowest price for each resource. Using the resource

list, it computes the total price of resources and sends the

computed price to CA. If the price is acceptable to CA and

RBA receives an ACCEPT message from CA, it creates a

CFP message and sends it to RPA. RPA extracts resources

and their total price. If total price is equal to or less than the

price specified in the CFP, the request is accepted. Then RBA

updates the provider list with this demand price ratio and

repeats the same procedure. If the agreement is acceptable

to CA, it sends an AGREE message to RBA, which in turn

sends a CONFIRM message to RPA. Otherwise, CA sends a

REFUSE message and the protocol starts all over again.

Fig. 5 Data flow diagram of dynamic brokering on federated clouds [31]

When PRA receives a CONFIRM message, the final agree-

ment is defined by sending a CONFIRM message to CA,

and CA displays INFORM for acknowledgement. After fin-

ishing the task, the consumer computes resource efficiency

and sends its feedback to RBA. RBA updates the provider

list with received values. In this way, consumers get their re-

quested resources with the lowest prices without needing to

know the locations or the prices of resources.

3.1.8 T-Broker

Trust management is a complicated and difficult task in dis-

tributed environments whose resources are geographically

distributed and belong to distinct organizations [42], such

as multi-cloud environments. T-Broker [32] is a trust-aware

CSB, which acts as a trusted third party for trust management

and resource scheduling in multi-cloud environments. It uses

a hybrid trust mechanism, which is based on a combination

of feedback-based trust and the trust based on real-time and

multi-source service data. Furthermore, it uses a maximizing

deviation method to compute the trust of a service resource,

in which the trusted attributes are weighted manually or sub-

jectively.

Figure 6 shows the following five modules of the T-Broker:

• Sensor-based service monitoring This module moni-

tors service parameters dynamically and is responsible

for getting run-time service data of allocated resources.

To calculate the trustworthiness of a resource [39], T-

Broker uses two types of software sensors: monitoring

sensors for collecting the performance information of

computing resources, such as CPU frequency, memory

size, hard disk capacity, and network bandwidth and

computing sensors for collecting and computing QoS

information, such as the current CPU utilization rate,

current memory utilization rate, current hard disk uti-

lization rate, current bandwidth utilization rate, average

response time, and average task success ratio.

• Virtual infrastructure manager (VIM) This module is

used to collect and index all resource information from

cloud providers and to act as a resource management

interface to a monitoring system. VIM, which is based

on OpenNebula, is also responsible for the deployment

of each VM in the selected cloud and the management

of the life-cycles of VMs.

• SLA manager and trusted resource matching This

module selects and composites highly trusted resources

for users from a trusted resource pool according to the

SLA contract.

• Hybrid and adaptive trust computation model This

module, which is the core of the T-Broker, uses a hy-

brid and adaptive trust model to compute the overall

trust degree of service resources. Trust is defined as a

fusion evaluation result by adaptively combining real-

time service behavior with the social feedback of the

service resources. This module allows users to specify

their requirements and preferences to get a customized

trust value of the cloud providers.

• Services feedback and aggregation T-Broker uses



Meysam VAKILI et al. Cloud service selection using cloud service brokers: approaches and challenges 607

a lightweight feedback mechanism among virtualized

data centers and users in order to reduce networking

risk and improve system efficiency. This mechanism

collects users’ ratings and aggregates them to yield a

global evaluation score. A user’s rating is used as a ref-

erence by other users in future transactions.

3.2 Multiple service model CSBs

In addition to single service model CSBs, there are some

CSBs that support more than one cloud service model. These

CSBs are multi-objective and either work with different cloud

services from the beginning or are designed in such a way to

have the capability and flexibility to be in agreement with dif-

ferent providers and cloud services models.

3.2.1 AHP & TOPSIS

AHP [21] uses a mechanism based on TOPSIS (technique for

order preference by similarity to ideal solution) [43] to select

the most appropriate cloud provider. It measures the quality

of each cloud provider and prioritizes all providers with re-

spect to customer needs. It considers three roles: requester

(which could be an SaaS provider, a PaaS provider, or an end

user), provider, and broker.

Selection of an appropriate cloud provider from many

cloud providers is a multi-criterion decision-making

(MCDM) problem that is solved in three phases:

• Identifying suitable criteria In this phase, services ini-

tiative measurement (SMI) is used to define suitable cri-

teria for selecting a cloud provider. SMI is a standard

way of measuring cloud services provided from user re-

quests. SMI is developed by a consortium called Cloud

Services Measurement Initiative Consortium (CSMIC)

[44]. SMI has a hierarchy structure and consists of var-

ious attributes, such as accountability, cost, agility, per-

formance, assurance, security, privacy, and usability.

• Evaluating the weight of criteria using APH In this

phase,the relative weights of chosen criteria are de-

termined by using each criterion of AHP [45] as an

MCDM.

• Ranking cloud providers using TOPSIS In this phase,

TOPSIS is used to select an alternative that is closest to

the ideal solution and farthest from the negative ideal

solution. TOPSIS takes a list of N providers, M related

attributes of each provider, and the weight of each com-

puted attribute. It then creates a matrix whose elements

are the values of each attribute for each cloud provider.

This value is defined by provider attributes. Eventu-

ally, using these values and relative computations, a pa-

rameter called relative closeness is computed for each

provider. Each cloud provider whose value is more than

relative closeness is the most appropriate alternative ac-

cording to user needs.

3.2.2 CSP-index

This method [33] uses a unique indexing technique to manage

provider information and implements an algorithm to classify

providers and aggregate them. The architecture of this broker

has two main aspects:

• Indexing cloud service providers This paper uses a

method called CSP-index (cloud service provider) to

make index keys for providers. The CSP-index has

been based on an encoding technique that uses the sim-

ilarities among various providers. Since providers with

the same attributes are saved alongside each other, this

method can accelerate the query process. When a bro-

Fig. 6 T-Broker’s architecture [32]



608 Front. Comput. Sci., 2019, 13(3): 599–617

ker identifies a candidate provider in the index, it can

find other candidate providers with the same attributes

immediately. In the CSP-index data structure, inner

nodes have a B+-tree-like format and are used as a

search directory. The algorithm used in producing keys

and making the CSP-index has three stages: property

encoding for encoding attributes of each provider, re-

lationship encoding for encoding relationship between

providers made by subcontracting, and index key gen-

eration for producing final index keys. Meanwhile, the

k-means algorithm and iDistance [46] are used for clus-

tering providers and producing index key,respectively.

• Cloud service selection Indexing helps the broker to

select a suitable cloud service. User sends a cloud ser-

vice selection query (CSS query) to the broker to set the

provider’s considered values and attributes. The CSS

query algorithm is then run to perform four phases: (1)

query encoding, which transforms user query to a CSP-

index form, (2) K-nearest neighbor search, which re-

turns K candidate service providers whose index keys

are similar to the query encoding and hence may satisfy

the query requirements, (3) refinement, and (4) consid-

eration of special criteria. Phases 3 and 4 investigate

candidate provider properties and their relationships to

find the best combination of providers to meet the user’s

needs.

3.2.3 Two Layered Brokerage

This approach [34] makes brokers capable of staying in two

different layers in the cloud computing architecture and com-

municating to each other. In fact, we have two kinds of bro-

kers: SaaS broker that selects an SaaS provider, and the cloud

broker, which selects a cloud provider. Communication be-

tween brokers adds to each broker’s information and raises

its QoS level, because the QoS level provided by an SaaS

provider is mostly dependent on its foundation, i.e., the cloud

provider. The aim of this approach is to make suitable com-

munication between these two brokers and select the best ser-

vice provider for a user.

Two layered brokerage uses a multiple cloud architecture

(Fig. 7) with five components [47,48]. The user sends their

request containing functional and non-functional attributes

to the SaaS broker. When the broker finds a suitable SaaS

provider, the user is bound to the SaaS provider by agreeing

with an SLA [49]. When the binding is completed, commu-

nication between the user and selected SaaS provider is done

directly.

When the user sends their request to the SaaS provider,the

provider, along with the cloud broker, looks for a cloud

provider. Once the cloud provider is selected to handle the re-

quest, the SaaS provider binds to the selected cloud provider.

Eventually, the SaaS provider presents the assumed service

and makes it ready for use.

Fig. 7 Two layered brokerage[34]

Generally, the SaaS broker is in charge of binding the user

to the SaaS provider, binding cloud brokers, and monitoring

QoS levels in SaaS providers. The cloud broker is also re-

sponsible for binding the SaaS brokers, providing necessary

information for SaaS providers, and monitoring the QoS lev-

els.

Communication between the cloud broker and the SaaS

broker is done in two phases: discovery and binding. Firstly,

the necessary information is added to a registry to allow com-

munication between brokers. One of the key pieces of infor-

mation is the identity of the SaaS provider that is providing

the service. Then, based on an SLA, binding is done between

two brokers. Moreover, a property called efficiency is used to

evaluate each SaaS provider based on supplied information

from the cloud broker. Efficiency is defined as the level of

service provision of the SaaS provider relative to the cloud

provider’s QoS level. QoS parameters that have been consid-

ered for computing efficiency are availability, reliability, and

response time.

3.2.4 SMICloud

A framework is used in this approach [35] to measure qual-

ity and priority of cloud services by ranking and compris-

ing various cloud providers based on user requirements. This

framework can create a healthy competition between cloud

providers to satisfy SLA and improve QoS. As mentioned

before, SMI attributes can be used to provide various ser-



Meysam VAKILI et al. Cloud service selection using cloud service brokers: approaches and challenges 609

vices to customers. SMI attributes used in this approach are

service response time, sustain ability, suitability, accuracy,

transparency, inter operability, availability, reliability, stabil-

ity, price, adaptability, and elasticity. It must be mentioned

that there are numerous challenges in obtaining user consid-

ered quality and ranking different cloud providers, such as de-

termining away to measure SMI attributes and ranking cloud

services based on SMI attributes.

Deciding on which service matches best with all functional

and non-functional requirements is an MCDM problem. In

the SMICloud approach, AHP is used to solve the problem

of assigning weights to features while considering interde-

pendence between them. Ranking services take place in four

phases: (1) hierarchy structure for cloud services based on

SMI key performance indicators, (2) computation of relative

weights of each QoS and service, (3) relative value-based

weights for ranking cloud services, and (4) aggregation of

relative rankings for each SMI attribute.

To take a more detailed look at this approach, were view

its architectural sections:

• SMICloud Broker, which receives a customer’s request

and discovers and ranks suitable services accordingly.

This section has three components: SLA management,

which keeps the history of SLAs for customers and

cloud providers, SMI calculator, which calculates the

SMI attributes used in prioritizing cloud providers, and

the ranking system, which ranks selected services by

the cloud broker.

• Monitoring discovers cloud services that can satisfy

user’s essential QoS requirements. It also monitors

cloud service performance.

• Service catalogue holds services and attributes adver-

tised by different cloud providers.

3.2.5 Brokering for optimized placement of VMs

Designers of this approach [36] have stated two roles for bro-

kers: they provide the scheduling mechanisms required to op-

timize the placement of VMs among multiple clouds and they

offer a uniform management interface with operations, e.g.,

to deploy, monitor, and terminate VMs.

In this approach a multi-cloud architecture for cloud bro-

kerage and VM management is suggested alongside an al-

gorithm for optimized placement of VMs in multi-clouds.

The suggested model consists of price, performance, hard-

ware limitation, and load balance. Multi-clouds have im-

proved performance compared to single-clouds and decrease

cost. Figure 8 shows the suggested broker architecture. Con-

sidering the infrastructure criteria, limitations of the user,

provider’s suggestions, and scheduling algorithm used, the

broker scheduler prepares an optimized deployment plan to

place VMs in different clouds. The deployment plan em-

bodies clear implementation of user requests and includes a

list of VM templates. Each pattern consists of a target cloud

provider to place VMs, as well as special attributes for the se-

lected provider. The cloud scheduling problem can be solved

by a static or dynamic approach. A static approach is used

when requested virtual resources are limited and provider

conditions such as price and availability are stable in the

whole life-cycle of the cloud. In this scenario, resources are

selected offline only once. A dynamic approach is used for

Fig. 8 Brokering for optimized placement of VMs [36]



610 Front. Comput. Sci., 2019, 13(3): 599–617

variable-sized services, such as for a cluster server with vari-

able required resources. Regarding the static conditions of

current cloud providers, practical evaluation of this approach

is also static.

VIM plays the second role of the broker by providing an

abstract layer in a heterogeneous collection of clouds. This

part is in charge of placing each VM in a selected cloud. VIM

caters for user interaction with the virtual infrastructure by

making the respective IP addresses of the infrastructure com-

ponents available to the user once it has deployed all VMs.

This way, the user is not informed and concerned about the

distribution of resources in clouds. In this broker, VIM com-

ponents are based on the OpenNebula framework [50].

3.2.6 OWL-S based semantic CSB

This approach [14] presents a service-oriented cloud broker,

along with a discovery system and service selection based

on OWL-S [51]. It supports dynamic semantic matching to

describe cloud services with complicated limitations. It also

presents an approach to resolve challenges such as support

for complex constraints and dynamic discovery of services in

cloud environments.

The OWL-S service description approach for displaying

services has three main parts: Service Profile for service ad-

vertising and discovering, Service Model for service opera-

tion description in details, and Service Grounding for send-

ing messages and allowing communication between services.

SWRL [52] is also used for modeling constraints in the on-

tology domain.

Matching between user requests and service providers is

done in five ways [53]:

• Exact match, where provider offers an exact service to

the user request.

• Subsume match, where provider offers more than what

the user requests.

• Invert-subsume match, where user has requested more

than what the provider offers.

• Partial match, where provider can satisfy some of the

user’s requirements.

• Fail match, where provider cannot satisfy any of the

user’s requirements.

Figure 9 shows the architecture of this approach. Ser-

vice providers offer their own services to the system. Of-

fered services are aggregated in a repository. Suitable ranges

for ontologies are defined in advance. When a service re-

quest and user preferences are received, the system starts a

Fig. 9 OWL-S based semantic CSB [14]



Meysam VAKILI et al. Cloud service selection using cloud service brokers: approaches and challenges 611

matchmaking process to match offered services with services

in the repository using IOMatching and constraint matching.

The latter uses SWRL rule matching and a reasoning engine

similar to pellet. This is done over all repository services and

a check is performed to find whether the best obtained match

is an invert-subsume. If the answer is yes, the request is re-

fined by a service composition function and the matchmaker

is re-invoked. Finally, in the service selection stage, discov-

ered services are scored and ranked by a semantic scoring

function and are returned to the user as the best-matched ser-

vices.

3.2.7 Price optimization using 0-1 Knapsack

This broker [4] uses the 0-1 Knapsack [54] for pricing opti-

mization in service integration. The designers of this broker

introduced two main types of pricing model in the cloud do-

main: a static model, where price remains unchanged once

it has been determined and a dynamic model, where price

changes dynamically according to factors such as resource

availability and demand. They also consider five factors for

pricing: initial cost, lease period, QoS, resource age, and

maintenance expenditure.

One of the key CSB functions is the service price optimiza-

tion for the customer and provider. The CSB must consider all

SLAs to do this for each service and to make the best choices.

Some criteria such as cost, QoS, and quality of experience are

considered for service integration. As a result, new SLA and

services are created.

The Knapsack problem,which is used to solve pricing op-

timization in service integration problems, has exactly the

same base structure. Applied variables are also based on fun-

damental cases, stating that profit is equal to sum of service

prices, bound is equal to bound of the service price, and

weight is equal to service weight.

An optimal service integration is calculated iteratively by

the following three steps in order to create a state space tree:

• Visiting a node and calculating the value of each profit

and weight.

• Calculating the value of each totweight and bound.

• Comparing weight and W and bound and maxprofit and

determining whether the node is promising or not.

4 Main challenges

The most important challenges found in Section 3 are sum-

marized in this section. Challenges that are common to all

CSBs are reported first, followed by challenges that are spe-

cific to only some CSBs.

4.1 Common challenges

4.1.1 No support for various cloud service models

An effective CSB must be able to find suitable provider(s)

for all kinds of cloud services and respond to all cus-

tomer requests. Some approaches investigated in Section 3

are only capable of representing infrastructure services, i.e.,

IaaS. These approaches are: multi-cloud brokering [24],

STRATOS [29], QBROKAGE [28], brokering using Game

Theory [23], T-Broker [32], distributed cloud brokering [30],

and dynamic brokering on federated clouds [31]. While SLA-

based SaaS provisioning [3] is only designed for representing

SaaS.

4.1.2 No desirable support for QoS attributes

An effective CSB must support all QoS attributes at the time

of service selection. In other words, all effective and essen-

tial QoS attributes in service selection must be considered

by a CSB in the service selection process. It is notable that

a high number of QoS attributes complicates the service se-

lection approach, which must aim to meet customers’ needs

conformingly. Some approaches studied in Section 3con-

sideronly few QoS attributes. Two layered brokerage [34]

only considers three attributes (availability, reliability, and re-

sponse time). Multi-cloud brokering [24] only considers cost,

efficiency, and energy consumption. Brokering using Game

Theory [23] only considers price and quality as QoS param-

eters.

4.2 Specific challenges

In addition to common challenges mentioned in Section 4.1,

each approach has its own specific challenges. Therefore,it is

necessary for these challenges to be identified in order to help

designers of future CSBs in making them effective.

In AHP & TOPSIS [21], despite a pairwise comparison

matrix being used to prioritize SMI attributes, nonprofes-

sional users are forced to define their priorities despite them

being largely unfamiliar with the AHP structure. Moreover,

nothing is mentioned about SLA in the AHP & TOPSIS pa-

per.

CSP-index [33] has received lots of information from users

about their requested services. But users are mostly unable to

provide all types of requirements–specifically highly techni-

cal information [55]. QoS parameters used in the CSP-index



612 Front. Comput. Sci., 2019, 13(3): 599–617

paper are not identified [18].

In SLA-based SaaS provisioning [3], when a provider se-

lected by these lection manager cannot satisfy the user re-

quirements, the SLA manager related to that provider sends

another suggestion to the CSB SLA manager. However, since

user preferences are not prioritized, new suggestions may

not satisfy user preferences, which can result in a highly

time consuming service selection process. Moreover, QoS at-

tributes considered in this method are not clearly determined.

In Multi-cloud brokering [24], the service description file

to be prepared by the user has various sections that can be

filled out only by experienced and expert users.

Because user feedback is a main aspect of T-Broker [32],

attracting users to trust the system and encouraging them to

send their feedback are challenging. Also, the proposed ap-

proach does not discuss ways of controlling malicious behav-

iors [56].

Distributed cloud brokering [30] prioritizes constraints ac-

cording to user preferences and classifies preferences as hard

or soft. However,neither hard preferences nor soft preferences

are prioritized in their own category.

Two layered brokerage [34] does brokering in two layers,

namely IaaS and SaaS layers, resulting in overlay communi-

cations on the network. In addition, SaaS and IaaS providers

share the same functionality under a broker, and each broker

can only handle requests with a specific single functionality.

SMICloud [35] uses AHP to compare and rank service

providers. It does not automate the selection process and re-

quires significant user input, which hinders its usage in prac-

tice [57]. This approach can beused only for quantifiable QoS

attributes and it is not suitable for non-quantifiable QoS at-

tributes [17].

STARTOS [29] does not consider QoS attributes at all. The

geographical locations of the serving data centers are not con-

sidered either, which makes it impossible to allow legislation-

aware application brokering [58].

QBROKAGE [28] exploits only the limited information

that commercial providers are likely to make available to cus-

tomers, such as VM costs and characteristics in terms of stor-

age, memory, etc. Moreover, its current version does not sup-

port elasticity for an already deployed application.

Brokering for optimized placement of VMs [36] only con-

siders static scenarios where users’ and providers’ conditions

do not change over a long time period and the placement

Table 2 CSB approaches (single service model)

Approaches Main contributions Main challenges

QBROKAGE
[28]

1. Modeling applications, resources, and QoS attributes in OVF
format
2. Making an application graph based on OVF file
3. Using game theory to map applications to providers

1. Only uses commercial provider information
2. Is not elastic to support previously deployed applications

SLA-based SaaS
provisioning [3]

1. Using QoS attributes for ranking SaaS providers
2. Using multi-attributes negotiation model based on SLA agree-
ment between customer and provider

1. QoS attributes are not determined clearly
2. Lengthy service selection time due to the lack of user prioriti-
zation

Brokering using
Game Theory
[23]

1. Receiving and analyzing user requests using history
2. Using game theory in SLA negotiations to gain useful agree-
ments between providers and customers

1. Only cost and quality parameters are considered in selection
service
2. Lengthy negotiation time when the number of SLA parameters
increases

STRATOS [29] 1. Using RAD as a multi-criterion optimization problem
2. Receiving TDF file from the user to determine the topology and
application goals
3. Identifying possible configuration and goals of optimization

1. No use of QoS attributes
2. No ability to implement legislation aware brokering because of
ignoring geographic datacenter placement

Distributed cloud
brokering [30]

1. Using CFP to appoint SLA template and exchanging policies
2. Using distributed brokering

User preferences are placed into hard and soft classes. If user se-
lects a few parameters in one class, the broker doesn’t distinguish
between them

Multi-cloud bro-
kering [24]

1. Using a scheduler to deploy VMs in clouds
2. Using a VM manager for monitoring and updating the VM list
3. Using a cloud manager for updating the instance list and dynamic
pricing

1. Only price, efficiency, and energy consumption are considered
in service selection
2. Receiving much professional information from users in the ser-
vice description file

Dynamic broker-
ing on federated
clouds [31]

1. Using multi-agent systems in federated clouds
2. Negotiating in three ways: consumer agent, RBA communica-
tion, and RPA communication

1. Suitable only for federated clouds
2. Only price is considered for service selection

T-Broker [32] 1. Using a trust-aware architecture in multi-cloud environment
2. Using Sensor-Based service monitoring for monitoring the real-
time service data to guarantee the SLA
3. Using virtual infrastructure manager
4. Using a lightweight feedback mechanism

1. Encourages users to send their feedback to ensure their trust
2. Control of malicious behavior is not determined



Meysam VAKILI et al. Cloud service selection using cloud service brokers: approaches and challenges 613

Table 3 CSB approaches (Multiple service model)

Approaches Main contributions Main challenges

AHP & TOPSIS
[21]

1. Identifying suitable criteria
2. Evaluating the weight of criteria using AHP
3. Ranking cloud providers using TOPSIS

1. It is not clear how users declaretheir priorities to the system
2. A special structure is not defined for SLA

CSP-index [33] 1. Indexing Cloud Service Providers by:
a) Property and relationship encoding
b) Index key generation
2. Query Algorithm for Cloud Service Selection with:
a) Query definition and encoding
b) K-nearest neighbor search
c) Refinement and consideration of special criteria

1. Receiving much expert information from the user
2. QoS attributes are not determined clearly

Two layers bro-
kering [34]

1. Using two brokers: SaaS broker and cloud broker
2. To create communication between brokers in two phases: dis-
covery and binding
3. To define theefficiency property based on cloud broker informa-
tion to assess SaaS providers

1. Only availability, reliability, and response time are considered
in service selection
2. High rate of network communications when the number of
SaaS and IaaS providers is high

SMICloud [35] 1. Discovery and ranking services by AHP by SMICloud Broker
component
2. Monitoring the performance of allocated services by a monitor-
ing component
3. Service maintenance and itscharacteristics using a service cata-
logue component

1. Receiving muchinformation from the user non-automatically
2. Lower efficiency compared to non-quantifiable QoS

Brokering for
optimized place-
ment of VMs
[36]

1. Using cloud scheduler to supply an optimized deployment plan
for VMs
2. Using a virtual infrastructure manager to deploy each VM on a
selected cloud

1. It is not quantifiable in case of dynamic service allocation
2. Differences in the performances of virtual machine managers
is not considered

OWL-S based se-
mantic CSB [14]

1. Using dynamic semantic matching, discovery, and service selec-
tion based on OWL-S
2. Using semantic scoring function for scoring and ranking discov-
ered services

1. QoS attributes in service selection are not considered.
2. It cannot work with specific ontologies of some providers

Price optimiza-
tion using 0-1
Knapsack [4]

Using 0-1 Knapsack for pricing optimization in cloud service inte-
gration

1. The only criteria to integrate services is the price
2. Uses time-consuming algorithmsto deal with various providers
with different SLA parameters

decision is made only once [59]. It also presents fine-grained

inter operability of cloud services by way of an API that does

not take into account possible differences in virtual machine

managers that are deployed in the infrastructures of different

cloud providers [60].

Dynamic brokering on federated clouds [31] is only suit-

able for federated clouds, and thus, is not useful in multi-

cloud domains. It appears to use price as the main criteria in

its service selection and is not clear as to which other QoS

parameters can be considered.

OWL-S based semantic CSB [14] does not consider the

service QoS metrics and characteristics in its selection pro-

cess [61, 62]. This may pose challenges if part of the service

description is in free text or if some cloud providers adopt

customized ontologies [26].

Price optimization using 0-1 Knapsack [4] considers price

as the only criterion to offer a service from composition of

a number of services from possibly different providers. Sole

reliance on price is not a proper criterion for service selec-

tion. Furthermore, recursively searching for providers and

their services with different SLAs and finding suitable ser-

vices could be very time consuming.

Brokering using Game Theory [23] uses a quality param-

eter that is too general to be considered as an effective and

useful parameter in SLA. Moreover, the higher the number of

SLA providers, the longer negotiating takes using the game

theory; it takes longer for the game to reach equilibrium over

more rounds.

5 Evaluation and comparison

This section compares and evaluates cloud service selection

approaches by CSBs noted in Section 3. Tables 2 and 3 sum-

marize the main principals of each approach and their main

challenges. Since all stated approaches in Table 2 support

only one cloud service model, the type of supported service

in the main challenges column is not stated. Table 4 compares

all represented approaches based on the characteristics of an

effective CSB that we proposed in Section 2.



614 Front. Comput. Sci., 2019, 13(3): 599–617

Table 4 Comparison of represented approaches based on the proposed attributes of an effective CSB

Approaches
Qos attributes

used

SLA violation

determination

Price

optimizing

mechanism

Cloud

service

model

selection

Using user

profile

Dynamic/

Static

brokering

Quantity &

quality of

information

received from

user

Prioritize

customer

preferences

QBROKAGE
Commercial

providers QoS
No No IaaS No D Balanced No

SLA-based SaaS

provisioning

Not determined

clearly
Yes No SaaS

Yes- by

profile

repository

D Balanced No

Brokering using

Game Theory
Cost & Quality No

Yes- by

Payoff

function

IaaS

Yes- by

History

component

D Balanced No

STRATOS None No Yes IaaS No S Balanced Yes

Distributed cloud

brokering
Various attributes No No IaaS Yes D Balanced

Incomplete-

only hard and

soft groups

Multi-cloud

brokering

Cost,

Performance &

Energy consumption

No Yes IaaS

Yes- by

historical

profile of the

deployed

service

D
Too Muchand

Professional
No

Dynamic brokering on

federated clouds
Cost No No IaaS No D Balanced No

T-Broker Various attributes No No IaaS No D Balanced No

AHP & TOPSIS SMI attributes No No Multiple No S
Too Much and

Professional

Yes- by

AHP

CSP-index Not determined clearly No No Multiple No S
Too Much and

Professional
No

Two layers brokering

Availability,

Reliability &

Response time

No No Multiple No D Balanced No

SMICloud SMI attributes No No Multiple

Yes- by

SLA Manager

and Monitoring

components

S
Too Much

and Professional

Yes- by

AHP

Brokering for optimized

placement of VMs

Performance, Cost

& Load balance
No Yes Multiple No S Balanced No

OWL-S based semantic

CSB
None No No Multiple No D Balanced No

Price optimization

using 0-1 Knapsack

Not determined

clearly
No

Yes-

using 0-1

Knapsack

Multiple No S Balanced No

6 Conclusion

This paper reviewed the issue of cloud service selection by

considering different CSB approaches. Eight attributes for

an effective CSB approach were proposed: (1) using var-

ious QoS attributes, (2) SLA violation recognition mecha-

nism, (3) price optimization mechanism, (4) selecting suit-

able provider for different types of cloud services, (5) us-

ing customer profile to allocate later services, (6) dynamic

brokering, (7) not receiving all service information from the

customer, and (8) prioritizing customer preferences. Most of

the prominent works from recent years were reviewed, main

challenges were stated for each one, and they were compar-

atively tabulated with respect to the proposed attributes. No

investigated CSB approach ideally supported all the proposed



Meysam VAKILI et al. Cloud service selection using cloud service brokers: approaches and challenges 615

attributes for an effective CSB completely. Though it may be

possible in theory, it is potentially impractical and unnec-

essary to have a full-fledged CSB supporting all attributes.

Therefore, CSB designers must prioritize the proposed at-

tributes for an effective CSB in order to find a logical tradeoff

between different attributes and select the ones that conform

best with the main objectives of the CSB to be designed.

References

1. Mell P, Grance P. The NIST Definition of Cloud Computing. NIST

Special Publication 800-146, 2011

2. Wadhwa B, Jaitly A, Hasija N, Suri B. Cloud service brokers: address-

ing the new cloud phenomenon. In: Rajsingh E B, Bhojan A, Peter J

D, eds. Informatics and Communication Technologies for Societal De-

velopment, Springer International Publishing, 2015, 29–40

3. Badidi E. A cloud service broker for SLA-based SaaS provisioning. In:

Proceedings of International Conference on Information Society. 2013,

61–66

4. Shin Y R, Huh E N. Optimization for reasonable service price in bro-

ker based cloud service environment. In: Proceedings of the 4th Inter-

national Conference on Innovative Computing Technology. 2014, 115–

119

5. Buyya R, Ranjan R, Calheiros R N. InterCloud: utility-oriented fed-

eration of Cloud computing environments for scaling of application

services. In: Proceedings of the 10th International Conference on Al-

gorithms and Architectures for Parallel Processing. 2010, 13–31

6. Ferrer A J, Hernández F, Tordsson J, Elmroth E, Ali-Eldin A, Zsigri C,

Sirvent R, Guitart J, Badia R M, Djemame K, Ziegler W. OPTIMIS:

a holistic approach to cloud service provisioning. Future Generation

Computer Systems, 2012, 28(1), 66–77

7. Simarro J L L, Moreno-Vozmediano R, Montero R S, Llorente I M.

Dynamic placement of virtual machines for cost optimization in multi-

cloud environments. In: Proceedings of International Conference on

High Performance Computing and Simulation. 2011, 1–7

8. Liu F, Tong J, Mao J, Bohn R, Messina J, Badger L, Leaf D. NIST

Cloud Computing Reference Architecture. NIST Special Publication

500, 2011

9. Grozev N, Buyya R. Inter-cloud architectures and application broker-

ing: taxonomy and survey. Software: Practice and Experience, 2014,

44(3): 369–390

10. Sanchez F D, Al Zahr S, Gagnaire M, Laisne J P, Marshall I J. Com-

patibleOne: bringing cloud as a commodity. In: Proceedings of IEEE

International Conference on Cloud Engineering. 2014, 397–402

11. Bhattacharya A, Choudhury S. Service insurance: a new approach in

cloud brokerage. In: Chaki R, Saeed K, Choudhury S, et al. eds. Ap-

plied Computation and Security Systems. Springer International Pub-

lishing, 2015, 39–52

12. Song H, Bae C S, Lee J W, Youn C H. Utility adaptive service broker-

ing mechanism for personal cloud service. In: Proceedings of Military

Communications Conference. 2011, 1622–1627

13. Somasundaram T S, Govindarajan K, Rajagopalan M, Rao S M. A bro-

ker based architecture for adaptive load balancing and elastic resource

provisioning and deprovisioning in multi-tenant based cloud environ-

ments. In: Proceedings of International Conference on Advances in

Computing. 2012, 561–573

14. Ngan L D, Kanagasabai R. Owl-s based semantic cloud service broker.

In: Proceedings of the 19th IEEE International Conference on Web

Services. 2012, 560–567

15. Whaiduzzaman M, Haque M N, Rejaul Karim Chowdhury M, Gani

A. A study on strategic provisioning of cloud computing services. The

Scientific World Journal, 2014, 1–16

16. Sun L, Dong H, Hussain F K, Hussain O K, Chang E. Cloud service se-

lection: state-of-the-art and future research directions. Journal of Net-

work and Computer Applications, 2014, 45: 134–150

17. Subha M, Banu M U. A survey on QoS ranking in cloud computing. In-

ternational Journal of Emerging Technology and Advanced Engineer-

ing, 2014, 4(2): 482–488

18. Jula A, Sundararajan E, Othman Z. Cloud computing service composi-

tion: a systematic literature review. Expert Systems with Applications,

2014, 41(8): 3809–3824

19. Chao K M, Anane R, Chen J H, Gatward R. Negotiating agents in a

market-oriented grid. In: Proceedings of the 2nd IEEE/ACM Interna-

tional Symposium on Cluster Computing and the Grid. 2002, 436

20. Kertész A, Kecskemeti G, Brandic I. An interoperable and self-

adaptive approach for SLA-based service virtualization in heteroge-

neous Cloud environments. Future Generation Computer Systems,

2014, 32: 54–68

21. Achar R, Thilagam P S. A broker based approach for cloud provider

selection. In: Proceedings of International Conference on Advances in

Computing, Communications and Informatics. 2014, 1252–1257

22. Schaffer H E. X as a service, cloud computing, and the need for good

judgment. IT Professional, 2009, 11(5): 4–5

23. Ray B K, Khatua S, Roy S. Negotiation based service brokering us-

ing game theory. In: Proceedings of Applications and Innovations in

Mobile Computing Conference. 2014, 1–8

24. Simarro J L L, Aniceto I S, Moreno-Vozmediano R, Montero R S,

Llorente I M. A cloud broker architecture for multi-cloud environ-

ments. In: Proceedings of Large Scale Network-Centric Distributed

Systems Conference. 2013, 359–376

25. Brock M, Goscinski A. Enhancing Cloud Computing Environments us-

ing a Cluster as a Service. New York: Wiley Press, 2011

26. Parhi M, Pattanayak B K, Patra M R. A multi-agent-based framework

for cloud service description and discovery using ontology. In: Jain L

C, Patnaik S, Ichalkaranje N, eds. Intelligent Computing, Communica-

tion and Devices, Springer International Publishing, 2015, 337–348

27. Lee Y T, Wu C S. A quality-based semantic service broker using reach-

ability indexes. In: Proceedings of IEEE World Forum on Internet of

Things. 2014, 277–282

28. Anastasi G F, Carlini E, Coppola M, Dazzi P. QBROKAGE: a genetic

approach for QoS cloud brokering. In: Proceedings of the 7th IEEE

International Conference on Cloud Computing. 2014, 304–311

29. Pawluk P, Simmons B, Smit M, Litoiu M, Mankovski S. Introducing

STRATOS: a cloud broker service. In: Proceedings of the 5th IEEE

International Conference Cloud Computing. 2012, 891–898

30. Amato A, Di Martino B, Venticinque S. A distributed cloud brokering



616 Front. Comput. Sci., 2019, 13(3): 599–617

service. Informatica, 2015, 26(1): 1–15

31. Haresh M, Kalady S, Govindan V. Agent based dynamic resource al-

location on federated clouds. In: Proceedings of IEEE Conference on

Recent Advances in Intelligent Computational Systems. 2011, 111–

114

32. Li X, Ma H, Zhou F, Yao W. T-Broker: a trust-aware service brokering

scheme for multiple cloud collaborative services. IEEE Transactions

on Information Forensics and Security, 2015, 10(7): 1402–1415

33. Sundareswaran S, Squicciarini A, Lin D. A brokerage-based approach

for cloud service selection. In: Proceedings of the 5th IEEE Interna-

tional Conference on Cloud Computing. 2012, 558–565

34. Lim E, Thiran P. Communication of technical QoS among cloud bro-

kers. In: Proceedings of IEEE International Conference on Cloud En-

gineering. 2014, 403–409

35. Garg S K, Versteeg S, Buyya R. SMICloud: a framework for com-

paring and ranking cloud services. In: Proceedings of the 4th IEEE

International Conference on Utility and Cloud Computing. 2011, 210–

218

36. Tordsson J, Montero R S, Moreno-Vozmediano R, Llorente I M. Cloud

brokering mechanisms for optimized placement of virtual machines

across multiple providers. Future Generation Computer Systems, 2012,

28(2): 358–367

37. Anastasi G F, Carlini E, Coppola M, Dazzi P. Smart cloud feder-

ation simulations with CloudSim. In: Proceedings of the 1st ACM

Workshop on Optimization Techniques for Resource Management in

Clouds. 2013, 9–16

38. Ye Z, Zhou X, Bouguettaya A. Genetic algorithm based QoS-aware

service compositions in cloud computing. In: Proceedings of the 16th

International Conference on Database systems for advanced applica-

tions. 2011, 321–334

39. Li X, Yang Y. Trusted data acquisition mechanism for cloud resource

scheduling based on distributed agents. China Communication, 2011,

8(6): 108–116

40. Smit M, Pawluk P, Simmons B, Litoiu M. A web service for cloud

metadata. In: Proceedings of the 8th IEEE World Congress Services.

2012, 361–368

41. Shoham Y, Leyton-Brown K. Multiagent Systems: Algorithmic,

Game-Theoretic, and Logical Foundations. Cambridge: Cambridge

University Press, 2008

42. Li X, Zhou F. PG-TRUST: a self-adaptive and scalable trust computing

model for large-scale peer-to-peer grid computing. International Jour-

nal of Software Engineering and Knowledge Engineering, 2011, 21(5):

667–692

43. Yoon K P, Hwang C L. Multiple attribute decision making: an intro-

duction. Sage Publications, 1995

44. Siegel J, Perdue J. Cloud services measures for global use: the service

measurement index (SMI). In: Proceedings of SRII Global Conference.

2012, 411–415

45. Saaty T L. How to make a decision: the analytic hierarchy process.

European Journal of Operational Research, 1990, 48(1): 9–26

46. Kalepu S, Krishnaswamy S, Loke S W. Verity: a QoS metric for select-

ing Web services and providers. In: Proceedings of the 4th Conference

on Web Information Systems Engineering Workshops. 2003, 131–139

47. AlZain M, Pardede E, Soh B, Thom J. Cloud computing security: from

single to multi-clouds. In: Proceedings of the 45th International Con-

ference on System Science. 2012, 5490–5499

48. Vukolić M. The Byzantine empire in the intercloud. ACM SIGACT

News, 2010, 41(3): 105–111

49. Alhamad M, Dillon T, Chang E. Conceptual SLA framework for cloud

computing. In: Proceedings of the 4th IEEE International Conference

on Digital Ecosystems and Technologies. 2010, 606–610

50. Sotomayor B, Montero R S, Llorente I M, Foster I. Virtual infrastruc-

ture management in private and hybrid clouds. IEEE Internet Comput-

ing, 2009, 13(5): 14–22

51. Aslam M A, Auer S, Shen J, Herrmann M. Expressing business pro-

cess models as OWL-S ontologies. In: Proceedings of Business Pro-

cess Management Workshops. 2006, 400–415

52. Gonzalez-Castillo J, Trastour D, Bartolini C. Description logics for

matchmaking of services. In: Proceedings of Workshop on Applica-

tions of Description Logics. 2002

53. Ngan L D, Tsai Flora S, Keong C C, Kanagasabai R. Towards a com-

mon benchmark framework for cloud brokers. In: Proceedings of the

18th IEEE International Conference on Parallel and Distributed Sys-

tems. 2012, 750–754

54. Neapolitan R, Naimipour K. Foundations of Algorithms. Swdbury,

Mass: Jones & Bartlett Publishers, 2010

55. Karim R, Ding C, Miri A. An end-to-end QoS mapping approach

for cloud service selection. In: Proceedings of the 9th IEEE World

Congress on Services. 2013, 341–348

56. Komninos N, Junejo A K. Privacy preserving attribute based encryp-

tion for multiple cloud collaborative environment. In: Proceedings

of the 8th IEEE/ACM International Conference on Utility and Cloud

Computing. 2015, 595–600

57. Juan-Verdejo A, Zschaler S, Surajbali B, Baars H, Kemper H G. In-

CLOUDer: a formalized decision support modelling approach to mi-

grate applications to cloud environments. In: Proceedings of the 40th

EUROMICRO Conference on Software Engineering and Advanced

Applications. 2014, 467–474

58. Grozev N, Buyya R. Multi-cloud provisioning and load distribution for

three-tier applications. ACM Transactions on Autonomous and Adap-

tive Systems, 2014, 9(3): 13

59. Simarro J L L, Moreno-Vozmediano R, Montero R S, Llorente I M.

Scheduling strategies for optimal service deployment across multiple

clouds. Future Generation Computer Systems, 2013, 29(6): 1431–1441

60. Amato A, Di Martino B, Venticinque S. Evaluation and brokering of

service level agreements for negotiation of cloud infrastructures. In:

Proceedings of International Conference Internet Technology and Se-

cured Transactions. 2012, 144–149

61. Afify Y M, Moawad I F, Badr N L, Tolba M. Cloud services discovery

and selection: survey and new semantic-based system. In: Hassanien

A E, Kim T H, Kacprzyk J, et al. eds. Bio-inspiring Cyber Security

and Cloud Services: Trends and Innovations, Springer International

Publishing, 2014. 449–477

62. Afify Y M, Moawad I F, Badr N L, Tolba M. A semantic-based

software-as-a-service (SaaS) discovery and selection system. In: Pro-

ceedings of the 8th International Conference on Computer Engineering

& Systems. 2013, 57–63



Meysam VAKILI et al. Cloud service selection using cloud service brokers: approaches and challenges 617

Meysam Vakili received his BS degree in

software engineering from University of

Fasa, Fars, Iran in 2011, and MS degree

in software engineering from University of

Science and Culture, Tehran, Iran in 2014.

His research interests include distributed

systems, Internet of Things, cloud comput-

ing, and complex event processing.

Neda Jahangiri received her BS degree in

software engineering in 2012, and MS de-

gree in software engineering from Univer-

sity of Science and Culture, Tehran, Iran in

2015. Her research interests include cloud

computing and databases.

Mohsen Sharifi is a professor of System

Software Engineering at the School of

Computer Engineering at Iran University of

Science and Technology, Iran. He directs a

distributed systems research group and lab-

oratory. His main interest is in the develop-

ment of distributed systems, solutions, and

applications, particularly for use in various

fields of science. The development of a true distributed operating

system is on top of his wish list. He received his BS, MS, and PhD

degrees in computer science from the University of Manchester, UK.


